微纳半导体陶瓷及其敏感元件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体陶瓷是一类具有半导体特性的无机非金属多晶材料,其敏感元件在微电子、光电、激光等高技术领域获得了广泛的应用。随着微电子技术的飞速发展,半导体陶瓷的微纳化已成为近年来最为活跃的研究热点之一。本文尝试从半导体陶瓷粉体的纳米化技术出发,系统地研究微纳半导体陶瓷及其敏感元件的关键制备技术,探讨微纳尺度多晶半导体陶瓷的导电机理,以期为相关新型敏感元件的研制提供理论与实践基础。
     论文首先研究了纳米半导体陶瓷粉体的可控生长技术。在分析和探讨溶胶—凝胶法、聚合物网络法及水热法等液相合成方法的工艺原理及特点的基础上,通过大量实验研究和工艺参数优化,成功制备出颗粒均匀、团聚程度低、热稳定性好的纳米氧化锡(可低至4.1 nm)及纳米钛酸钡(小于40 nm)粉体,可较好满足半导体陶瓷微纳化发展的要求。
     采用所获得的纳米氧化锡粉体,通过浆料配制、电极制作、丝网印刷、干燥及烧成等制备工艺研究,发展出对硫化氢气体具有良好气敏特性的纳米氧化锡半导体陶瓷厚膜元件。结果表明,纳米氧化锡半导体陶瓷气敏元件不仅具有较高的灵敏度和较低的工作温度(约150℃),而且有着良好的选择性和响应—恢复特性,灵敏度与气体浓度的关系遵循幂定律。采用聚合物网络法合成的纳米粉体制作的厚膜元件在保持较小的晶粒尺寸的同时,具有更为疏松、多孔和均匀的微观结构,表现出最优的气敏性能。
     基于钛酸钡材料的特点及其半导化原理,探讨了制备微晶热敏半导体陶瓷的技术途径。以溶胶—凝胶法合成的纳米钛酸钡粉体为原料,选用钇和锰分别作为施、受主杂质元素并适当提高二者的掺杂量,采用水基流延绿色成型工艺,通过适当提高预烧温度、降低烧结温度的烧成方式实现施、受主的二次掺杂,抑制晶粒生长,成功获得具有较为理想微晶结构的钛酸钡半导体陶瓷片式热敏元件。1280℃烧结所得典型样品的晶粒尺寸约3.0μm,室温电阻率为360Ω·cm,升阻比达10~4。
     论文还从理论上研究了晶粒尺寸对钛酸钡半导体陶瓷导电特性的影响。分析了钛酸钡半导体陶瓷的微观结构及导电模型,采用十四面体晶粒模型计算出其电阻与晶粒尺寸存在反比关系,进而讨论了微晶钛酸钡半导体陶瓷的晶界特性。研究认为,微晶钛酸钡半导体陶瓷晶界钡缺位向晶粒体内的扩散形成的势垒层很薄,因而存在壁垒效应使得材料晶粒电阻率上升;同时,量子隧穿效应引起的隧穿电流易导致元件升阻比及耐电压性能的降低。
Semiconductive ceramics are generally inorganic non-metal polycrystalline materials with semindonductive properties.Their sensitive components have found applications in many high-tech fields such as microelectronic,photoelectronic and laser technology. Recently,the rapid development of microelectronic technology has registered increasing research interests in micro/nano semincounductive ceramics.This disseration was to develop micro/nano seminconductive ceramics and their sensitive components by using nanophase semiconductive ceramic powders,where the key fabrication technics were systematically investigated.The conduction mechanism of micro/nano semiconductinve ceramics was also discussed in order to provide both experimental and theoretical basis for the development of novel sensitive components.
     Firstly,attempts were made to synthesizing seminconductive ceramic nanopowders controllablly.The basic principle and characteristics of wet-chemcial methods such as sol-gel method,polymer network method and hydrothermal synthesis were briefly reviewed.A lot of experiments were conducted to optimize the synthesis process,resulting in uniform tin oxide nanopowders(even low as 4.1 nm) and barium titanate nanopowders (below 40 nm) with slight agglormerization and good thermal stablility,which were much desirable for micro/nano semincoundutive ceramics.
