单层纳米晶颗粒膜的可控性制备与电荷存储特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现如今,便携式移动电子产品在人们的日常生活中应用得越来越广泛,在这些产品内部,闪存发挥着重要的作用。未来闪存技术的发展要求可以概括为:储存容量更大,读写速度更快,数据安全性更高,操作功耗更小。在此背景下,使用分散的纳米晶代替目前连续的多晶硅,作为闪存结构单元中浮动栅的结构得到了人们极大的关注。由于纳米晶浮动栅具有许多优异的性能,使得它成为目前闪存技术研究的一个热点。
     根据金属薄膜在氧化物介质层上生长时采用岛状生长机制这一原理。本论文利用磁控溅射制膜方法,发展了一种简单的,通过控制薄膜初始沉积厚度来制备单层纳米晶颗粒膜的实验方法。利用这种方法在二氧化硅介质层中制备得到了尺寸均一,分布均匀的银、铜以及铁镍二元合金纳米晶。证实了利用岛状生长机制制备金属和合金纳米晶的实验可行性。除此之外,还使用交替溅射的方法在二氧化硅介质层中生长了钛酸锶钡纳米晶。
     通过对薄膜沉积过程中溅射参数的调节,实现了对银与铜纳米晶平均粒径和分布密度一定范围内的有效控制。实验结果表明,随着沉积过程中溅射功率增加,银和铜的纳米晶平均粒径增大,分布密度则不断减小。对纳米晶生长过程中衬底温度作用的研究中发现,在纳米晶生长过程中对衬底加热可以起到与退火处理类似的效果,从而省却了后续的退火工艺,简化了纳米晶制备的实验步骤。
     目前对纳米晶浮动栅微观结构与宏观电荷存储性能之间的关系缺乏一个系统的说明。本文分析讨论了纳米晶材料的选择,纳米晶粒径,分布密度,绝缘介质层的相对介电常数与纳米晶浮动栅电荷存储能力之间的关系。分析结果表明,对于单个纳米晶来说,选择大功函数的材料,增大纳米晶的粒径,选择相对介电常数较大的绝缘层包裹材料,对提高它的电荷能力是有利的。增加单个纳米晶的电荷存储量,提高浮动栅中纳米晶的分布密度,可以增加纳米晶浮动栅整体的电荷存储量。
Nowadays, portable electronic devices have been using more and more widely in people’s daily lives. In these devices, Flash Memory plays an important role. The development trend of future Flash Memory can be reduced to larger storage capacity, faster read/write speed, better security for data storage and lower energy consumption during operation. Under this background, a new floating gate structure using discrete nanocrystals to replace continuous polysilicon now attracts great attention. Because nanocrystals floating gate has so many advantages that more and more groups start their research work in this field.
     The growth of metallic films on oxide films follows Volmer-Weber mechanism. In this work, we developed a simple method to fabricate monolayer nanocrystals granular film by controlling the film’s initial deposition thickeness. With this method, we obtained well scattered Ag, Cu, FeNi binary alloy nanocrystals with uniform diameter. Besides, BST nanocrystals with ABO3 structure embedded in silicon dioxide dielectric layer are also fabricated by alternating sputtering.
     Ag, Cu nanocrystals’average diameter and distributing density were well controlled by adjusting magnetic sputtering conditions during films’deposition. TEM results showed that when the sputtering power during deposition increased, the average diameter of the Ag, Cu nanocrystals increased, but the distributing density decreased. We also found out that the substrate temperature during metallic films deposition had the same effection with annealing. Keeping the substrate at a proper temperature during deposition, the annealing process can be omitted, so the nanocrystal fabrication process will be simplyfized.
     Untill now, there are not a systemic theory to describe the relationship between the nanocrystals floating gate’s micro-structure and its charge storage capabilities. In this article, the relationship between nanocrystals’diameter, distributing density, dielectric layer’s permittivity and their charge storage capability will be analyzed. For a single nanocrystal, larger work function, bigger diameter and using dielectric layer with larger permittivity are good for improving its charge storage capability. For nanocrystals floating gate, improving a single nanocrystal’s charge storage capability and increasing nanocrystal’s distributing density are two ways to improve its charge storage capability.
