MAHOS结构电荷俘获型存储器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,Flash Memory在非易失性半导体存储器市场上占有很大的份额,因为它具有高密度、低功耗、小体积和高可靠性等优点。但是随着微电子技术节点的不断向前推进,尤其是器件尺寸减小到45nm、32nm技术节点时,传统的浮栅结构Flash Memory在可缩小性方面受到严重的制约。在这种情况下,分立式电荷存储技术将尽可能的把Flash技术向更高的技术代推进。分立式电荷存储技术有三种设计方法,第一种是引入纳米晶作为电荷存储点;第二种是利用化合物本身的深能级缺陷作为存储点,即电荷俘获型存储器;第三种是纳米晶和电荷陷阱介质两种的混合。本文的主要研究内容是电荷俘获型存储器。与传统的浮栅存储器相比,其隧穿层局部的漏电通道只会造成少数区域的漏电,具有很好的器件性能。
     文中首先介绍了Flash Memory的研究背景,包括Flash Memory的由来,应用与市场,以及Flash Memory的现状和发展趋势,并对Flash器件的结构、工作原理和一些通用的存储器性能参数做了介绍。
     其次,为了缓解传统Flash Memory尺寸缩小受限问题,我们研究了采用分立式存储电荷方法的电荷俘获型存储器,并对电荷俘获存储器中的俘获层的研究进行综述和分析,着重介绍对电荷俘获存储器的俘获层改进的一些方法,包括高k介质材料俘获层、对氮化硅掺氧的无定形氧氮化硅俘获层、植入纳米晶材料的俘获层及其叠层结构,并对其进一步的研究趋势进行了展望。
     最后,我们采用高k材料和高功函数的金属制备了Al、Pt/Al2O3/HfO2/ SiO2/Si结构的器件,用公式推导分析了Al2O3作为阻挡层比传统的SiO2作为阻挡层的器件的优越性,用电学测试方法分析了所制备的MOS存储电容的电荷存储特性和电荷保持特性,并对不同介质层厚度和不同栅电极的器件的性能作了分析比较。从实验结果中,我们得出以下结论:HfO2作为俘获层具有较大的存储窗口,其俘获能力较强;隧穿层的厚度也对其平带电压的漂移有很大的影响;高功函数的Pt电极器件比Al电极器件具有较小的漏电流,保持特性较好。
Flash memory has great share in current non-volatile semiconductor memory market, because it has several advantages, such as:high density, low power, small size, good reliability, and so on. However, with the microelectronics technology nodes moving forward, the traditional flash memory which was based on floating gate concept has encountered serious challenge in scaling, especially reaching 45nm and 32nm technology node. Under this circumstance, discrete charge storage technology will push the current flash technology to more advanced technology. There are three methods for discrete charge storage technology:the first is introducing nano-crystals; the second is utilizing compound materials that have deep energy level defects itself, i.e. charge trapping memory; the third is utilizing the mixture of nano-crystal and charge trapping materials as charge storage points. This work mainly focuses on charge trapping memory which has good electrical characteristics. Compared with the traditional floating gate memory, charge trapping memory has smaller current leakage with local leakage access of tunneling layer.
     In this article, research background of flash memory is introduced firstly, including the origin, the application and market, the status and development trend of flash memory. At the same time, the structure, wok principle of the device, and some general memory performance parameters are also introduced.
     Secondly, in order to alleviate the problem of the scaling of the traditional flash memory, we studied the charge trapping memory which employs the method of discrete charge storage. Simultaneity, the research of the trapping layer of the charge trapping memory was summarized and analyzed. There are several improved methods of the trapping layer, including high-k dielectric materials trapping layer, the oxygen-doped amorphous silicon nitride oxide trapping layer, implanted nano-crystal trapping layer and the stacked structure of the trapping layer. We also discussed the further research trends of the charge trapping memory.
     Finally, we prepared the device with the structure of Al、Pt/Al2O3/HfO2 SiO2/Si using high-k materials and high work function metal. The formula confirmed that the Al2O3 as blocking layer is superior compared with traditional SiO2 as blocking layer. We investigated and analyzed the charge storage performances and retention characteristics of the prepared quasi-MOS capacitor. The performance of devices with different dielectric thickness and different gate electrode were also compared. The experiment results indicate that:HfO2 as blocking layer has larger memory window (excellent charging characteristics); tunneling layer thickness can influence flat-band voltage shift; the device with Pt gate electrode has smaller current leakage and better retention than Al electrode.