     After a careful study of the fabrication techniques such as slurry preparing, screen-printing,drying and sintering processes,we prepared nanocrystalline tin oxide thick-film sensors based on the as-synthesized nanopowders,the sensing performances of which toward hydrogen sulfide gas were much better considering the sensitivity,selectivity, response properties and operation temperature(around 150℃).A power law between the sensitivity and the partial pressure of hydrogen sulfide has been obtained.At same time, most favorable sensing behaviors were observed for the sensor samples based on tin oxide nanopowders synthesized by polymer network mehod,which might be attributed to the loose and porous microstructure with good uniformity.
     Meanwhile,the technical approaches to the realization of fine-grained mircostrucure were explored by studying the semincounctive characteristics and conduction mechanism of barium titanate ceramics.After optimizing the material composition and fabrication conditions in the water-based tape casting and sintering process,chip thermistors with fine-grained microstructre were developed based on barium titanate nanopowders synthesized by the sol-gel method,where adequate concentrations of yttrium element was introduced in the presintering process as the donor,while manganese element was introcueced in the sintering process as the acceptor,separately.Results indicated that twice doping was more appropriate for the inhibition of grain growth and the enhancement of electrical properties.Also,increasing the presintering temperature properly was helpful to to the reliazation of fine-grained microstucture when sintered at relatively tow temperature. The typical samples sinterd at 1280℃have smaller grain size of about 3.0μm,with room-temperature resistivity of about 360Ω·cm and the resistance jump of above 10~4.
     Finally,theoretical analysis was presented concerning the influence of grain size on the conduction properties of fine-grained barium titanate seminconductive ceramics.After the discussion of the microstructue and conduction model of polycrystalline barium titanate ceramics,an inverse relation between the resistance and the grain size of barium titante ceramics was calculated by using a tetrakaidecahedron model.Then.the properties of grain boundaries were discussed as far as the fine-grained barium titanate ceramics were concerned.With the decrease of the grain size,the barrier layer induced by the diffusion of Ba-vacancies from the boundary into the bulk of the grain becomes so narrow.As a result, the barrier effect may lead to the increase of the resitivity of the grains.Besides,the tunneling current caused by the quantum tunneling effect may lead to the decrease of the reistance jump and withstand voltage.
引文
[1]周东祥,张绪礼,李标荣.半导体陶瓷及应用.武汉:华中理工大学出版社,1991.1-223
    [2]莫以豪,李标荣,周国良.半导体陶瓷及其敏感元件.上海:上海科学技术出版社.1983.1-271
    [3]Altenburg H,Mrooz O,Plewa J,et al.Semiconductor ceramics for NTC thermistors:the reliability aspects.Journal of the European Ceramic Society,2001,21(10-11):1787-1791
    [4]Freer R,Leach C.Local properties of grain boundaries in semiconducting ceramics.Solid State Ionics,2004,173(1-4):41-50
    [5]Mandayo G G.Gas detection by semiconductor ceramics:Tin oxide as improved sensing material.Sensors Letters,2007,5(2):341-360
    [6]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.59-138
    [7]Pan Z W,Dai Z R,Wang Z L.Nanobelts of semiconducting oxides.Science,2001,291(5510):1947-1949
