基于双磁分子隧道结的输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单分子磁体是一种具有强的内禀磁矩的分子材料。这种分子材料自发现至今天,已经有大约20年左右。单分子磁体由于内禀磁性带来的能级双稳态结构和区别于传统量子点的输运性质受到了实验和理论物理学家的广泛关注。与传统的有机分子材料相比,单分子磁体为分子基底的自旋电子学器件设计提供了合适的特性。由于单分子磁体对于自旋的选择性,使得其适合作为自旋过滤器、自旋阀等自旋输运相关器件的备选材料。
     在第一章中,简要的介绍本文有关理论背景,和基础的物理概念等。单分子磁体具有双稳态能级结构;低温下,由于分子强内禀磁矩以及自发对称性破缺,磁分子会落在双稳态的一个势阱中,体现出强的自发磁化,导致高的自旋翻转势垒。在磁分子的基础上已进行大量的实验和理论研究,丰富的物理现象被预言观测。如磁性单电子晶体管(SET),自旋Seeback效应,利用电控或温差产生纯自旋流,高的近藤(Kondo)温度,纯自旋流的产生,极化流驱动的自旋翻转等等。随着纳米技术的发展,自旋极化扫描隧道显微镜(SP-STM)和非弹性电子隧穿谱(IETS)技术的发展,单个磁性原子或单分子磁体的自旋方向可以通过自旋转移力矩(STT)效应来控制。基于其可操控性,这种材料为自旋电子学和信息处理器件设计提供了良好的候选方案。
     第二章,主要介绍了研究中使用的主方程方法及一些基本概念。
     第三章,研究了串联接在两个普通金属电极之间双磁分子组成的隧道结的输运性质。偏压较低时,隧道结在初始状态磁矩平行/反平行时呈现与低/高阻的状态,这与平行/反平行铁磁电极隧道结的结果类似。强的库伦排斥作用抑制了参数条件下反平行状况下电流。高偏压时,非极化的普通金属电极使得磁分子趋向于非极化状态,类似于普通量子点行为。隧道结为实现记忆存储单元的提供了可能性。
     第四章,我们研究了串联在正常非极化金属电极之间的两具有不同自旋翻转势垒单分子磁体组成的隧道结输运性质。隧道结中,磁性分子的自旋反转源于自旋转移力矩效应,通过磁性分子的自旋态之间的一系列跃迁实现,必须满足的基本选择规则△m=1/2和△n=1(即隧穿导致的电子数改变为1,总磁矩的变化为0.5)。在低偏压区,较易翻转的磁性分子(反转势垒较小)的磁矩关于隧道结偏压(Sfree VS Vbias)曲线呈现出磁滞回线与双稳态磁性状态,而且磁矩Sfree反转的发生对应于电流的产生变化位置。通过调节偏压的,两磁分子磁结构可以在平行/反平行的磁矩状态进行变化,与此同时隧穿电流也可以实现开/关效应。因而,理论计算结果表明,磁分子隧道结的自旋态可以由偏压来加以控制,使得两个磁分子的磁化方向平行或反平行。此种操作是通过电子库(bath)和磁性分子(SMM)之间的自旋相关的电子输送驱动,并且不需要外部磁场和磁性电极的结构,能够以全电控的方式实现。同样的物理也反映在最近发现的两个稀土单分子磁体自旋阀的现象。由偏压控制双稳态磁状态的单分子磁体可以作为信息存储单元在自旋电子器件中实现。
     第五章,做了一个简单的总结和展望。
Single molecular magnet(SMM) is a kind of single-molecule material with strong in-trinsic magnetism. This kind of molecular material has been found for about twenty years. It attracts many physicists for its special bistable state energy structure and inter-esting transport properties, which are different from traditional quantum dots. Compar-ing to the conventional organic molecular materials, the single molecular magnet (S-MM) has been shown to be a suitable component for future molecule-based spintronic devices. Due to its spin selective properties, the SMM seems to be a very appropriate candidate for designing spin filters or spin valves.
