铜铟镓硒薄膜太阳电池的器件仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜铟镓硒[Cu(In,Ga)Se_2,简称CIGS]光伏器件的光电转换效率为目前薄膜太阳电池之首,以其优良的器件性能和巨大的商业前景,是目前光伏学术界的研究热点,也是产业界最为关注的新型高效低成本的太阳电池。由于CIGS电池的吸收层是由四种元素构成的复杂化合物,异质结结构又涉及复杂的界面态与隧穿机制,因此CIGS电池的内部器件机理复杂,尚有许多课题有待于进一步研究。器件模拟仿真作为一种有效的理论分析方法,已成为高性能太阳电池研究的重要手段。
     以往的太阳电池模拟软件在应用于CIGS薄膜太阳电池的仿真研究时,由于存在各自的功能局限,不能很好地满足日益发展的CIGS电池理论研究需要。为了更深入地开展CIGS电池中相关课题的仿真研究,本论文在研究CIGS电池器件物理的基础之上,通过改进一款在国际光伏界流行多年的薄膜太阳电池模拟软件AMPS,从而更有针对性地对CIGS电池特有的一些性质进行仿真研究。改进后的软件程序命名为wxAMPS并已发布,供全球光伏界的研究者免费下载使用。
     模拟软件的改进工作涉及到众多的理论知识,包括半导体器件物理与数值模拟技术等。而且只有深刻理解了太阳电池载流子输运机理、缺陷导电机理等理论,才能有效地借助器件仿真工具,对CIGS电池的相关机理进行深入地模拟,并正确解释模拟结果背后的原因,从而指导并促进实验研究。因此本论文在前面章节重点阐述了CIGS电池仿真中所涉及的器件物理理论与数值模拟方法。
     本论文首先在第一章介绍了CIGS电池理论研究的前沿进展,汇总了目前流行的各太阳电池模拟软件,并比较了各软件之间的特点,解释了为何选择在软件AMPS的基础上予以改进与升级。第二章详细讲解了太阳电池通用的器件物理理论。根据半导体物理分析PN结时所用到的准中性区近似,使用解析方法推导了同质结、异质结太阳电池的亮、暗态电流电压特性,并介绍了电池串、并联电阻对器件性能的影响及不同的拟合方法。第三章将解析模型的分析方法,应用于CIGS电池中一些器件特性的探讨,研究了CIGS电池开路电压、品质因子同温度的关系,饱和电流激活能与CIGS禁带宽度的联系,CdS/CIGS异质结界面的费米能级钉扎现象,与缺陷辅助隧穿电流、CIGS吸收层中Ga的背梯度等物理机制对电池性能的影响。
     因为解析模型需要建立在一定的假设与简化条件基础上,才能获得闭合的解析解,对问题进行分析。而考虑更复杂的器件机制时,这些假设与简化条件不一定满足,此时更精确的器件模拟需要用到数值分析技术。本论文第四章详细研究了使用数值方法进行太阳电池模拟过程中所涉及到的物理模型、仿真思路与具体实现过程。系统阐述了薄膜太阳电池中的缺陷机理与各种缺陷态的数值处理方法,其中包括离散分布、带状分布、高斯分布的受主型或施主型缺陷态,带尾态及中间态,和软件AMPS中尚未考虑的两性缺陷态。研究了异质结太阳电池中更复杂的隧穿机制,如带间隧穿电流、缺陷辅助隧穿电流,并对模拟软件中用到的不同光学模型予以了说明和比较。
     通过研究薄膜太阳电池模拟的基础理论,与结合CIGS电池仿真的具体需要,软件wxAMPS弥补了原软件AMPS未考虑隧穿电流影响的不足,添加了两种隧穿电流模型,使程序可以更好地分析薄膜太阳电池中的物理机制;并结合牛顿迭代法、Gummel迭代法的优点,改进了模型的求解算法,提高了程序的稳定性与算法的收敛能力。软件还可以模拟材料参数的任意梯度分布对器件性能的影响。
     第五章通过使用软件wxAMPS,将数值模拟技术应用于CIGS电池的机理研究,并结合前人的实验研究成果,揭示所观察到的宏观实验现象背后的微观物理机制。本章模拟分析了CIGS吸收层的载流子浓度、厚度对电池性能的影响,研究了CIGS电池在低温、弱光下的器件响应,并通过解析模型解释了模拟结果背后的原因。依靠仿真建立的模型发现,对于CIGS电池在低于300K时串联电阻随温度降低而非线性快速增加的现象,是由于CdS/CIGS界面处的势垒影响所致,并由此对学术界在这问题上的争论提出了新的观点和理论解释。本章中还研究出了一种新的仿真方法,可以分析任意Ga梯度对电池性能的影响。结合实测的Ga梯度数据,生成与软件wxAMPS兼容的器件文件,通过比较模拟结果和实验数据,可以有效地对具体Ga含量梯度的效果做出理论分析,并获取更多的器件内部信息。
     论文最后对博士阶段的主要工作和取得的成果予以了总结,并展望了CIGS薄膜电池器件模拟研究的未来发展方向,及日后模拟软件wxAMPS的进一步研发工作。本论文阐述了当前学术界在CIGS电池理论领域所取得的前沿认识水平,以及本论文的研究工作在其中做出的贡献。
As the excellent device performance and the promising manufacture prospect,CuInGaSe_2(CIGS) thin film solar cell is the highest efficiency thin film solar cell,and has become a hot research topic in the Photovoltaic academy field and the most-concerned solar cell by the industry for its high-performance and low cost. Since theabsorber material of CIGS is a complicated compound composed of four elements,and the heterojunction structure is related to the complex interface state and tunnelingmechanism, the inner device principle of CIGS solar cell is difficult to understand,and there are still lots of subjects that need further investigation. Device simulation isa very useful theoretical analysis method, which is one important assistant approachin the high-level solar cell research.