    [8]Andrich E.PTC thermistors as self-regulating heating elements.Philips Technical Review,1969,30(6/7):170-177
    [9]Okinaka H,Hata T.Varistor,thermistor manufacturing in Japan.American Ceramic Society Bulletin,1995,74(2):62-66
    [10]Mitoseriu L,Fedor C E,Viviani M,et al.Ferroelectric-semiconductive properties of BaTiO_3-based PTCR ceramics.Journal of Optoelectronics and Advanced Materials,2003,5(3):763-768
    [11]Robert W B.The role of materials in advanced sensor technology.Sensor Review,2002,22(4):289-299
    [12]Yamazoe N,Shimanoe K.Roles of shape and size of component crystals in semiconductor gas sensors.Journal of the Electrochemical Society,2008,155(4):J85-J92
    [13]Yamazoe N.The dream to the chemical sensor.Electrochemistry,2000,68(12): 1020-1021
    [14]周济.我国电子元件及材料研究发展的挑战与机遇.电子元件与材料,2007,26(1):1-3
    [15]Ulrich R K,Schaper L W.Integrated Passive Component Technology.New York:Wiley-IEEE Press,2003.1-20
    [16]王彦伶,陈福厚.新型无源元件的现状与发展(上).世界电子元器件,2002,(9):68-70
    [17]王彦伶,陈福厚.新型无源元件的现状与发展(下).世界电子元器件,2002,(10):42-44
    [18]周济.信息技术进入大集成时代.世界产品与技术,2003,(5):26-29
    [19]龙乐.MEMS封装技术的发展与应用.电子与封装,2005,5(3):1-5
    [20]Franssila S.Introduction to Microfabrication.New York:Wiley,2004.2-3
    [21]康昌鹤,康省吾.气、湿敏感器件及其应用.北京:科学出版社,1988.1-72
    [22]Reichel P.Development of a chemical gas sensor system.[Doctoral Dissertation].Tubingen:Eberhard Karls Universitat Tubingen,2005
    [23]徐毓龙.氧化物与化合物半导体基础.西安:西安电子科技大学出版社,1991.212-225
    [24]Seiyama T,Kato A,Fulishi K,et al.A new detector for gaseous components using semiconductive thin films.Analytical Chemistry,1962,34(11):1502-1503
    [25]Williams D E.Semiconducting oxides as gas-sensitive resistors.Sensors and Actuators B,1999,57(1-3):1-16
    [26]http://www.figaro.co.jp/en/company3.html
    [27]Yamazoe N,Sskai G,Shimanoe K.Oxide semiconductor gas sensors.Catalysis Surveys from Asia,2003,7(1):63-75
    [28]Xu C,Tamaki J,Miura N,et al.Correlation between gas sensitivity and crystallite size in porous SnO_2-based sensor.Chemistry Letters,1990,219(3):441-444
    [29]Dieguez A,Romano-Rodriguez A,Morante J R,et al.Nanoparticle engineering for gas sensor optimisation:improved sol-gel fabricated nanocrystalline SnO_2 thick film gas sensor for NO_2 detection by calcination,catalytic metal introduction and grinding treatments.Sensors and Actuators B,1999,60(2-3):125-137
    [30] Dieguez A, Vila A, Cabot A, et al. Influence on the gas sensor performances of the metal chemical states introduced by impregnation of calcinated SnO_2 sol-gel nanocrystals. Sensors and Actuators B, 2000, 68(1-3): 94-99
    [31] Gopel W. Ultimate limits in the miniaturization of chemical sensors. Sensors and Actuators A, 1996, 56(1-2): 83-102
    [32] Cabot A, Arbiol J, Morante J R, et al. Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO_2 sol-gel nanocrystals for gas sensors.Sensors and Actuators B, 2000, 70(1-3): 87-100
    [33] Gopel W. From electronic to bioelectronic olfaction, or: from artificial "moses" to real noses. Sensors and Actuators B, 2000, 65(1-3): 70-72
    [34] Graf M, Gurlo A, Barsan N, et al. Microfabricated gas sensor systems with sensitivie nanocrystalline metal-oxide films. Journal of Nanoparticle Research, 2006, 8(6):823-839
    [35] Sahm T, Madler L, Gurlo A, et al. Flame spray synthesis of tin dioxide nanoparticle for gas sensing. Sensors and Actuators B, 2004, 98(2-3): 148-153
    [36] Koziej D, Barsan N, Shimanoe K, et al. Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol. Sensors and Actuators B, 2006, 118(1-2): 98-104