     In chapter1we give an introduction to investigational background and some ba-sic conceptions. The single molecular magnets have the structure of bistable energy states. At low temperature, the SMM is trapped in one of the potential wells for spon-taneous symmetry breaking, presenting a large intrinsic magnetic momentum which results in a high spin reversal barrier. A lot of theoretical and experimental research-es have been done based on this kind of molecule device and a lot of phenomena are predicted or detected, such as Single electron transistor(SET),spin Seebeck effec-t, high Kondo temperature, pure spin current generator, magnetization reversal driven by spin-polarized current. With the development of nano technology such as the spin-polarized scanning tunneling microscope(SP-STM) and the inelastic electron tunneling spectroscopy(IETS), the spin orientation of a single magnetic atom or a single molec-ular magnet can be controlled via the spin-transfer torque (STT) effect. According to its controllable properties, it can be good candidate for the spintronic and information processing device.
     In chapter2we give an introduction for the related theoretical methods:master equation approach.
     In chapter3, we studied the transport through two same single molecular mag-nets, connected to two normal metal leads in series arrangement. Applying low bias voltage, the junction presents low/high resistant state with the SMMs'initial states parallel/antiparallel. This phenomenon is similar with the transport in ferromagnetic parallel/antiparallel junctions. Strong Coulomb repulse suppresses the current in an-tiparallel situation to nearly vanish. At high bias voltage, the middle system containing two SMMs tends to be non-polarized, and acts like ordinary quantum dots. The junc-tion supplies a probability for the memory device.
     In chapter4, we theoretically explore the spin transport in nano-structures consist-ing of two single-molecular magnets(SMM) sandwiched between a couple of nonmag-netic electrodes. The reversal of the SMM's spin arises from the spin-transfer torque effect, and it is realized via a set of transitions between the SMM's spin states, which must satisfy the basic selection rules,△m=1/2and△n=1. In low bias regime, the magnetism of SMM with smaller spin flipping barrier exhibits a hysteresis loop with bistable magnetic states. And the sign reversal of magnetization corresponds to a certain electron current arisen through the junction. By adjusting bias voltage,the magnetic structure of two SMM can be set in parallel/anti-parallel configurations,and the tunneling currents can also be turns on/off by the different magnetic structures. It is shown that the spin states of the SMM in the tunnel junction can be manipulated by the bias voltage, to be parallel or antiparallel to the magnetization of each other. Such a manipulation is driven by a spin-related electron transport between electrons and mag-netic molecules, and needs neither external magnetic field nor magnetic electrodes in the structure.The same physics may also be responsible for the spin-valve phenomena discovered recently in two rare-earth SMMs. And the SMMs with bistable magnet-ic states controlled by bias voltage are expected to be information units in the future spintronic device.
     The last chapter presents a summary of this dissertation, and then gives some outlook for the investigation.
引文
[1]M. G. D. Bimberg, N. N. Ledentsov, Quantum Dot Heterostructures, Wiely, Chichester/New York,1999.
    [2]P. H. L. Jacak, A. Wojs, Quantum Dots, Springer, Berlin,1998.
    [3]E. Borovtakaya, M. S. Shur (Eds.), Quantum Dots, World Scientific Publishing Corporation,2002.
    [4]Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, M. G. Lagally, Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001), Phys. Rev. Lett.65 (1990) 1020-1023.
    [5]Igor, J. Fabian, S. Das Sarma, Spintronics:Fundamentals and applications, Rev. Mod. Phys.76 (2004) 323-410.
    [6]T. Valet, A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48 (1993) 7099-7113.
    [7]E. K. B. Guillem Aromi, Synthesis of 3d Metallic Single-Molecule Magnets, in: R. Winpenny (Ed.), Single-Molecule Magnets and Related Phenomena, Vol.122 of Structure and Bonding, Springer Berlin Heidelberg,2006.
    [8]H. Andres, R. Basler, A. J. Blake, C. Cadiou, G. Chaboussant, C. M. Grant, H.-U. Gudel, M. Murrie, S. Parsons, C. Paulsen, F. Semadini, V. Villar, W. Werns-dorfer, R. E. P. Winpenny, Studies of a Nickel-Based Single-Molecule Magnet, Chemistry A European Journal 8 (21) (2002) 4867-4876.