引文
[1]Okajima Y,Sato Y,Kurosaki K,Yamada S.7ns 4MB BICMOS SRAM With Parallel Testung Circuit[C], in ISSCC Conf.Proc.,1991,pp.54-59.
    [2]Shibata N,Kurita S, Okamoto H,Tan'no M, Douseki T.A 0.5V 25MHz 1Mw 256kb MTCMOS/SOI SRAM for solar-power-operated portable personal digital equipment sure write operation by using step-down negatively overdriven bitline scheme[J], IEEE Trans.Solid-State Circuits, March.2006,vol.41,pp.728-742.
    [3]D.Kahng and S.M.Sze, A floating gate and its application to memory devices [J], Bell Syst.Tech. vol.46,p:1288,1967
    [4]H.A.R.Wegener,A.J.Lincoln,H.C.Pao,M.R.O'Connell,and R.E.Oleksiak,"The variable threshold transistor,a new electrically alterable,non-destructive read-only storage device" [C], IEEE IEDM Tech.Dig.,Washington,D.C.,1967
    [5]F Masuoka.,Asano M.,Iwahashi H.Komuro T. and Tanaka S., "A new Flash E2PROM cell using triple polysilicon technology"[J]. IEDM Tech. Dig., pp. 464-467,1984
    [6]宁润苏,纳米晶浮栅结构先进存储器的研究与模拟,硕士论文,电子科技大学,2009
    [7]Kolodny, S. T. K. Neih, B. Einat, and J. Shappir. Analysis and modeling of floating gate EEPROM cells[J]. IEEE Trans. Electron Devices,1986,33(10): 835~836
    [8]M. Wada, S. Mimura, H. Nihira, and H. Iizuka. Limiting factors for programming EPROM of reduced dimensions[J]. IEDM Tech. Dig.,1980:38~41
    [9]W. L. Choi and D. M. Kim. A new technique for measuring coupling coefficients and 3-D capacitance characterization of floating gate devices[J]. IEEE Trans. Electron Devices,1994,41(12):2337~2342
    [10]C.Hu, "Lucky-electron model of hot-electron emission"[J], IEDM Tech..Dig., p22,1979
    [11]Simon Tam, Ping-Keung Ko, ChenMing Hu, "Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET's" [J], IEEE Transactions on Electron Devices, Vol.ED-31,No.9,Sep 1994,p1116-1125
    [12]M.Lenzlinger and E.H.Snow, "Fowler-Nordheim tunneling in thermally grown SiO2" [J], J.Appl.Phys., vol.40, p278,1969
    [13]PALO PAVAN. Flash Memory Cells-An Overview, Proceedings of the IEEE, vol.85, No.8, AUGUST 1997
    [14]ROBERTO BEZ. Introduction to Flash Memory PROCEEDINGS OF THE IEEE, vol.91, No.4 APRIL 2003
    [15]International Technology Roadmap For Semiconductors, http://www.itrs.net/, 2007
    [16]S. Tiwari, F. Rana, H. Hanafi, A. Hartsten, E. F. Crabbe, and K. Chan. "A silicon nanocrystals based memory" [J].Appl. Phys. Lett.,1996 (68):1377.
    [17]M. White, Y. Yang, P. Ansha, and M. L. French. "A low voltage SONOS nonvolatile semiconductor memorytechnology"[J], IEEE Trans. Compon., Packag., Manuf. Technol.,1997 (20):190.
    [18]V Ioannou-Sougleridis, P Dimitrakis, V Em Vamvakas. P Normand, C Bonafos, S Schamm, A Mouti, G BenAssayag and V Paillard. "Oxide-nitride-oxide dielectric stacks with Si nanoparticles obtained by low-energy ion beam synthesis" [J]. Nanotechnology,2007 (18):215204.
    [19]Chungho Lee, Tuo-Hung Hou, and Edwin Chih-Chuan Kan. "Nonvolatile Memory With a Metal Nanocrystal/Nitride Heterogeneous Floating-Gate"[J]. IEEE Trans. Electron Devices,2005 (52):2697.
    [20]Sangmoo Choi, Hyundeok Yang, Man Chang. Sungkweon Baek, Hyunsang Hwang, Sanghun Jeon, Juhyung Kim, and Chungwoo Kim. "Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices"[J]. Appl. Phys. Lett.,2005 (86):251901.