引文
[1] S M Sze, S Luryi, J Xu. Future Trends in Microelectronics. New York: Wiley, 1999: 291-303.
    [2] Samantha.创存储记录!西部数据宣布2010年将推3TB硬盘[EB/OL]. (2007-10-30) [2009-3-07]. http://www.dostor.com/n/p/2007-10-30/0001435964.shtml.
    [3]余一娇. Flash Memory技术和应用综述. Technical Report, Nov. 2004: 1-8.
    [4] Masuoka et al. Triple level poly-silicon EEPROM - has control gate formed over and overlapping portion of floating gate which overlaps erase gate: US, 4531203-A. 1985-1-23 [2009-3-17].
    [5] Anton Shilov. Samsung Unveils 2GB Flash Memory Chip[EB/OL]. (2005-9-12) [2009-3-10]. http://www.xbitlabs.com/news/memory/display/20050912212649.html.
    [6] Wolfgang Gruener. Samsung announces 40 nm Flash, predicts 20 nm devices[EB/OL]. (2006-9-11) [2009-3-10]. http://www.tgdaily.com/content/view/28504/135/
    [7] SanDisk Corporation. SanDisk Announces the 12-Gigabyte microSDHC Card - the World’s Largest Capacity Card for Mobile Phones[EB/OL]. (2008-1-7) [2009-3-10]. http://www.sandisk.com/corporate/pressroom/pressreleases/pressrelease.aspx?id=4079.
    [8] SanDisk Corporation. SanDisk UltraII Line Picks Up Speed and Boosts Capacity with New 32- AND 16-Gigabyte SDHC and 8GB SDHC Plus Cards[EB/OL]. (2008-1-31) [2009-3-10].http://www.sandisk.com/Corporate/PressRoom/PressReleases/PressRelease.aspx?ID=4091
    [9]李力.闪速存储器技术现状及发展趋势[EB/OL].(2006-5-7)[2009-3-10].
    [10] S. K. Lai. Flash memories: Successes and challenges. IBM J. RES. & DEV, 2008, 52: 529-535.
    [11]关旭东.硅集成电路工艺基础.北京:清华大学出版社,2003.
    [12] Xinghai Tang, De V K, Meindl J D. intrinsic MOSFET parameter fluctuations due to random dopant placement. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 1997, 5(4): 369-376.
    [13] Wallace R M, Wilk G D. High-kappa dielectric materials for microelectronics. Critical Reviews in Solid State and Materials Sciences, 2003, 28(4): 231-285.
    [14] Robertson J. High dielectric constant oxides. European Physical Journal-Applied Physics, 2004, 28(3): 265-291.
    [15] Ribes G, Mitard J, Denais M, et al. Review on high-k dielectrics reliability issues. IEEE Transactions on Device and Materials Reliability, 2005, 5(1): 5-19.
    [16] Chau R, Datta S, Doczy M, et al. High-kappa/metal-gate stack and its MOSFET characteristics. IEEE Electron Device Letters, 2004, 25(6): 408-410.
    [17] White MH, Adams DA, Bu JK. On the go with SONOS. IEEE Circuits & Devices, 2000, 16(4): 22-31.
    [18] Bu JK, White MH. Design considerations in scaled SONOS nonvolatile memory devices. Solid-State Electronics, 2001, 45(1): 113-120.
    [19] Wrazien SJ, Zhao YJ, Krayer JD, et al. Characterization of SONOS oxynitride nonvolatile semiconductor memory devices. Solid-State Electronics, 2003, 47(5): 885-891.
    [20] Choi S, Cho M, Hwang H, et al. Improved metal-oxide-nitride-oxide-silicon-type flash device with high-k dielectrics for blocking layer. Journal of Applied Physics, 2003, 94(8): 5408-5410.
    [21] Lee CH, Hur SH, Shin YC, et al. Charge-trapping device structure of SiO2/SiN/High-k dielectric Al2O3 for high-density flash memory. Applied Physics Letters, 2005,86(15): 152908.
    [22] Wang X, Kwong DL. A novel high-kappa SONOS memory using TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention. IEEE Transactions on Electron Devices, 2006, 53(1): 78-82.