     For various limitaions, the previous solar cell simulation softwares are notadequate to satify the requirements of the developing CIGS theoretical research. Inorder to better implement the simulation studies on some of the CIGS researchsubjects, this work studies the device physics of CIGS solar cell and updates onepopular simulation code AMPS, and carries out modeling researches on some specifictopics of CIGS solar cell. The improved code is named wxAMPS and has beenpublished for the free download of the international PV community.
     Lots of theoretical knowledge is involved in the improvements of the simulationsoftware, including semiconductor device physics and numerical modelingtechnology. And only the device mechanisms, such as carriers’ transportationmechanism, defects behaviors, are well understood, the complex mechanisms ofCIGS solar cell can be studied thoroughfully through using simulation toolsefficiently, and the simulation results can be explained correctly. Therefore, thisthesis elucidates the device physics theory and numerical simulation method at firstchapters.
     In Chapter1, the thesis introduces the frontier progress of CIGS solar celltheoretical research, summarizes a variety of popular modeling software whosefeatures are compared, and explains why AMPS is chosen to be revised and updated. The general solar cell device physics is described in Chapter2. According to thequasi-neutral region assumption which is applied to the PN junction analysis in thesemiconductor physics, the current-voltage characteristic under dark and lightsituations are deduced by the analytical method. The effects and the fitting method ofthe series resistance and shunt resistance are also discussed. In Chapter3, theanalytical approach is applied to study the CIGS solar cell characteristics, analyzesthe dependence of open-circuit voltage to the temperature, of the quality factor to thetemperature, the relationship between the activation energy of saturation current andthe band gap of CIGS material, the Fermi-level pinning phenomena at heterojunctioninterface, and the effects of the trap-assisted tunneling and the Ga back grading to thedevice performance.
     Assumptions and simplifications are required in the analytical approach toobtain the closed-form solution of the models and fulfill the analysis. But theconditions of these assumptions may not be satisfied in complicated devicemechanisms. Hence, numerical methods are needed for more accurate modeling.Chapter4describes the theory fundamentals of implementing numerical simulationfor the solar cell modeling in detail, and elucidates the defect mechanisms and thenumerical solution for varieties of defect types in thin film solar cell. The tunnelingmodels and optical models used in the solar cell simulation are also explained andcompared.
     Through studying the basic modeling theory of thin film solar cells andconsidering the specific requirement of CIGS solar cell simulation, wxAMPS makesup for the shortcomings of AMPS which does not consider the tunneling effects, addstwo tunneling models to enhance the code capability to better analyze the physicalmechanism in thin film solar cells. Moreover, wxAMPS improves the solvingalgorithm of the model by combining the Newton iteration method and the Gummeliteration method, and ameliorate the stability and the convergence property of thecode. The wxAMPS softward is also capable of simulating the effects of arbitraygrading of material parameters to the device performance.
     By using wxAMPS, Chapter5applies the numerical modeling techniche to themechanism studies of CIGS solar cell and compares the experimental resutls, in order to reveal the micro mechanisms behind the macro experimental observations. Thiswork simulates and analyzes the effects of carriers density, thickness of CIGS thinfilm material, studies the device response to the low temperature and low irradiance,and explaines the trend in simulation results by analytical modeling. The simulationresearch found that, it is the effect of CdS/CIGS hetero-interface barrier that causesthe series resistance of CIGS solar cell to increase non-linearly when temperaturedecreases below300K. This thesis proposes a new opinion and theoreticalexplanation for this issue that is still in dabate in the academic field. This chapter alsostudies a new modeling approach that can analyze the effects of arbitray Ga gradingto the cell performance. Based on the measurement Ga gradient data and generating adevice-modeling file that is compatible to wxAMPS, the effects of the experimentalmeasured Ga grading can be analyzed theoretically, and more inner information ofthe device details can be revealed by comparing the experimental data and modelingresults.