    [21]Robert F. Steimle, Michael Sadd, Ramachandran Muralidhar, Rajesh Rao, Bruce Hradsky, Sherry Straub, and Bruce E. White, Jr. "Hybrid Silicon Nanocrystal Silicon Nitride Dynamic Random Access Memory"[J]. IEEE Trans. Nanotechnology,2003 (2):335.
    [22]Lee C H, Choi K I, Cho M K, et al. A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories[C]//IEDM Tech Dig. IEEE International,2003:26.5.1-26.5.4.
    [23]Lee C H, Kang C, Sim J, et al. Charge trapping memory cell of TANOS (Si-oxide-SiN-Al2O3-TaN) structure compatible to conventional NAND Flash memory[C]//Proc IEEE NVSMW. Monterey, CA,2006:54-55.
    [24]LAI C H, CHIN A C, CHIANG K C, et al. Novel Si02/AlN/HfAlO/IrO2 memory with fast erase, large AVth and good retention[C]//VLSI Tech.Kyoto,Japan, 2005:210-211.
    [25]WANG Y O, SINGH P K, YOO W J, et al. Long retention and low voltage operation using IrO2/HfAlO/HfSiO/HfAlO gate stack for memory application [C]//IEDM Tech Dig. San Francisco,2005:169-172.
    [26]LEE C H, HUR S H, SHIN Y C, et al. Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density Flash memory [J]. Appl Phys Lett, 2005,86 (15):1529081-1529083.
    [27]WILK G D, WALLACE R M, ANTHONY J M. High-k gate dielectrics:Current status and materials properties considerations [J]. J Appl Phys,2001,89 (10) 5243-5275.
    [28]TAN Y N, CHIM W K, CHO B J, et al. Over-erase phenomenon in SONOS-type Flash memory and its minimization using a hafnium oxide charge storage layer[J]. IEEE Trans. Electron Devices,2004,51 (7):1143-1147.
    [29]LUE H T, WANG S Y, LAI E K, et al. BE-SONOS:A bandgap engineered SONOS with excellent performance and reliability[C]//IEDM Tech Dig. San Francisco,2005:555-558.
    [30]HONG S H, JANG J H, PARK T J, et al. Improvement of the current-voltage characteristics of a tunneling dielectric by adopting a Si3N4/SiO2/Si3N4 multilayer for Flash memory application[J]. Appl Phys Lett,2005,87 (10):152 106 1-152 106 3.
    [31]李德君,刘明,龙世兵,王琴,陈军宁,代月花等,电荷俘获存储器中俘获 层的研究进展[J].微纳电子技术,2009,(09):518-524,539.
    [32]Kapoor V J, Bailey R S. Chemical composition, charge trapping, and memory properties of oxynitride films for MNOS devices [J]. J. Appl. Phys,1990,137 (11): 3589-3594.
    [33]Wrazien S J, Zhao Y J, Krayer J D, Characterization of SONOS oxynitride nonvolatile semiconductor memory devices[J]. Solid State Electronics,2003,47 (5): 885-891.
    [34]WU K H, CHIEN H C, CHAN C C, et al. SONOS device with tapered bandgap nitride layer [J]. IEEE Transactions on Electron Devices,2005,52(5):987-992.
    [35]GOEL N, GILMER D. C, PARK,et al. Erase and retention improvements in charge trap flash through engineered charge storage layer [J]. Appl Phys Lett,2009, 30 (3):216-218.
    [36]SANDHYA C, GANGULY U, CHATTAR N. Effect of SiN on performance and reliability of charge trap flash (CTF) under Fowler-Nordheim tunneling program/erase operation[J]. IEEE electron device letters,2009,30(2):171-173.
    [37]CHIEN H C, KAO C H, CHANG J W, et al. Two-bit SONOS type flash using a Band Engineering in the nitride layer [J]. Microelectronic Engineering,2005,80(17): 256-259.
    [38]Sandhya C, Ganguly U, Singh K K, et al. Nitride engineering and the effect of interfaces on Charge Trap Flash performance and reliability[C]//Proc Int Reliab Phys Symp. Phoenix, AZ (USA),2008:406-412.
    [39]WANG Y Q, HWANG W S, ZHANG G, et al. Electrical charateristics of memory devices with a high-k HfO2 trapping layer and dual SiO2/Si3N4 tunneling layer[J]. IEEE Transactions on Electron Devices,2007,54(10):2699-2705.
    [40]CHEN W, LIU W J, ZHANG M, et al. Multistacked Al2O3/HfO2/SiO2 tunnel layer for high-density nonvolatile memory application [J].Appl Phys Lett,2007. 91(2):022908.1-022908.3.