    [23] Minami S, Kamigaki Y. A novel MONOS nonvolatile memory device ensuring 10-year data retention after 10(7) erase write cycles. IEEE Transactions on Electron Devices, 1993, 40(11): 2011-2017.
    [24] Yuen KH, Man TY, Chan ACK, et al. A 2-bit MONOS nonvolatile memory cell based on asymmetric double gate MOSFET structure. IEEE Electron Device Letters, 2003, 24(8): 518-520.
    [25] Wang XG, Liu J, Bai WP, et al. A novel MONOS-type nonvolatile memory using high-k dielectrics for improved data retention and programming speed. IEEE Transactions on Electron Devices, 2004, 51(4): 597-602.
    [26] Kang L, Lee BH, Qi WJ, et al. Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Letters, 2000, 21(4): 181-183.
    [27] Callegari A, Cartier E, Gribelyuk M, et al. Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films. Journal of Applied Physics, 2001, 90(12): 6466-6475.
    [28] Visokay MR, Chambers JJ, Rotondaro ALP, et al. Application of HfSiON as a gate dielectric material. Applied Physics Letters, 2002, 80(17): 3183-3185.
    [29] Cho MH, Roh YS, Whang CN, et al. Thermal stability and structural characteristics of HfO2 films on Si(100) grown by atomic-layer deposition. Applied Physics Letters, 2002, 81(3): 472-474.
    [30] Lin YS, Puthenkovilakam R, Chang JP. Dielectric property and thermal stability of HfO2 on silicon. Applied Physics Letters, 2002, 81(11): 2041-2043.
    [31] Xiong K, Robertson J, Gibson MC, et al. Defect energy levels in HfO2 high-dielectric-constant gate oxide. Applied Physics Letters, 2005, 87(18): 183505.
    [32] Choi YK, King TJ, Hu CM. Nanoscale CMOS spacer FinFET for the terabit era. IEEE Electron Device Letters, 2002, 23(1): 25-27.
    [33] Crupi G, Schreurs D, Parvais B, et al. Scalable and multibias high frequentcy modeling of multi-fin FETs. Solid-State Electronics, 2006, 50(11-12): 1780-1786.
    [34] Xiao deyuan, Xia Qing, Chen guoqing. History and perspective of MOSFET device. Semiconductor Technology, 2007, 32(1): 1-25.
    [35] Foran B, Ives N, Lysaght P. Tomography of High-k Dielectrics on Fin-FET Sidewalls. Microsc Microanal, 2008, 14(2): 444-445.
    [36]姚远.闪存迎来黄金时代. Chip测试与技术,2007,7: 60-65.
    [37] Sandip Tiwari, Farhan Rana, Hussein Hanafi, et al. A silicon nanocrystals based memory. Applied Physics Letters, 1996, 68(10): 1377-1379.
    [38] Sandip Tiwari, Farhan Rana, Kevin Chan. Single charge and confinement effects in nano-crystal memories. Applied Physics Letters, 1996, 69(9): 1232-1234.
    [39] Rana F, Tiwari S, Buchanan D A. Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides. Applied Physics Letters, 1996, 69(8): 1104-1106.
    [40] Min She, Tsu-Jae King. Impact of Crystal Size and Tunnel Dielectric on Semiconductor Nanocrystal Memory Performance. IEEE Transactions on Electron Devices, 2003, 50(9): 1934-1940.
    [41] Sang Soo Kim, Won-Ju Cho, Chang-Geun Ahn, et al. Fabrication of fin field-effect transistor silicon nanocrystal floating gate memory using photochemical vapor deposition. Applied Physics Letters, 2006, 88, 223502.
    [42] Shi Y, Saito K, Ishikuro H, et al. Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals. Journal of Applied Physics, 1998, 84(4): 2358-2360.
    [43] Kapetanakis E, Normand P, Tsoukalas D, et al. Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+ implantation and annealing. Applied Physics Letters, 2000, 77(21): 3450-3452.
    [44] Normand P, Kapetanakis E, Tsoukalas D, et al. MOS memory devices based on silicon nanocrystal arrays fabricated by very low energy ion implantation. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2001, 15(1-2): 145-147.
    [45] Ostraat M L, De Blauwe J W, Green M L, et al. Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Applied Physics Letters, 2001, 79(3): 433-435.