     At last, the main work and the achievements in the Ph.D. project are concluded,and future developments of wxAMPS and the device modeling of CIGS solar cell areforesighted as well. This thesis explicates the latest theoretical understanding on theCIGS solar cell, and the contribution of the work in this dissertation to this field.
引文
[1] C. A. Wolden, J. Kurtin, J. B. Baxter, et al., Photovoltaic manufacturing: Present status,future prospects, and research needs. Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films,2011,29:030801-030801-16.
    [2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, A New Silicon p-n Junction Photocell forConverting Solar Radiation into Electrical Power. Journal of Applied Physics,1954,25:676-677.
    [3] M. B. Prince, Silicon Solar Energy Converters. Journal of Applied Physics,1955,26:534-540.
    [4] W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n JunctionSolar Cells. Journal of Applied Physics,1961,32:510-519.
    [5] J. J. Loferski, Theoretical Considerations Governing the Choice of the OptimumSemiconductor for Photovoltaic Solar Energy Conversion. Journal of Applied Physics,1956,27:777-784.
    [6] J. J. Wysocki and P. Rappaport, Effect of Temperature on Photovoltaic Solar EnergyConversion. Journal of Applied Physics,1960,31:571-578.
    [7] P. T. Landsberg, An introduction to the theory of photovoltaic cells. Solid-StateElectronics,1975,18:1043-1052.
    [8] R. Sahai and A. G. Milnes, Heterojunction solar cell calculations. Solid-State Electron,1970,13:1289-99.
    [9] T. S. TeVelde, Mathematical analysis of a heterojunction, applied to the copper sulphide-cadmium sulphide solar cell. Solid-State Electronics,1973,16:1305-1314.
    [10] S. J. Fonash, General formulation of the current-voltage characteristic of a p-nheterojunction solar cell. Journal of Applied Physics,1980,51:2115-2118.
    [11] A. K. Sreedhar, B. L. Sharma, and R. K. Purohit, Efficiency calculations ofheterojunction solar energy converters. Electron Devices, IEEE Transactions on,1969,16:309-312.
    [12] H. J. Pauwels and G. Vanhoutte, The influence of interface state and energy barriers onthe efficiency of heterojunction solar cells. Journal of Physics D: Applied Physics,1978,649.
    [13] J. P. Donnelly and A. G. Milnes, The capacitance of p-n heterojunctions including theeffects of interface states. Electron Devices, IEEE Transactions on,1967,14:63-68.
    [14] W. Shockley, The theory of pn junctions in semiconductors and pn junction transistors.Bell Syst. Tech. J,1949.
    [15] W. Shockley and J. Bardeen, Energy Bands and Mobilities in MonatomicSemiconductors. Physical Review,1950,77:407-408.
    [16] W. Shockley, M. Sparks, and G. K. Teal, p-n Junction Transistors. Physical Review,1951,83:151-162.
    [17] W. Shockley and W. T. Read, Statistics of the Recombinations of Holes and Electrons.Physical Review,1952,87:835-842.
    [18] H. K. Gummel, A self-consistent iterative scheme for one-dimensional steady statetransistor calculations. Electron Devices, IEEE Transactions on1964,11:455-465.
    [19] A. D. Mari, Accurate numerical solution of the one-dimensional p-n junction in steadystate. Electronics Letters,1967,3:142-144.
    [20] A. D. Mari, An accurate numerical one-dimensional solution of the p-n junction underarbitrary transient conditions. Solid-State Electronics,1968,11:1021-1053.
    [21] G. W. Taylor and J. G. Simmons, Basic equations for statistics, recombination processes,and photoconductivity in amorphous insulators and semiconductors. Journal of Non-CrystallineSolids,1972,8-10:940-946.
    [22] G. W. Brown and B. W. Lindsay, The numerical solution of poisson's equation for two-dimensional semiconductor devices. Solid-State Electronics,1976,19:991-992.
    [23] M. S. Lundstrom and R. J. Schuelke, Numerical analysis of heterostructuresemiconductor devices. Electron Devices, IEEE Transactions on,1983,30:1151-1159.
    [24] K. Horio and H. Yanai, Numerical modeling of heterojunctions including the thermionicemission mechanism at the heterojunction interface. Electron Devices, IEEE Transactions on,1990,37:1093-1098.