    [37] Madler L, Sahm T, Gurlo A, et al. Sensing low concentrations of CO using flame-spray-made Pt/SnO_2 nanoparticles. Journal of Nanoparticle Research, 2006,8(6): 783-796
    [38] Madler L, Roessler A, Pratsinis S E, et al. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO_2 nanoparticles. Sensors and Actuators B, 2006, 114(1): 283-295
    [39] Helwig A, Muller G, Sberveglieri G, et al. Gas response times of nano-scale SnO_2 gas sensors as determined by the moving gas outlet technique. Sensors and Actuators B,2007, 126(1): 174-180
    [40] Prades J D, Arbiol J, Cirera A, et al. Defect study of SnO_2 nanostructures by cathodoluminescence analysis: Application to nanowires. Sensors and Actuators B,2007, 126(1): 6-12
    [41] Comini E, Faglia G, Sberveglieri G, et al. Tin oxide nanobelts electrical and sensing properties. Sensors and Actuators B, 2005, 111(S1): 2-6
    [42] Faglia G, Baratto C, Sberveglieri G, et al.Adsorption effects of NO_2 at ppm level on visible photoluminescence response of SnO_2 nanoblets. Applied Physics Letters,2005, 86(1): 011923
    [43] Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanabelts. Applied Physics Letters, 2002, 81(10):1869-1891
    [44] Comini E, Ottini L, Faglia G, et al. SnO_2 RGTO UV activation for CO monitoring.IEEE Sensors Journal, 2004,4(1): 17-20
    [45] Comini E, Ferroni M, Guidi V, et al. CO sensing properties of W-Mo and tin oxide RGTO multiple layers structures. Sensors and Actuators B, 2003, 95(1-3): 157-161
    [46] Kaciulis S, Pandolfi L, Comini E, et al. Nanowires of metal oxides for gas sensing applications. Surface and Interface Analysis, 2008, 40(3-4): 575-578
    [47] Shukla S, Seal S. Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide. Journal of Nanoscience and Nanotechnology, 2004,4(1/2): 141-145
    [48] Seal S, Shukla S. Nanocrystalline SnO_2 gas sensors in view of surface reactions and modifications. Journal of the Minerals Metals & Materials Society, 2002, 54(9):35-38
    [49] Shukla S, Ludwig L, Parrish C, et al. Inverse-catalyst-effect observed for nanocrystalline-doped tin oxide sensor at lower operating temperatures. Sensors and Actuators B, 2005, 104(2): 223-231
    [50] Shukla S, Zhang P, Cho H J, et al. Hydrogen-discriminating nanocrystalline doped-tin-oxide room-temperature microsensor. Journal of Applied Physics, 2005,98(10): 104306
    [51] Liu Y, Koep E, Liu M L. Highly sensitive and fast-responding SnO_2 sensor fabricated by combustion chemical vapor deposition. Chemistry of Materials, 2005, 17(15):3997-4000
    [52] Shin H C, Dong J, Liu M L. Porous tin oxides prepared using an anodic oxidation process. Advanced Materials, 2004,16(3): 237-240
    [53] Zhang G, Liu M L. Effect of particle size and dopant on properties of SnO_2-based gas sensors. Sensors and Actuators B, 2000, 69(1-2): 144-152
    [54] Tan E T H, Ho G W, Wong A S W, et al. Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology, 2008,19(25): 255706
    [55] Lee Y C, Tan O K, Huang H, et al. SnO_2 nanorods prepared by inductively coupled plasma-enhanced chemical vapor deposition. IEEE Transactions on Nanotechnology,2007, 6(4): 465-468
    [56] Huang H, Tan O K, Lee Y C, et al. Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment. Applied Physics Letters, 2005, 87(16): 163123
    [57] Garje A D, Aiyer R C. Effect of firing temperature on electrical and gas-sensing properties of nano-SnO_2-based thick-fim resistors. International Journal of Applied Ceramic Technology, 2007, 4(5): 446-452