    [46] Baik S J, Lim K S. Characteristics of silicon nanocrystal floating gate memory using amorphous carbon/SiO2 tunnel barrier. Applied Physics Letters, 2002, 81(27): 5186-5188.
    [47] Busseret C, Souifi A, Baron T, et al. Electronic properties of silicon nanocrystallites obtained by SiOx < x < 2 > annealing. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002, 19(1-2): 237-241.
    [48] Muller T, Heinig K H, Moller W. Size and location control of Si nanocrystals at ion beam synthesis in thin SiO2 films. Applied Physics Letters, 2002, 81(16): 3049-3051.
    [49] Kouvatsos D N, Ioannou Sougleridis V, Nassiopoulou A G. Charging effects in silicon nanocrystals within SiO2 layers, fabricated by chemical vapor deposition, oxidation, and annealing. Applied Physics Letters, 2003, 82(3): 397-399.
    [50] Kouvatsos D N, Ioannou Sougleridis V, Nassiopoulou A G. Charging effects in silicon nanocrystals embedded in SiO2 films. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2003, 101(1-3): 270-274.
    [51] Lee J J, Wang X G, Bai W P, et al. Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric. IEEE Transactions on Electron Devices, 2003, 50(10): 2067-2072.
    [52] Normand P, Kapetanakis E, Dimitrakis P, et al. Effects of annealing conditions on charge storage of Si nanocrystal memory devices obtained by low-energy ion beam synthesis. Microelectronic Engineering, 2003, 67-8: 629-634.
    [53] Schmidt J U, Schmidt B. Investigation of Si nanocluster formation in sputter-deposited silicon sub-oxides for nanocluster memory structures. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2003, 101(1-3): 28-33.
    [54] Feng T, Yu H B, Dicken M, et al. Probing the size and density of silicon nanocrystals in nanocrystal memory device applications. Applied Physics Letters, 2005, 86(3): 033103.
    [55] Rao R A, Gasquet H P, Steimle R F, et al. Influence of silicon nanocrystal size and density on the performance of non-volatile memory arrays. Solid-State Electronics, 2005, 49(11): 1722-1727.
    [56] Liu Y, Chen T P, Ding L, et al. Charging mechanism in a SiO2 matrix embedded with Si nanocrystals. Journal of Applied Physics, 2006, 100(9): 096111.
    [57] Liu Y, Chen T P, Ng C Y, et al. Depth profiling of charging effect of Si nanocrystals embedded in SiO2: A study of charge diffusion among Si nanocrystals. Journal of Physical Chemistry B, 2006, 110(33): 16499-16502.
    [58] Ng C Y, Chen T P, Sreeduth D, et al. Silicon nanocrystal-based non-volatile memory devices. Thin Solid Films, 2006, 504(1-2): 25-27.
    [59] Punchaipetch P, Uraoka Y, Fuyuki T, et al. Enhancing memory efficiency of Si nanocrystal floating gate memories with high-kappa gate oxides. Applied Physics Letters, 2006, 89(9): 093502.
    [60] Dumas C, Grisolia J, Benassayag G, et al. Influence of the thickness of the tunnel layer on the charging characteristics of Si nanocrystals embedded in an ultra-thin SiO2 layer. Physica E-Low-Dimensional Systems & Nanostructures, 2007, 38(1-2): 80-84.
    [61] Oda S, Huang S Y, Salem M A, et al. Charge storage and electron/light emission properties of silicon nanocrystals. Physica E-Low-Dimensional Systems & Nanostructures, 2007, 38(1-2): 59-63.
    [62] Turchanikov V, Nazarov A, Lysenko V, et al. Charging/discharging kinetics in LPCVD silicon nanocrystal MOS memory structures. Physica E-Low-Dimensional Systems & Nanostructures, 2007, 38(1-2): 89-93.
    [63] Yang J S, Kim S I, Kim Y T, et al. Electrical characteristics of nano-crystal Si Particles for nano-floating gate memory. Microelectronics Journal, 2008, 39(12): 1553-1555.
    [64] Kim D W, Kim T, Banerjee S K. Memory effect and retention property of Ge nanocrystal embedded Hf-aluminate high-k gate dielectric. IEEE Transactions on Electron Devices, 2003, 50(9): 1823-1829.