    [25] S. M. Durbin and J. L. Gray,"Considerations for modeling heterojunction transport insolar cells," in Photovoltaic Energy Conversion,1994.,1994, pp.1746-1749vol.2.
    [26] P. A. Basore, Numerical modeling of textured silicon solar cells using PC-1D. ElectronDevices, IEEE Transactions on,1990,37:337-343.
    [27] Y. Sheng, Y. G. Xiao, Y. J. Zhou, et al.,"Simulation on Crystalline Silicon Solar Cellwith Laser-fired Contact (LFC)," in Computational Electronics,2009. IWCE '09.13thInternational Workshop on,2009, pp.1-4.
    [28] H. Iwata, T. Ohzone, and H. Takakura, Numerical simulation of silicon-on-insulator thin-film solar cells. Japanese Journal of Applied Physics, Part1: Regular Papers&Short Notes&Review Papers,1995,34:4055-4061.
    [29] J. K. Arch, F. A. Rubinelli, J.-Y. Hou, et al., Computer analysis of the role of p-layerquality, thickness, transport mechanisms, and contact barrier height in the performance ofhydrogenated amorphous silicon p-i-n solar cells. Journal of Applied Physics,1991,69:7057-7066.
    [30] P. J. McElheny, P. Chatterjie, and S. J. Fonash, Collection efficiency of a‐Si:HSchottky barriers: A computer study of the sensitivity to material and device parameters. J. Appl.Phys,1991,69:7674-7688.
    [31] P. Chatterjee, Photovoltaic performance of a-Si:H homojunction p-i-n solar cells: Acomputer simulation study. Journal of Applied Physics,1994,76:1301-1313.
    [32] P. J. McElheny, J. K. Arch, H.-S. Lin, et al., Range of validity of the surface-photovoltage diffusion length measurement: A computer simulation. Journal of Applied Physics,1988,64:1254-1265.
    [33] M. Topic, F. Smole, and J. Furlan, Numerical analysis of a thin microcrystalline p layerin p-i-n a-Si:H solar cells. Journal of Applied Physics,1998,83:4518-4521.
    [34] S. Tripathi, N. Venkataramani, R. O. Dusane, et al., One-dimensional simulation study ofmicro crystalline silicon thin films for solar cell and thin film transistor applications using AMPS-1D. Thin Solid Films,2006,501:295-298.
    [35] T. Krajangsang, I. A. Yunaz, S. Miyajima, et al., Effect of p-μc-Si1-xOx:H layer onperformance of hetero-junction microcrystalline silicon solar cells. Current Applied Physics,2010,10: S357-S360.
    [36] J. A. Willemen, M. Zeman, and J. W. Metselaar,"Computer modeling of amorphoussilicon tandem cells," in Photovoltaic Energy Conversion,1994., Conference Record of theTwenty Fourth IEEE Photovoltaic Specialists Conference-1994,1994IEEE First WorldConference on,1994, pp.599-602vol.1.
    [37] F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, Microcrystalline n-i-p tunnel junction ina-Si:H/a-Si:H tandem cells. Journal of Applied Physics,2001,89:4010-4018.
    [38] M. Zeman, J. A. Willemen, L. L. A. Vosteen, et al., Computer modelling of currentmatching in a-Si: H/a-Si: H tandem solar cells on textured TCO substrates. Solar EnergyMaterials and Solar Cells,1997,46:81-99.
    [39] J. K. Miro Zeman, Electrical and Optical Modelling of Thin-Film Silicon Solar Cells.Mater. Res. Soc. Symp. Proc.,2007,989.
    [40] Z. Q. Li, Y. G. Xiao, and Z. M. S. Li.(2006) Modeling of multi-junction solar cells byCrosslight APSYS Proc. SPIE6339,633909.
    [41] G. Létay, M. Hermle, and A. W. Bett, Simulating single-junction GaAs solar cellsincluding photon recycling. Progress in Photovoltaics: Research and Applications,2006,14:683-696.
    [42] Y. J. Lee and J. L. Gray,"Numerical modeling of CdS/CdTe solar cells: a parameterstudy," in Photovoltaic Specialists Conference,1991, pp.1151-1155vol.2.
    [43] N. Amin, K. Sopian, and M. Konagai, Numerical modeling of CdS/CdTe andCdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Solar Energy Materials and SolarCells,2007,91:1202-1208.
    [44] H. Jingya, S. J. Fonash, and J. Kessler,"An experimental and computer simulation studyof the role of CdS in CIS-type solar cells," in Photovoltaic Specialists Conference,1996.,Conference Record of the Twenty Fifth IEEE,1996, pp.961-964.