    [58] Bose A C, Thangadurai P, Ramasamy S. Grain size dependent electrical studies on nanocrystalline SnO_2. Materials Chemistry and Physics, 2006, 95(1): 72-78
    [59] Rani S, Roy S C, Bhatnagar M C. Effect of Fe doping on the gas sensing properties of nano-crystalline SnO_2 thin films. Sensors and Actuators B, 2007, 122(1): 204-210
    [60] Rothschild A, Komem Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. Journal of Applied Physics, 2004, 95(11): 6374-6380
    [61] Kruis F E, Fissan H, Peled A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - A review. Journal of Aerosol Science,1998, 29(5-6): 511-535
    [62] Moon C S, Kim H R, Auchterlonie G, et al. Highly sensitive and fast responding CO sensor using SnO_2 nanosheets. Sensors and Actuators, 2008, 131(2): 556-564
    [63] Huang X J, Choi Y K. Chemical sensors based on nanostructured materials. Sensors and Actuators B, 2007, 122(2): 659-671
    [64] Aroutiounian V M, Aghababian G S. To the theory of semiconductor gas sensors.Sensors and Actuators B, 1998, 50(1): 80-84
    [65] Barsan N, Schweizer B, Gopel W. Fundamental and practical aspects in the design of nanoscaled SnO_2 gas sensors: a status report. Fresenius Journal of Analytical Chemistry, 1999, 365(4): 287-304
    [66] Gaskov A M, Rumyantseva M N. Nature of gas sensitivity in nanocrystalline metal oxides.Russian Journal of Applied Chemistry,2001,74(3):430-434
    [67]Barsan N,Weimar U.Conduction model of metal oxide gas sensors.Journal of Electroceramics,2001,7(3):143-167
    [68]Yamazoe N,Shimanoe K.Theory of power laws for semiconductor gas sensors.Sensors and Actuators B,2008,128(2):566-573
    [69]周东祥,龚树萍.PTC材料及应用.武汉:华中理工大学出版社,1989.1-125
    [70]Haayman P W,Romeijn F C,Oosterhout V G W.Controlled valency semiconductors.Philips Research Reports,1950,5(6):173-187
    [71]Heywang W.Bariumtitanat als sperrschichthalbleiter.Solid State Electronics,1961,3(1):51-58
    [72]Heywang W.Resistivity anomaly in doped barium titanate.Journal of the American Ceramic Society,1964,47(10):484-490
    [73]Daniels J,Wernicke R.Defect chemistry and electrical conductivity of doped barium titanate ceramics.Philips Research Reports,1976,31(5):487-559
    [74]Daniels J,Hardtl K H,Wernicke R.The PTC effect of barium titanate.Philips Technical Review,1978/1979,38(3):73-82
    [75]吴兆华,周德俭.表面组装技术基础.北京:国防工业出版社,2002.1-5
    [76]向勇,谢道华,张昊.片式元器件与SMT技术新进展.电子工艺技术,2001,22(3):93-95
    [77]古群,尹鸿.中国电子元件产业经济运行分析及展望.中国电子商情(基础电子),2008,(Z1):38-40
    [78]王静.发展集成电路产业 提高核心竞争力.中国国情国力,2008,(2):52-55
    [79]冯玉萍.全球片式热敏电阻器技术发展与市场前景.电子质量,2003,(2):77-79
    [80]薛泉林.叠层PTC热敏电阻器的近期研究动向.江苏陶瓷,1996,29(2):29-31
    [81]朱盈权.PTC热敏电阻的现状与发展趋势.电子元件与材料,2002,21(8):22-25
    [82]Hiremath B V,Newnham R E,Amin A.Fabrication and characterization of a multilayer PTCR thermistor.Ferroelectrics Letters,1987,8(1):1-9
    [83]向勇,谢道华.片式多层元件新技术概论.电子元件与材料,2001,18(4):34-40
    [84]Kawahara T.Chip type positive coefficient characteristic thermistor.JP 6077006, 1994
    [85]Niimi H.Semiconductor ceramic,method for producing semiconductor ceramic and thermistor.JP 2001130957,2001
    [86]Kawamoto M.Monolithic semiconducting ceramic electronic component.US 6680527,2004
    [87]Saigo A,Niimi H,Ando A.Chip shape laminated ceramic electronic part and method for manufacturing the same.JP 2004311676,2004
    [88]Niimi H.Stacked positive property thermister designing method.JP 2004063548,2004
    [89]Nagao Y,Namikawa Y.Chip type PTC thermistor element.JP 2005317780,2005