    [9]E.-C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, G. Christou, Cobalt single-molecule magnet, Journal of Applied Physics 91(10) (2002) 7382-7384.
    [10]A. R. Schake, H.-L. Tsai, R. J. Webb, K. Folting, G. Christou, D. N. Hendrickson, High-Spin Molecules:Iron(Ⅲ) Incorporation into [Mn12O12(O2CMe)16(H2O)4] To Yield [Mn8Fe4O12(O2CMe)16(H2O)4 and Its Influence on the S=10 Ground State of the Former, Inorganic Chemistry 33 (26)(1994) 6020-6028.
    [11]F. Haque, M. Langhirt, E. del Barco, T. Taguchi, G. Christou, Magnetic field dependent transport through a Mn4 single-molecule magnet, Journal of Applied Physics 109 (7).
    [12]H. Yamaoka, T. Kambe, T. Sato, Y. Ishida, M. Matsunami, R. Eguchi, Y. Senba, H. Ohashi, Electronic state of an organic molecular magnet:Soft x-ray spec-troscopy study of TDAE-C60single crystal, Phys. Rev. B 84 (2011) 161404.
    [13]K. Weighardt, K. Pohl, I. Jibril, G. Huttner, Hydrolysis Products of the Monomeric Amine Complex (C6H15N3)FeCl3:The Structure of the Octamer-ic Iron(Ⅲ) Cation, Angewandte Chemie International Edition in English 23 (1) (1984) 77-78.
    [14]J. V. Dante Gatteschi, Roberta Sessoli, Molecular Nanomagnets, Oxford Uni-versity Press,2006.
    [15]J. R. Friedman, M. P. Sarachik, J. Tejada, R. Ziolo, Macroscopic Measurement of Resonant Magnetization Tunneling in High-Spin Molecules, Phys. Rev. Lett. 76 (1996) 3830-3833.
    [16]H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, A. Cornia, Electron Transport through Single Mn12 Molecular Magnets, Phys. Rev. Lett.96 (2006) 206801.
    [17]D. Li, S. Parkin, G. Wang, G. T. Yee, A. V. Prosvirin, S. M. Holmes, Single-Molecule Magnets Constructed from Cyanometalates, Inorganic Chemistry 44 (14) (2005) 4903-4905, pMID:15998014.
    [18]A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, G. Christou, Giant Single-Molecule Magnets:A Mn84 Torus and Its Supramolecular Nan-otubes, Angewandte Chemie 116 (16) (2004) 2169-2173.
    [19]S. Ramasesha, R. Raghunathan, Multiscale Modeling of Molecular Magnets, AIP Conference Proceedings 963 (1) (2007) 406-415.
    [20]T. Lis, Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate, Acta Crystallographica Section B 36 (9) (1980) 2042-2046.
    [21]A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, R. E. P. Winpenny, Will Spin-Relaxation Times in Molecular Magnets Permit Quantum Information Processing?, Phys. Rev. Lett.98 (2007) 057201.
    [22]Y. Li, G. Chen, C. Zhou, J. Sun, A simple template-free synthesis of nanoporous ZnS - In2S3 - Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light, Chem. Commun. (2009) 2020-2022.
    [23]A. Naitabdi, J.-P. Bucher, P. Gerbier, P. Rabu, M. Drillon, Self-Assembly and Magnetism of Mn12 Nanomagnets on Native and Functionalized Gold Surfaces, Advanced Materials 17 (13) (2005) 1612-1616.
    [24]M. F. Islam, J. F. Nossa, C. M. Canali, M. Pederson, First-principles study of spin-electric coupling in a Cu3 single molecular magnet, Phys. Rev. B 82 (2010) 155446.
    [25]M. Misiorny, J. Barnas, Quantum tunneling of magnetization in single molecular magnets coupled to ferromagnetic reservoirs, EPL (Europhysics Letters) 78 (2) (2007) 27003.
    [26]Y.-N. Wu, X.-G. Zhang, H.-P. Cheng, Giant Molecular Magnetocapacitance, Phys. Rev. Lett.110 (2013) 217205.