    [45] A. Niemegeers and M. Burgelman,"Numerical modelling of AC-characteristics of CdTeand CIS solar cells," in Photovoltaic Specialists Conference,1996., Conference Record of theTwenty Fifth IEEE,1996, pp.901-904.
    [46] M. Burgelman and A. Niemegeers, Calculation of CIS and CdTe module efficiencies.Solar Energy Materials and Solar Cells,1998,51:129-143.
    [47] J. Cuiffi, T. Benanti, W. J. Nam, et al., Modeling of bulk and bilayer organicheterojunction solar cells. Applied Physics Letters,2010,96:143307.
    [48] J. Cuiffi, T. Benanti, N. Wook Jun, et al.,"Application of the AMPS computer programto organic bulk heterojunction solar cells," in Photovoltaic Specialists Conference (PVSC),200934th IEEE,2009, pp.001546-001551.
    [49] M. Hermle, G. Létay, S. P. Philipps, et al., Numerical simulation of tunnel diodes formulti-junction solar cells. Progress in Photovoltaics: Research and Applications,2008,16:409-418.
    [50] C. Feser, J. Lacombe, K. v. Maydell, et al., A simulation study towards a new concept forrealization of thin film triple junction solar cells based on group IV elements. Progress inPhotovoltaics: Research and Applications,2012,20:74-81.
    [51] W. J. Nam, L. Ji, T. L. Benanti, et al., Incorporation of a light and carrier collectionmanagement nano-element array into superstrate a-Si:H solar cells. Applied Physics Letters,2011,99:073113.
    [52] V. E. Ferry, M. A. Verschuuren, H. B. T. Li, et al.,"Plasmonic light trapping for thinfilm A-SI:H solar cells," in Photovoltaic Specialists Conference (PVSC),201035th IEEE,2010,pp.000760-000765.
    [53] O. E. Semonin, C. Sukgeun, J. M. Luther, et al.,"Optical characterization and modelingof the lead chalcogenide quantum dot solar cell: A rational approach to device development andmultiple exciton generation," in Photovoltaic Specialists Conference (PVSC),201035th IEEE,2010, pp.003374-003377.
    [54] C.-W. Jiang and M. A. Green, Silicon quantum dot superlattices: Modeling of energybands, densities of states, and mobilities for silicon tandem solar cell applications. Journal ofApplied Physics,2006,99:114902.
    [55] J. C. Goldschmidt, S. Fischer, H. Steinkemper, et al., Increasing Upconversion byPlasmon Resonance in Metal Nanoparticles---A Combined Simulation Analysis. Photovoltaics,IEEE Journal of,2012, PP:1-7.
    [56] S. Wagner, J. L. Shay, P. Migliorato, et al., CuInSe2/CdS heterojunction photovoltaicdetectors. Applied Physics Letters,1974,25:434-435.
    [57] L. L. Kazmerski, F. R. White, and G. K. Morgan, Thin-film CuInSe2/CdS heterojunctionsolar cells. Applied Physics Letters,1976,29:268-270.
    [58] A. Rothwarf, A p-i-n heterojunction model for the thin-film CuInSe2/CdS solar cell.Electron Devices, IEEE Transactions on,1982,29:1513-1515.
    [59] J. L. Gray,"ADEPT: a general purpose numerical device simulator for modeling solarcells in one-, two-, and three-dimensions," in Photovoltaic Specialists Conference,1991.,Conference Record of the Twenty Second IEEE,1991, pp.436-438vol.1.
    [60] J. L. Gray and L. Youn Jung,"Numerical modeling of graded band gap CIGS solarcells," in Photovoltaic Energy Conversion,1994., Conference Record of the Twenty Fourth. IEEEPhotovoltaic Specialists Conference-1994,1994IEEE First World Conference on,1994, pp.123-126vol.1.
    [61] J. Song, S. S. Li, C. H. Huang, et al., Device modeling and simulation of the performanceof Cu(In1-x,Gax)Se2solar cells. Solid-State Electronics,2004,48:73-79.
    [62] T. Dullweber, G. Hanna, W. Shams-Kolahi, et al., Study of the effect of gallium gradingin Cu(In,Ga)Se-2. Thin Solid Films,2000,361:478-481.
    [63] J. R. S. M. Gloeckler, Band-gap grading in Cu(In,Ga)Se2solar cells. Journal of Physicsand Chemistry of Solids,2005,66:1891-1894.
    [64] M. Gloeckler and J. R. Sites, Efficiency limitations for wide-band-gap chalcopyrite solarcells. Thin Solid Films,2005,480-481:241-245.
    [65] A. Z. Su-Huai Wei, Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys. J. Appl. Phys.78,3846(1995); DOI:10.1063/1.3599011995.