    [65] Kim J K, Cheong H J, Kim Y, et al. Rapid-thermal-annealing effect on lateral charge loss in metal-oxide-semiconductor capacitors with Ge nanocrystals. Applied Physics Letters, 2003, 82(15): 2527-2529.
    [66] Wan Q, Zhang N L, Liu W L, et al. Memory and negative photoconductivity effects of Ge nanocrystals embedded in ZrO2/Al2O3 gate dielectrics. Applied Physics Letters, 2003, 83(1): 138-140.
    [67] Kanoun M, Souifi A, Baron T, et al. Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications. Applied Physics Letters, 2004, 84(25): 5079-5081.
    [68] Wang Y Q, Chen J H, Yoo W J, et al. Formation of Ge nanocrystals in HfAlO high-k dielectric and application in memory device. Applied Physics Letters, 2004, 84(26): 5407-5409.
    [69] Agan S, Celik Aktas A, Zuo J M, et al. Synthesis and size differentiation of Ge nanocrystals in amorphous SiO2. Applied Physics a-Materials Science & Processing, 2006, 83(1): 107-110.
    [70] Agan S, Dana A, Aydinli A. TEM studies of ge nanocrystal formation in PECVD grown SiO2 : Ge/SiO2 multilayers. Journal of Physics-Condensed Matter, 2006, 18(22): 5037-5045.
    [71] Kanoun M, Busseret C, Poncet A, et al. Electronic properties of Ge nanocrystals for non volatile memory applications. Solid-State Electronics, 2006, 50(7-8): 1310-1314.
    [72] Ng T H, Chim W K, Choi W K. Conductance-voltage measurements on germanium nanocrystal memory structures and effect of gate electric field coupling. Applied Physics Letters, 2006, 88(11): 113112.
    [73] Park C J, Cho H Y, Kim S, et al. Annealing temperature dependence of capacitance-voltage characteristics in Ge-nanocrystal-based nonvolatile memory structures. Journal of Applied Physics, 2006, 99(3): 036101.
    [74] Beyer V, von Borany J, Klimenkov M. A transient electrical model of charging for Ge nanocrystal containing gate oxides. Journal of Applied Physics, 2007, 101(9): 094507.
    [75] Wu J H, Li P W. Ge nanocrystal metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12. Semiconductor Science and Technology, 2007, 22(1): 89-92.
    [76] Chyuan Haur Kao, Chao Sung Lai, Chen Sheng Huang, et al. Ge nanocrystal charge trapping devices fabricated by one-step oxidation on poly SiGe. Applied Surface Science, 2008, 255(5): 2512-2516.
    [77] Chang T C, Yan S T, Liu P T, et al. A novel approach of fabricating germanium nanocrystals for nonvolatile memory application. Electrochemical and Solid State Letters, 2004, 7(1): 17-19.
    [78] Kim D W, Prins F E, Kim T, et al. Reduction of charge-transport characteristics of SiGe dot floating gate memory device with ZrO2 tunneling oxide. IEEE Transactions on Electron Devices, 2003, 50(2): 510-513.
    [79] Sarkar J, Dey S, Liu Y, et al. Vertical(3D) flash memory with SiGe nanocrystal floating gate. Device Research Conference (IEEE Cat. No. 06TH8896), 2006, 267-268.
    [80] Liu Y R, Dey S, Tang S, et al. Improved performance of SiGe nanocrystal memory with VARIOT tunnel Barrier. IEEE Transactions on Electron Devices, 2006, 53(10): 2598-2602.
    [81] Liu Z T, Lee C, Narayanan V, et al. Metal nanocrystal memories - Part I: Device design and fabrication. IEEE Transactions on Electron Devices, 2002, 49(9): 1606-1613.
    [82] Liu Z T, Lee C, Narayanan V, et al. Metal nanocrystal memories - Part II: Electrical characteristics. IEEE Transactions on Electron Devices, 2002, 49(9): 1614-1622.
    [83] Wang Q, Song Z T, Liu W L, et al. Synthesis and electron storage characteristics of isolated silver nanodots on/embedded in Al2O3 gate dielectric. Applied Surface Science, 2004, 230(1-4): 8-11.