    [27]L. Zhu, K. L. Yao, Z. L. Liu, Molecular spin valve and spin filter composed of single-molecule magnets, Applied Physics Letters 96 (8).
    [28]R. Liu, S.-H. Ke, H. U. Baranger, W. Yang, Negative Differential Resistance and Hysteresis through an Organometallic Molecule from Molecular-Level Cross-ing, Journal of the American Chemical Society 128 (19) (2006) 6274-6275.
    [29]R. Yamada, M. Noguchi, H. Tada, Magnetoresistance of single molecular junc-tions measured by a mechanically controllable break junction method, Applied Physics Letters 98 (5).
    [30]S. Barraza-Lopez, M. C. Avery, K. Park, The interaction between a monolayer of single-molecule magnets and a metal surface, Journal of Applied Physics 103 (7).
    [31]E. Y. Lee, M. P. Suh, A Robust Porous Material Constructed of Linear Coor-dination Polymer Chains:Reversible Single-Crystal to Single-Crystal Transfor-mations upon Dehydration and Rehydration, Angewandte Chemie International Edition 43 (21) (2004) 2798-2801.
    [32]H. Hao, X. Zheng, L. Song, R. Wang, Z. Zeng, Electrostatic spin crossover in a molecular junction of a single-molecule magnet Fe2, Phys. Rev. Lett.108 (2012)017202.
    [33]L. Bokacheva, A. D. Kent, M. A. Walters, Crossover between Thermally Assist-ed and Pure Quantum Tunneling in Molecular Magnet Mn12-acetate, Phys. Rev. Lett.85 (2000) 4803-4806.
    [34]C.-Y. Lee, H.-T. Chiu, C.-W. Peng, M.-Y. Yen, Y.-H. Chang, C.-S. Liu, Polygon Building Block Route to sp2-Carbon-Based Materials, Advanced Materials 13 (14)(2001)1105-1107.
    [35]X. Xiao, B. Xu, N. Tao, Changes in the Conductance of Single Peptide Molecules upon Metal-ion Binding, Angewandte Chemie International Edition 43 (45)(2004)6148-6152.
    [36]M. Misiorny, J. Barnas, Dynamics of Current-Induced Magnetic Switching of a Single-Molecule Magnet, Magnetics, IEEE Transactions on 44 (11) (2008) 2523-2526.
    [37]A. Chiesa, S. Carretta, P. Santini, G. Amoretti, E. Pavarini, Many-Body Models for Molecular Nanomagnets, Phys. Rev. Lett.110 (2013) 157204.
    [38]Abragam, Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover Pubns,1986.
    [39]H. A. Kramers, Theorie generale de la rotation paramagnetique dans les cristaux, Proc. Amsterdam Acad 33 (1930) 959.
    [40]J. J. Henderson, C. Koo, P. L. Feng, E. del Barco, S. Hill, I. S. Tupitsyn, P. C. E. Stamp, D. N. Hendrickson, Manifestation of spin selection rules on the quantum tunneling of magnetization in a single-molecule magnet, Phys. Rev. Lett.103 (2009) 017202.
    [41]J. R. Petta, S. K. Slater, D. C. Ralph, Spin-Dependent Transport in Molecular Tunnel Junctions, Phys. Rev. Lett.93 (2004) 136601.
    [42]H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, A. Cornia, Electron transport through single Mn12 molecular magnets, Phys. Rev. Lett.96 (2006) 206801.
    [43]S. Barraza-Lopez, K. Park, First-Principles Study of Electron Transport through the Single-Molecule Magnet Mn12, Phys. Rev. Lett.102 (2009) 246801.
    [44]C. Romeike, M. R. Wegewijs, H. Schoeller, Spin Quantum Tunneling in Sin-gle Molecular Magnets Fingerprints in Transport Spectroscopy of Current and Noise, Phys. Rev. Lett.96 (2006) 196805.
    [45]B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H. W. Kim, Y. J. Song, J. Ihm, Y. Kuk, Conformational Molecular Switch of the Azobenzene Molecule:A Scanning Tunneling Microscopy Study, Phys. Rev. Lett.96 (2006) 156106.