    [66] R. Scheer, Activation energy of heterojunction diode currents in the limit of interfacerecombination. Journal of Applied Physics,2009,105:104505-104505-6.
    [67] T. Minemoto, T. Matsui, H. Takakura, et al., Theoretical analysis of the effect ofconduction band offset of window/CIS layers on performance of CIS solar cells using devicesimulation. Solar Energy Materials and Solar Cells,2001,67:83-88.
    [68] C. R. J. Markus Gloeckler, and James R. Sites, Explanation of Light/Dark SuperpositionFailure in CIGS Solar Cells. Mat. Res. Soc. Symp. Proc. Vol.763,2003.
    [69] J. R. Tuttle, J. R. Sites, A. Delahoy, et al., Characterization and modeling of Cu(In, Ga)(S,Se)2-based photovoltaic devices: a laboratory and industrial perspective. Progress inPhotovoltaics,1995,3:89-104.
    [70] A. Niemegeers and M. Burgelman, Effects of the Au/CdTe back contact on IV and CVcharacteristics of Au/CdTe/CdS/TCO solar cells. Journal of Applied Physics,1997,81:2881-2886.
    [71] S. H. Demtsu and J. R. Sites, Effect of back-contact barrier on thin-film CdTe solar cells.Thin Solid Films,2006,510:320-324.
    [72] U. Rau, Tunneling-enhanced recombination in Cu(In, Ga)Se2heterojunction solar cells.Applied Physics Letters,1999,74:111-113.
    [73] M. Gloeckler, J. R. Sites, and W. K. Metzger, Grain-boundary recombination inCu(In,Ga)Se2solar cells. Journal of Applied Physics,2005,98:113704-10.
    [74] K. Taretto and U. Rau, Numerical simulation of carrier collection and recombination atgrain boundaries in Cu(In,Ga)Se-2solar cells. Journal of Applied Physics,2008,103:11.
    [75] M. E. Ulf Malm, Simulating material inhomogeneities and defects in CIGS thin-filmsolar cells. Progress in Photovoltaics: Research and Applications,2009.
    [76] M. Burgelman, J. Verschraegen, S. Degrave, et al., Modeling thin-film PV devices.Progress in Photovoltaics,2004,12:143-153.
    [77] http://www.ampsmodeling.org/.
    [78] Y. Liu, Y. Sun, and A. Rockett, A new simulation software of solar cells--wxAMPS.Solar Energy Materials and Solar Cells,2012,98:124-128.
    [79] D. A. Clugston and P. A. Basore,"PC1D version5:32-bit solar cell modeling onpersonal computers," in Photovoltaic Specialists Conference,1997., Conference Record of theTwenty-Sixth IEEE,1997, pp.207-210.
    [80] P. A. Basore and K. Cabanas-Holmen, PC2D: A Circular-Reference Spreadsheet SolarCell Device Simulator. Photovoltaics, IEEE Journal of,2011,1:72-77.
    [81] S. Degrave, M. Burgelman, and P. Nollet,"Modelling of polycrystalline thin film solarcells: new features in SCAPS version2.3," in Photovoltaic Energy Conversion,2003.Proceedings of3rd World Conference on,2003, pp.487-490Vol.1.
    [82] A. Froitzheim, R. Stangl, L. Elstner, et al.,"AFORS-HET: a computer-program for thesimulation of heterojunction solar cells to be distributed for public use," in Photovoltaic EnergyConversion,2003. Proceedings of3rd World Conference on,2003, pp.279-282Vol.1.
    [83] B. E. Pieters, J. Krc, and M. Zeman,"Advanced Numerical Simulation Tool for SolarCells-ASA5," in Photovoltaic Energy Conversion, Conference Record of the2006IEEE4thWorld Conference on,2006, pp.1513-1516.
    [84] S. Michael, A. D. Bates, and M. S. Green,"Silvaco ATLAS as a solar cell modelingtool," in Photovoltaic Specialists Conference,2005. Conference Record of the Thirty-first IEEE,2005, pp.719-721.
    [85] R. Brendel, Modeling solar cells with the dopant-diffused layers treated as conductiveboundaries. Progress in Photovoltaics: Research and Applications,2012,20:31-43.
    [86] X. Li, N. P. Hylton, V. Giannini, et al., Multi-dimensional modeling of solar cells withelectromagnetic and carrier transport calculations. Progress in Photovoltaics: Research andApplications,2012, n/a-n/a.
    [87] https://wiki.engr.illinois.edu/display/solarcellsim.
    [88] S. J. Fonash. Solar Cell Device Physics. Amsterdam: Elsevier,2010.
    [89] B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature,1991,353:737-740.