    [84] Lee C H, Meteer J, Narayanan V, et al. Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications. Journal of Electronic Materials, 2005, 34(1): 1-11.
    [85] Lee J J, Harada Y, Pyun J W, et al. Nickel nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications. Applied Physics Letters, 2005, 86(10): 103505.
    [86] Samanta S K, Yoo W J, Samudra G, et al. Tungsten nanocrystals embedded in high-k materials for memory application. Applied Physics Letters, 2005, 87(11): 113110.
    [87] Sargentis C, Giannakopoulos K, Travlos A, et al. Simple method for the fabrication of a high dielectric constant metal-oxide-semiconductor capacitor embedded with Pt nanoparticles. Applied Physics Letters, 2006, 88(7): 073106.
    [88] Seol K S, Choi S J, Choi J Y, et al. Pd-nanocrystal-based nonvolatile memory structures with asymmetric SiO2/HfO2 tunnel barrier. Applied Physics Letters, 2006, 89(8): 083109.
    [89] Yim S S, Lee M S, Kim K S, et al. Formation of Ru nanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications. Applied Physics Letters, 2006, 89(9): 093115.
    [90] Kim T W, Shin J W, Lee J Y, et al. Electron-beam-induced formation of Zn nanocrystal islands in a SiO2 layer. Applied Physics Letters, 2007, 90(5): 051915.
    [91] Park B, Cho K, Moon B M, et al. Memory characteristics of Al nanocrystals embedded in Al2O3 layers. Microelectronic Engineering, 2007, 84(5-8): 1627-1630.
    [92] Yang F M, Chang T C, Liu P T, et al. Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide. Applied Physics Letters, 2007, 90(13): 132102.
    [93] Park B, Cho K, Yun J, et al. Electrical Characteristics of Floating-Gate Memory Devices with Titanium Nanoparticles Embedded in Gate Oxides. Journal of Nanoscience and Nanotechnoloty, 2009, 9(3): 1904-1908.
    [94] Chen J H, Yoo W J, Chan D S H, et al. Self-assembly of Al2O3 nanodots on SiO2 using two-step controlled annealing technique for long retention nonvolatile memories. Applied Physics Letters, 2005, 86(7): 073114.
    [95] Fischbein M D, Drndic M. CdSe nanocrystal quantum-dot memory. Applied Physics Letters, 2005, 86(19): 193106.
    [96] Nataraj D, Ooike N, Motohisa J, et al. Fabrication of one-dimensional GaAs channel-coupled InAs quantum dot memory device by selective-area metal-organic vapor phase epitaxy. Applied Physics Letters, 2005, 87(19): 193103.
    [97] Yuan C L, Darmawan P, Setiawan Y, et al. Formation of SrTiO3 nanocrystals in amorphous Lu2O3 high-k gate dielectric for floating gate memory application. Applied Physics Letters, 2006, 89(4): 043104.
    [98] Maikap S, Wang T Y, Tzeng P J, et al. Charge storage characteristics of atomic layer deposited RuOx nanocrystals. Applied Physics Letters, 2007, 90(25): 253108.
    [99] Chi-Pei Lu, Bing-Yue Tsui, Cheng-Kei Luo, et al. Trigate TiN nanocrystal memory with high-k blocking dialectric and high work function gate electrode. Electrochemical and Solid State Letters, 2009, 12(3):70-72.
    [100] Hu C W, Chang T C, Tu C H, et al. NiSiGe nanocrystals for nonvolatile memory devices. Applied Physics Letters, 2009, 94(6): 062102.
    [101] Kyu II Han, Yong Min Park, Sung Kim, et al. Enhancement of Memory Performance Using Doubly Stacked Si-Nanocrystal Floating Gates Prepared by Ion Beam Sputtering in UHV. IEEE Transactions on Electron Devices, 2007, 54(2): 359-362.
    [102] Ryu S W, Lee J W, Han J W, et al. Designed work function engineering of double stacked metal nanocrystals for nonvolatile memory application. IEEE Transactions on Electron Devices, 2009, 56(3): 377-382.
    [103] Lin CC, Chang T C, Tu C H, et al. Improvement of charge storage characteristics of Mo nanocrystal memory by double layer structure. Journal of the Electrochemical Society, 2009, 156(4): 276-280.