    [41]SUGIZAKI T, KOHAYASHI M, ISHIDAO M., et al. Novel multi-bit SONOS type flash memory using a high-k charge trapping layer[C]//Symposium on VLSI Technology Digest of Technicial Papers. Japan,2003:27-28.
    [42]SPECHT M,REKINGER H, STADELE M, et al. Retention time of Novel Charge Trapping Memories Using A1203 Dielectrics[C]//European Solid-State Device Research. Portugal,2003:155-158.
    [43]TAN Y N, CHIM W K. High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation[C]//IEDM Tech Dig. San Francisco,2004:889-892.
    [44]Buckley J, Bocquet M, Molas G., et al. In-depth investigation of Hf-based high-k dielectrics as storage layer of charge-trap NVMs [C]//IEDM. Montreal, Canada,2006: 930-933.
    [45]YANG H J, CHENG C F, CHEN W B, et al. Comparison of MONOS memory device integrity when using Hfl-x-yNxOy trapping layers with different N compositions [J]. IEEE Transactions on Electron Devices,2008,55(6):1417-1423.
    [46]PAN T M, YEH W W, TSUNG W, et al. A high-k Y2TiO5 charge trapping layer for high-density flash memory application [C]//IEDM. Washington DC, 2007:435-436.
    [47]PAN T M, YU T Y, HSIEH Y Y. Comparison of structural and electrical properties of praseodymium oxide and praseodymium titanium oxide charge trapping layer memories[J]. J Appl Phys,2007,102:074111-074117.
    [48]YANG H J, CHIN ALBERT, LIN S H, et al. Improved high temperature retention for charge-trapping memory by using double quantum barriers [J]. IEEE electron device letters,2008 29(4):386-388.
    [49]TSAI P H, CHSNG-LIAO K S, WU T Y, et al. Novel SONOS type nonvolatile memory device with stacked tunneling and charge trapping layers [J].Solid State Electron,2008,52(10):1573-1577.
    [50]ZHANG G, HWANG W S, BOBADE S M, et al. Novel ZrO2/Si3N4 dual charge storage layer to form step-up potential wells for highly reliable multi-level cell application[C]//IEDM Tech Dig. Barcelona, Spain,2007:83-86
    [51]MAIKAP S, WANG T Y, TZENG P J, et al. Band offsets and charge storage characteristics of atomic layer deposited high-k HfO2/TiO2 multilayers [J]. Appl Phys Lett,2007,90 (2):262901.1-262901.3.
    [52]SUNAMURA H, KARASHI T I, MORIOKA A, et al. Suppression of lateral charge redistribution using advanced impurity trap memory for improving high temperature retention[C]//IEDM. Crolles, France,2006:720-723.
    [53]WU Y H, CHIANG T Y, LIU S H, et al. SONOS Memories with embedded silicon nanocrystals in nitride by In-situ deposition method [C]//IEDM. Orlando, FL, USA,2008:195-198.
    [54]CHENG C L, LIU C W, CHANG-LIAO K-S, et al. Characterization of CoxNiyO hybrid metal oxide nanoparticles as charge trapping nodes in nonvolatile memory devices[J]. Solid-State Electronics,2008,52(10):1530-1535.
    [55]LIU C W, CHENG C L, JENG J T, et al. Characterization of various alloying metal oxide nanopaticles embedded in HfNxOy as charge trapping nodes in nonvolatile memory devices [J]. Microelectronic Engineering,2008:1766-1771.
    [56]Hwang J R et al 2005 IEDM Tech. Dig. p 161
    [57]Du P Y and Guo J C 2006 SSDM:Ext. Abstr. Solid State Devices and Materials p 986
    [58]Lee C H, Hur S H, Shin Y C, Choi J H, Park D G and Kim K 2005 Appl. Phys. Lett.86 152908
    [59]S. M. Sze. Physics of semiconductor devices. New York:John Wiley,1981.
    [60]E. H. Nicollian, J. R. Brews. MOS (Metal Oxide Semiconductor) Physics and Technology [C]. New York:John Wiley,1982.
    [61]S. Huang, S. Banerjee, R. T. Tung, and S.Oda. "Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurements"[J]. J. Appl. Phys.,2003 (93):576.
    [62]Bu J and White M H [J] Solid-State Electron.2001,4547
    [63]Mahapatra R, Maikap S, Lee J H and Ray S K[J] J. Appl. Phys.2006,100 034105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700