    [90] S. Gunes, H. Neugebauer, and N. S. Sariciftci, Conjugated Polymer-Based Organic SolarCells. Chemical Reviews,2007,107:1324-1338.
    [91] R. Ohl, Light sensitive electric device, US Patent2402662,1941.
    [92]刘恩科,朱秉升.半导体物理学.北京:国防工业出版社,1979.
    [93] A. L. Fahrenbruch and R. H. Bube. Fundamentals of Solar Cells: Photovoltaic SolarEnergy Conversion: Academic Press,1983.
    [94]熊绍珍,朱美芳.太阳能电池基础与应用.北京:科学出版社,2009.
    [95] C.-T. Sah, R. N. Noyce, and W. Shockley, Carrier Generation and Recombination in P-NJunctions and P-N Junction Characteristics. Proceedings of the IRE,1957,45:1228-1243.
    [96] D. C. Reynolds, G. Leies, L. L. Antes, et al., Photovoltaic Effect in Cadmium Sulfide.Physical Review,1954,96:533-534.
    [97] J. R. Sites and P. H. Mauk, Diode quality factor determination for thin-film solar cells.Solar Cells,1989,27:411-417.
    [98] D. Pysch, A. Mette, and S. W. Glunz, A review and comparison of different methods todetermine the series resistance of solar cells. Solar Energy Materials and Solar Cells,2007,91:1698-1706.
    [99] J. L. Gray. Handbook of Photovoltaic Science and Engineering, Second Edition: JohnWiley&Sons, Ltd.,2011.
    [100] O. Gunawan, T. K. Todorov, and D. B. Mitzi, Loss mechanisms in hydrazine-processedCu2ZnSn(Se,S)4solar cells. Applied Physics Letters,2010,97:233506.
    [101] A. M. Gabor, J. R. Tuttle, D. S. Albin, et al., High-efficiency CuInxGa1-xSe2solar cellsmade from (Inx,Ga1-x)2Se3precursor films. Applied Physics Letters,1994,65:198-200.
    [102] D. Schmid, M. Ruckh, F. Grunwald, et al., Chalcopyrite/defect chalcopyriteheterojunctions on the basis of CuInSe2. Journal of Applied Physics,1993,73:2902-2909.
    [103] S.-H. Wei and A. Zunger, Band offsets at the CdS/CuInSe2heterojunction. AppliedPhysics Letters,1993,63:2549-2551.
    [104] D. Schmid, M. Ruckh, and H. W. Schock, A comprehensive characterization of theinterfaces in Mo/CIS/CdS/ZnO solar cell structures. Solar Energy Materials and Solar Cells,1996,41ì42:281-294.
    [105] S. Wei, S. B. Zhang, and A. Zunger, Effects of Ga addition to CuInSe2on its electronic,structural, and defect properties. Applied Physics Letters; VOL.72; ISSUE:24; PBD: Jun1998,1998, pp.3199-3201; PL:.
    [106] R. Scheer, Towards an electronic model for CuIn1-xGaxSe2solar cells. Thin Solid Films,2011,519:7472-7475.
    [107] M. B. A. Niemegeers, R. Herberholz, U. Rau, D. Hariskos, H.-W. Schock,, Model forelectronic transport in Cu(In,Ga)Se2solar cells. Progress in Photovoltaics: Research andApplications,1998,6:407-421.
    [108] M. Turcu and U. Rau, Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2interfaces: effect ofchalcopyrite alloy composition. Journal of Physics and Chemistry of Solids,2003,64:1591-1595.
    [109] S.J.Fonash. Solar Cell Device Physics. New York: Academic Press,1981.
    [110] T. Walter, R. Herberholz, C. Muller, et al., Determination of defect distributions fromadmittance measurements and application to Cu(In,Ga)Se[sub2] based heterojunctions. Journal ofApplied Physics,1996,80:4411-4420.
    [111] U. Rau, A. Jasenek, H. W. Schock, et al., Electronic loss mechanisms in chalcopyritebased heterojunction solar cells. Thin Solid Films,2000,361-362:298-302.
    [112] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, A new recombination modelfor device simulation including tunneling. Electron Devices, IEEE Transactions on,1992,39:331-338.
    [113] C.-H. Huang, Effects of Ga content on Cu(In,Ga)Se2solar cells studied by numericalmodeling. Journal of Physics and Chemistry of Solids,2008,69:330-334.
    [114] K. Decock, S. Khelifi, and M. Burgelman, Analytical versus numerical analysis of backgrading in CIGS solar cells. Solar Energy Materials and Solar Cells,2010, In Press, CorrectedProof.
    [115] S. Selberherr. Analysis and simulation of semiconductor devices: Springer-Verlag,1984.