    [46]E. K. Brechin, C. Boskovic, W. Wernsdorfer, J. Yoo, A. Yamaguchi, E. C. Saudo, T. R. Concolino, A. L. Rheingold, H. Ishimoto, D. N. Hendrickson, G. Chris-tou, Quantum Tunneling of Magnetization in a New [Mn18]2+ Single-Molecule Magnet with S=13, Journal of the American Chemical Society 124 (33) (2002) 9710-9711.
    [47]K. S.Loth, Controlling the state of quantum spins with electric currents, Nature Physics 6 (2010) 340-344.
    [48]N. G. van Kampen, Stochastic processes in physics and chemistry, North Hol-land,1981.
    [49]M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations,fluctua-tion theorems, and counting statistics in quantum systems, Rev. Mod. Phys.81 (2009)1665-1702.
    [50]A. Wilms, P. Mathe, F. Schulze, T. Koprucki, A. Knorr, U. Bandelow, Influence of the carrier reservoir dimensionality on electron-electron scattering in quantum dot materials, Phys. Rev. B 88 (2013) 235421.
    [51]P. G. Kirton, A. D. Armour, M. Houzet, F. Pistolesi, Quantum current noise from a Born-Markov master equation, Phys. Rev. B 86 (2012) 081305.
    [52]C. Li, Y. Zhang, J. Wang, J. He, Performance characteristics and optimal analysis of a nanosized quantum dot photoelectric refrigerator, Phys. Rev. E 88 (2013) 062120.
    [53]M. Misiorny, J. Barnas, Quantum tunneling of magnetization in single molecular magnets coupled to ferromagnetic reservoirs, EPL (Europhysics Letters) 78 (2) (2007) 27003.
    [54]F. Elste, C. Timm, Cotunneling and nonequilibrium magnetization in magnetic molecular monolayers, Phys. Rev. B 75 (2007) 195341.
    [55]R.-Q. Wang, L. Sheng, R. Shen, B. Wang, D. Y. Xing, Thermoelectric Effect in Single-Molecule-Magnet Junctions, Phys. Rev. Lett.105 (2010) 057202.
    [56]F. Elste, C. Timm, Resonant and Kondo tunneling through molecular magnets, Phys. Rev. B 81 (2010) 024421.
    [57]C. Romeike, M. R. Wegewijs, W. Hofstetter, S. H., Quantum Tunneling Induced Kondo Effect in Single Molecular Magnets, Phys. Rev. Lett.96 (2006) 196601.
    [58]M. Misiorny, J. Barnas,Spin polarized transport through a single-molecule mag-net:Current-induced magnetic switching, Phys. Rev. B 76 (2007) 054448.
    [59]M. Misiorny, I. Weymann, J. Barnas,Interplay of the Kondo Effect and Spin-Polarized Transport in Magnetic Molecules, Adatoms, and Quantum Dots, Phys. Rev. Lett.106(2011)126602.
    [60]F. Elste, C. Timm, Transport through anisotropic magnetic molecules with par-tially ferromagnetic leads:Spin-charge conversion and negative differential con-ductance, Phys. Rev. B 73 (2006) 235305.
    [61]M. Misiorny, J. Barnas, Effects of intrinsic spin-relaxation in molecular magnets on current-induced magnetic switching, Phys. Rev. B 77 (2008) 172414.
    [62]A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, G. Christou, Giant Single-Molecule Magnets:A Mn84 Torus and Its Supramolecular Nan-otubes, Angewandte Chemie 116 (16) (2004) 2169-2173.
    [63]W. W. Lapo Bogani, Molecular spintronics using single-molecule magnets, Na-ture Materials 7 (2008) 179-186.
    [64]J. Lehmann, D. Loss, Sequential Tunneling through Molecular Spin Rings, Phys. Rev. Lett.98(2007)117203.
    [65]M. Misiorny, J. Barnas, Dynamics of Current-Induced Magnetic Switching of a Single-Molecule Magnet, Magnetics, IEEE Transactions on 44 (11) (2008) 2523-2526.