    [90]Niimi H,Ando A.Multilayer positive-characteristic thermistor and its designing method.WO 2005043555,2005
    [91]Niimi H.Laminated type semiconductor ceramic element and production method for the laminated type semiconductor ceramic element.US 6911102,2005
    [92]Kishimoto A,Mihara K,Niimi H.Stacked positive coefficient thermistor.WO 2007034830,2007
    [93]Niimi H,Ando A.Multilayer positive temperature coefficient thermistor and method for designing the same.US 2007115090,2007
    [94]高濂,李蔚.纳米陶瓷.北京:化学工业出版社,2002.6-42
    [95]黄国华.聚合物前驱体法合成CaTiO_3基微波介质陶瓷的研究.[博士学位论文].武汉:华中科技大学,2004
    [96]Wu N L,Wang S Y,Rusakova I A.Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides.Science,1999,285(5432):1375-1377
    [97]张剑光,张明福,韩杰才等.高能球磨法制备纳米钛酸钡的晶化过程.压电与声光,2001,23(5):381-383
    [98]Xue J M,Wang J,Wan D M.Nanosized BaTiO_3 powder by mechanical activation.Journal of the American Ceramic Society,2000,83(1):232-235
    [99]吴淑荣,李东升,畅国柱等.PTCR钛酸钡陶瓷的溶胶凝胶法制备.功能材料,1998,29(6):609-612
    [100]吴淑荣,许丽丽,畅国柱等.PTCR纳米晶粉体的一步法制备及表征.电子元件 与材料,1997,16(2):17-21
    [101]张爱菊,沈毅,张晨.草酸盐共沉淀法制备高性能无铅PTC粉体.中国陶瓷工业,2005,12(5):21-24
    [102]丁士文,马广成.钛酸钡纳米粉的合成与陶瓷制备.功能材料,1998,29(1):72-74
    [103]Cifici E,Rahaman M N,Shumsky M.Hydrothermal precipitation and characterization of nanocrystalline BaTiO_3 particles.Journal of Materials Science,2001,36(20):4875-4882
    [104]Douy A,Odier P.The polyacrylamide gel:a novel route to ceramic and glassy oxide powders.Materials Research Bulletin,1989,24(9):1119-1126
    [105]Douy A.Polyacrylamide gel:an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses.International Journal of Inorganic Materials,2001,3(7):699-707
    [106]Acarbas O,Suvaci E,Dogan A.Synthesis of nanosized tin oxide(SnO_2) particles via homogeneous precipitation.Key Engineering Materials,2004,264-268(1-3):1205-1208
    [107]Dos S O,Weiller M L,Junior D Q,et al.CO gas-sensing characteristics of SnO_2ceramics obtained by chemical precipitation and freeze-drying.Sensors and Actuators B,2001,75(1-2):83-87
    [108]Manorama S V,Gopal R C V,Rao V J.Tin oxide nanoparticles prepared by sol-gel method for an improved hydrogen sulfide sensor.Nanostructured Materials,1999,11(5):643-649
    [109]Gu F,Wang S F,Song C F,et al.Synthesis and luminescence properties of SnO_2nanoparticles.Chemical Physics Letters,2003,372(3-4):451-454
    [110]Pena J,Perez-Pariente J,Vallet-Regi M.Textural properties of nanocrystalline tin oxide obtained by spray pyrolysis.Journal of Materials Chemisry,2003,13(9):2290-2296
    [111]Fujihara S,Maeda T,Ohgi H,et al.Hydrothermal routes to prepare nanocrystalline mesoporous SnO_2 having high thermal stability.Langmuir,2004,20(15):6476-6481
    [112]石娟,吴世华,王淑荣.从不同氧化态锡盐水热合成法制备SnO_2纳米粉体.无 机化学学报,2004,20(2):199-201
    [113]张建荣,高濂.纳米晶氧化锡的水热合成与表征.化学学报,2003,61(12):1965-1968
    [114]张建荣,高濂.水热法合成纳米SnO_2粉体.无机材料学报,2004,19(5):1177-1980
    [115]Zhu J J,Zhu J M,Liao X H,et al.Rapid synthesis of nanocrystalline SnO_2 powders by microwave heating method.Materials Letters,2002,53(1-2):12-19
    [116]Cirera A,Vila A,Cornet A,et al.Properties of nanocrystalline SnO_2 obtained by means of a microwave process.Materials Science and Engineering C,2001,15(1-2):203-205
    [117]Caulfield M J,Qiao G G,Solomon D H.Some aspects of the properties and degradation ofpolyacrylamides.Chemical Reviews,2002,109(2):3067-3084
    [118]Janney M A,Omatete O O,Walls C A,et al.Development of low-toxicity gelcasting systems.Journal of the American Ceramic Society,1998,81(3):581-591