    [116]何野,魏同立.半导体器件的计算机模拟方法.北京:科学出版社,1989.
    [117] S. Fonash,"A Manual for AMPS-1D for Windows95/NT," The Pennsylvania StateUniversity1997. Available at http://www.ampsmodeling.org.
    [118] D. L. Scharfetter and H. K. Gummel, Large-signal analysis of a silicon Read diodeoscillator. Electron Devices, IEEE Transactions on,1969,16:64-77.
    [119] M. Kurata, Numerical Analysis for Semiconductor Devices Lexington Books, Lexington,MA,1982.
    [120] B. E. Pieters, K. Decock, M. Burgelman, et al.,"One-Dimensional Electro-OpticalSimulations of Thin-Film Solar Cells," in Advanced Characterization Techniques for Thin FilmSolar Cells, D. Abou-Ras, T. Kirchartz, and U. Rau, Eds., ed: WILEY-VCH,2011.
    [121] C.-T. Sah and W. Shockley, Electron-Hole Recombination Statistics in Semiconductorsthrough Flaws with Many Charge Conditions. Physical Review,1958,109:1103-1115.
    [122] H. Okamoto and Y. Hamakawa, Electronic behaviors of the gap states in amorphoussemiconductors. Solid State Communications,1977,24:23-27.
    [123] K. Yang, J. R. East, and G. I. Haddad, Numerical modeling of abrupt heterojunctionsusing a thermionic-field emission boundary condition. Solid-State Electronics,1993,36:321-330.
    [124] J. Verschraegen and M. Burgelman, Numerical modeling of intra-band tunneling forheterojunction solar cells in scaps. Thin Solid Films,2007,515:6276-6279.
    [125] Y. Liu, Y. Sun, and A. Rockett, An improved algorithm for solving equations for intra-band tunneling current in heterojunction solar cells. Thin Solid Films,2012,520:4947-4950.
    [126] J. Y. Hou, J. K. Arch, S. J. Fonash, et al.,"An examination of the`tunnel junctions' intriple junction a-Si:H based solar cells: modeling and effects on performance," in PhotovoltaicSpecialists Conference,1991, pp.1260-1264, vol2.
    [127] R. L. Anderson, Germanium-Gallium Arsenide Heterojunctions [Letter to the Editor].IBM Journal of Research and Development,1960,4:283-287.
    [128] Y. Liu, Y. Sun, and A. Rockett, An improved algorithm for solving equations for intra-band tunneling current in heterojunction solar cells. Thin Solid Films,2012.
    [129] M. Zeman, R. A. C. M. M. v. Swaaij, J. W. Metselaar, et al., Optical modeling of a-Si:Hsolar cells with rough interfaces: Effect of back contact and interface roughness. Journal ofApplied Physics,2000,88:6436-6443.
    [130] G. Tao, M. Zeman, and J. W. Metselaar, Accurate generation rate profiles in a-Si:H solarcells with textured TCO substrates. Solar Energy Materials and Solar Cells,1994,34:359-366.
    [131] S. Hegedus and W. Shafarman, Thin-film solar cells: device measurements and analysis.Progress in Photovoltaics: Research and Applications,2004,12:155-176.
    [132] A. Rockett, The Electronic effects of point defects in Cu(InxGa1-x)Se2. Thin Solid Films,2000,361-362:330-337.
    [133] M. Gloeckler, Numerical modeling of CIGS and CdTe solar cells: setting the baseline.3rd conference on photovoltaic energy conversion,2003,491-494.
    [134] M. A. Green, Accuracy of analytical expressions for solar cell fill factors. Solar Cells,1982,7:337-340.
    [135] M. B. J. M. L. S. Olle Lundberg, Influence of the Cu(In,Ga)Se2thickness and Gagrading on solar cell performance. Progress in Photovoltaics: Research and Applications,2003,11:77-88.
    [136] K. W. Mitchell and H. I. Liu,"Device analysis of CuInSe2solar cells," in PhotovoltaicSpecialists Conference,1988., Conference Record of the Twentieth IEEE,1988, pp.1461-1468vol.2.
    [137] M. Topic, F. Smole, and J. Furlan, Examination of blocking current-voltage behaviourthrough defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell. Solar EnergyMaterials and Solar Cells,1997,49:311-317.
    [138] A. Virtuani, E. Lotter, and M. Powalla, Performance of Cu(In,Ga)Se2solar cells underlow irradiance. Thin Solid Films,2003,431432:443-447.
    [139] M. Burgelman and J. Marlein,"Analysis of graded band gap solar cells with SCAPS,"23rd European Photovoltaic Solar Energy Conference,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700