    [104] T H Ng, V Ho, L W Teo, et al. Fabrication and characterization of a trilayer germanium nanocrystal memory device with hafnium dioxide as the tunnel dialectric. Thin Solid Films, 2004, 462-463: 46-50.
    [105] Fu-Hsiang Ko, Hsin-Chiang You, Tan-Fu Lei. Sol-gel-derived double-layered nanocrystal memory. Applied Physics Letters, 2006, 89: 252111.
    [106]杨邦朝,王文生.薄膜物理与技术.成都:电子工业出版社,1994.
    [107] Eaglesham D J, Cerullo M. Dislocation Free Stranski Krastanow Growth of Ge on Si(100). Physical Review Letters, 1990, 64(16): 1943-1946.
    [108]吴自勤,王兵.薄膜生长.北京:科学出版社,2001.
    [109]张三慧.量子物理.北京:清华大学出版社,2000.
    [110] Herbert B Michaelson. The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729-4733.
    [111]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992.
    [112]邝向军.关于金属介电常数的讨论.四川理工学院学报(自然科学版),2006,19(2):75-78.
    [113]朱静.纳米材料和器件.北京:清华大学出版社,2003.
    [114]张三慧.电磁学.北京:清华大学出版社,1999.
    [115] Li Y T, Liu S. Using different work function nanocrystal materials to improve the rention characteristics of nonvolatile memory devices. Microelectronics Jounal, 2009, 40(1): 92-94.
    [116] Bing Yue Tsui, Chih Feng Huang. Wide Range Work Function Modulation of Binary Alloys for MOSFET Application. IEEE Electron Device Letters, 2003, 24(3): 153-155.
    [117] S C Fain, J M McDavid. Work function variation with alloy compositeon: Ag-Au. Physical Review B, 1974, 9(12): 5099-5107.
    [118] Ryusuke Ishii, Katsunori Matsumura, Akira Sakai, et al. Work function of binary alloys. Applied Surface Science, 2001, 169-170: 658-661.
    [119] C D Gelatt, H Ehrenreich. Charge transferr in alloys: AgAu. Physical Review B, 1974, 10(2): 398-415.
    [120] Charles Kittel. Introduction to Solid State Physics, 5th ed. New York: Wiley, 1976.
    [121] Ding Y P, Jin C Y, Cheng J R, et al. The electrical properties of Ba1-xSrxTiO3 film prepared by a sol-gel method. Proceedings of the first China international conference on high performance ceramics, 1998, October, 489-493.
    [122] Gim Y, Hudson T, Fan Y, et al. Microstructure and dialectric Properties of Ba1-xSrxTiO3 film grown on LaAlO3 substrates. Applied Physics Letters, 2000, 76(8): 1200-1202.
    [123] Chang W, Horwitz J S, Carter A C, et al. The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin film. Applied Physics Letters, 1999, 74(7): 1033-1035.
    [124] Canedy C L, Li H, Alpay S P, et al. Dielectric Properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocateion type defects. Applied Physics Letters, 2000, 77(11): 1695-1697.
    [125]刘世建,徐重阳,曾祥斌. (Ba0.67Sr0.33)TiO3陶瓷靶的制备和微观结构分析.电子元件与材料, 2001年8月: 5-6.
    [126]杨文,常爱民,庄建文. Ba0.65Sr0.35TiO3陶瓷材料的制备及介电特性研究.无机材料学报, 2002, 17(4): 822-826.
    [127] Lee W J, Kim H G. Oxygen plasma effects on electrical properties of barium strontium titanate(BST) thin films. Integrated Ferroelectrics. 1995,7: 207-214.
    [128] Lee J, Choi Y C, Lee B S. Effect of O2/Ar ratio and annealing on the properties of (Ba,Sr)TiO3 films prepared by RF magnetron sputtering [J]. Jpn J Applied Physics, 1997, 36(6A): 3644-3648.
    [129] S M Sze.半导体器件物理, (黄振岗译,魏策军校).北京:电子工业出版社, 1987.
    [130]刘恩科,朱秉升,罗晋生,等.半导体物理学.西安:交通大学出版社,1998.
    [131]管绍茂,,王迅.半导体表面钝化技术及其应用.北京:国防工业出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700