    [119]Dyke J D,Kasperski K L.Thermogravimetric study of polyacrylamide with evolved gas analysis.Journal of Polymer Science A,1993,31(7):1807-1823
    [120]Cowie J M G.Polymers:Chemistry and Physics of Modern Materials.(2~(nd) edition).New York:Chapman and Hall,1991.53-58
    [121]Gowariker V R,Viswanathan N V,Jayadev S.Polymer Science.New York:John Wiley & Sons,1986.21-33
    [122]林尚安,陆耘,梁兆熙.高分子化学.北京:科学出版社,1998.330-335
    [123]李金峰,孙以实,阮竹.丙烯酰胺N,N'-亚甲基双丙烯酰胺的共聚反应研究.高分子学报,1990,21(5):593-599
    [124]Sin S,Odier P.Gelation by acrylamide,a quasi-universal medium for the synthesis of fine oxide powders for electroceramic applications.Advanced Materials,2000,12(9):649-652
    [125]施尔畏,陈之战,元如林等.水热结晶学.北京:科学出版社,2004.1-218
    [126]徐建梅.水热合成Ba-Ti基微波介质陶瓷的研究.[博士学位论文].武汉:华中科技大学,2004
    [127]Williams G,Coles G S V.The gas-sensing potential of nanocrystalline tin dioxide produced by a laser ablation technique,MRS Bulletin(Materials Research Society),1999,24(6):25-29
    [128]Baraton M I,Merhari L.Nanoparticles-based chemical gas sensors for outdoor air quality monitoring microstations.Materials Science and Engineering B,2004,112(2-3):206-213
    [129]Niranjan R S,Mulla I S.Spin coated tin oxide:a highly sensitive hydrocarbon sensor.Materials Science and Engineering B,2003,103(2):103-107
    [130]Niranjan R S,Patil K R,Sainkar SR,et al.Morphological and sensing properties of spray-pyrolysed Th:SnO_2 thin films.Materials Chemistry and Physics,2004,84(1):37-45
    [131]Lee Y C,Tan O K,Tse M S,et al.Deposition of nanostructured thin films using an inductively coupled plasma chemical vapor deposition technique.Ceramics International,2004,30(7):1869-1872
    [132]Licari J J,Enlow L R.混合微电路技术手册.(第2版).朱瑞廉译.北京:电子工业出版社,2004.73-92
    [133]宋委远.基于传感器阵列的混合气体测试系统研究.[硕士学位论文].武汉:华中科技大学,2006
    [134]Patil L A,Patil D R.Heterocontact type CuO-modified SnO_2 sensor for the detection of a ppm level H_2S gas at room temperature.Sensors and Actuators B,2006,120(1):316-323
    [135]Kersen U,Holappa L.H_2S-sensing properties of SnO_2 produced by ball-milling and different chemical reactions.Analytica Chimica Acta,2006,562(1):110-114
    [136]Niranjan R S,Patil K R,Sainkar S R,et al.High H_2S-sensitive copper-doped tin oxide thin film.Materials Chemistry and Physics,2003,80(1):250-256
    [137]Liu C H,Zhang L,He Y J.Properties and mechanism study of Ag doped SnO_2 thin films as H_2S sensors.Thin Solid Films,1997,304(1-2):13-15
    [138]Fang G J,Liu Z L,Liu C Q,et al.Room temperature H_2S sensing properties and mechanism of CeO_2-SnO_2 sol-gel thin films.Sensors and Actuators B,2000,66(1-3):46-48
    [139]徐毓龙,周晓华,曹全喜.氧化物半导体的表面过程与气敏机理.传感器技术,1991,(6):1-7
    [140]Clifford P K,Tuma D T.Characteristics of semiconductor gas sensors:I,Steady state gas response.Sensors and Actuators,1982/1983,3:233-254
    [141]Akiyama M,Tamaki H,Miura N,et al.Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO_2.Chemistry Letters,1991,273(9):1611-1614
    [142]Guerin J,Aguir K,Bendahan M.Modeling of the conduction in a WO_3 thin film as ozone sensor.Sensors and Actuators B,2006,119(1):327-334
    [143]Vuong D D,Sakai G,Shimanoe K,et al.Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application.Sensors and Actuators B,2004,103(1-2):386-391
    [144]Korotcenkov G.Gas response control through structural and chemical modification of metal oxide films:state of the art and approaches.Sensors and Actutors B,2005,107(1):209-232
    [145]Vuong D D,Sakai G,Shimanoe K,et al.Hydrogen sulfide gas sensing properties of thin films derived from SnO_2 sols different in grain size.Sensors and Actuators B,2005,105(2):437-442
    [146]Yamazoe N.Toward innovations of gas sensor technology.Sensors and Actuators B,2005,108(1-2):2-14
    [147]Williams D E,Pratt K F E.Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides.Sensors and Actuators B,2000,70(1-3):214-221
    [148]Franke M E,Koplin T J,Simon U.Metal and metal oxide nanoparticles in chemiresistors:Does the nanoscale matter? Small,2006,2(1):36-50
    [149]Tiemann M.Porous metal oxides as gas sensors.Chemistry-A European Journal,2007,13(30):8376-8388
    [150]Korotcenkov G.Metal oxides for solid-state gas sensors:What determines our choice?Materials Science and Engineering B,2007,139(1):1-23
    [151]汤玉琴.PTC纳米粉体的水热法制备及性能研究.[硕士学位论文].武汉:华中科技大学,2007
    [152]陈文仿.片式热敏元件流延成型及其共烧技术研究.[硕士学位论文].武汉:华中科技大学,2006
    [153]刘欢.多层片式PTCR热敏元件制备技术研究.[硕士学位论文].武汉:华中科技大学,2004
    [154]Niimi H.Multilayer PTC thermistor with Ni electrode.Function & Materials,2005,25(5):28-34[in Japanese]
    [155]Abrantes J C C,Labrincha J A,Frade J R.Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics.Journal of the European Ceramic Society,2000,20(10):1603-1609
    [156]Yamada A,Chiang Y M.Nature of cation vacancies formed to compensate donors during oxidation of barium titanate.Journal of the American Ceramic Society,1995,78(4):909-914
    [157]Wernicke R.New aspects of an improved PTC model.Philips Research Reports,1976,31(6):526-543
    [158]Jonker G H,Havinga E E.The influence of foreign ions on the crystal lattice of barium titanate.Materials Research Bulletin,1982,17(2):345-350
    [159]Chan H M,Harma M R,Smyth D M.Compensation defects in highly donor-doped BaTiO_3.Journal of the American Ceramic Society,1986,69(6):507-510
    [160]Desu S B,Payne D A.Interracial segregation in perovskites:Ⅰ,Theory.Journal of the American Ceramic Society,1990,73(11):3391-3397
    [161]Desu S B,Payne D A.Interfacial segregation in perovskites:Ⅱ,Experimental evidence.Journal of the American Ceramic Society,1990,73(11):3398-3406
    [162]Desu S B,Payne D A.Interracial segregation in perovskites:Ⅲ,Microstructure and electrical properties.Journal of the American Ceramic Society,1990,73(11):3407-3415
    [163]Desu S B,Payne D A.Interracial segregation in perovskites:Ⅳ,Internal boundary layer devices.Journal of the American Ceramic Society,1990,73(11):3416-3421
    [164]Warren W L,Dimos D,Pike G E,et al.Alignment of defect dipoles in polycrystalline ferroelectrics.Applied Physics Letters,1995,67(12):1689-1691
    [165]Ihrig H.PTC effect in BaTiO_3 as a function of doping with 3d elements.Journal of the American Ceramic Society,1981,64(10):617-620
    [166]Ihrig H.The phase stability of BaTiO_3 as a function of Doped 3d elements:An experiment study.Journal of Physics C,1978,11:819-827
    [167]曹明贺,周东祥,龚树萍.BaTiO_3多晶陶瓷表面态研究.功能材料,2001,32(4):341-342
    [168]Chiang Y M,Takagi T.Grain-boundary chemistry of barium titanate and stronium titanate:I,High-Temperature equilibrium space charge.Journal of the American Ceramic Society,1990,73(11):3278-3285
    [169]周国良,龚树萍,莫以豪等.Y掺杂BaTiO_3的晶粒尺寸与施主含量的关系.华中工学院学报,1984,12(4):91-95
    [170]周世勋.量子力学.上海:上海科学技术出版社,1961.37-49
    [171]Wichimann E H.量子物理.北京:科学出版社,1978.348-360
    [172]Yamazoe N,Shimanoe K,Sawada C.Conduction of electron tunneling transport in semiconductor gas sensor.Thin Solid Films,2007,515(23):8302-8309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700