    [66]C. Romeike, M. R. Wegewijs, H. Schoeller, Spin Quantum Tunneling in Sin-gle Molecular Magnets:Fingerprints in Transport Spectroscopy of Current and Noise, Phys. Rev. Lett.96 (2006) 196805.
    [67]M. Misiorny, I. Weymann, J. Barnas,Spin effects in transport through single-molecule magnets in the sequential and cotunneling regimes, Phys. Rev. B 79 (2009) 224420.
    [68]R. Liu, S.-H. Ke, H. U. Baranger, W. Yang, Negative Differential Resistance and Hysteresis through an Organometallic Molecule from Molecular-Level Cross-ing, Journal of the American Chemical Society 128 (19) (2006) 6274-6275.
    [69]C. Romeike, M. R. Wegewijs, M. Ruben, W. Wenzel, H. Schoeller, Charge-switchable molecular magnet and spin blockade of tunneling, Phys. Rev. B 75 (2007) 064404.
    [70]C. Timm, F. Elste, Spin amplification, reading, and writing in transport through anisotropic magnetic molecules, Phys. Rev. B 73 (2006) 235304.
    [71]M. Misiorny, J. Barnas,Magnetic switching of a single molecular magnet due to spin-polarized current, Phys. Rev. B 75 (2007) 134425.
    [72]H.-Z. Lu, B. Zhou, S.-Q. Shen, Spin-bias driven magnetization reversal and nondestructive detection in a single molecular magnet, Phys. Rev. B 79 (2009) 174419.
    [73]C. Timm, Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field, Phys. Rev. B 76 (2007) 014421.
    [74]N. Roch, R. Vincent, F. Elste, W. Harneit, W. Wernsdorfer, C. Timm, F. Bale-stro, Cotunneling through a magnetic single-molecule transistor based on NC60, Phys. Rev. B 83 (2011) 081407.
    [75]V.-s. A.R.Rocha, Towards molecular spintronics, Nature Materials 4 (2005) 335-339.
    [76]F. Meier, L. Zhou, J. Wiebe, R. Wiesendanger, Revealing Magnetic Interactions from Single-Atom Magnetization Curves, Science 320 (5872) (2008) 82-86.
    [77]W. W. Lapo Bogani, Molecular spintronics using single-molecule magnets, Na-ture Materials 7 (2008) 179-186.
    [78]R. B. L. Thomas, F. Lionti, Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets, Nature 383 (1996) 145-147.
    [79]C. Timm, F. Elste, Spin amplification, reading, and writing in transport through anisotropic magnetic molecules, Phys. Rev. B 73 (2006) 235304.
    [80]S. K. M. Urdampilleta, Supramolecular spin valves, Nature Materials 10 (2011) 502-506.
    [81]C. Iacovita, M. V. Rastei, B. W. Heinrich, T. Brumme, J. Kortus, L. Limot, J. P. Bucher, Visualizing the Spin of Individual Cobalt-Phthalocyanine Molecules, Phys. Rev. Lett.101 (2008) 116602.
    [82]Y. D.Serrate, P.Ferriani, Imaging and manipulating the spin direction of individ-ual atoms, Nature Nanotechnology 5 (2010) 350-353.
    [83]M. Misiorny, J. Barnas, Spin polarized transport through a single-molecule mag-net:Current-induced magnetic switching, Phys. Rev. B 76 (2007) 054448.
    [84]M. Misiorny, J. Barnas, Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching, Phys. Rev. Lett.111 (2013) 046603.
    [85]M. Misiorny, J. Barnas, Switching of molecular magnets, physica status solidi (b) 246 (4) (2009) 695-715.
    [86]M. Misiorny, J. Barnas, Magnetic switching of a single molecular magnet due to spin-polarized current, Phys. Rev. B 75 (2007) 134425.
    [87]F. Rostamzadeh Renani, G. Kirczenow, Switching of a quantum dot spin valve by single molecule magnets, Phys. Rev. B 87 (2013) 121403.
    [88]J. Lehmann, D. Loss, Sequential Tunneling through Molecular Spin Rings, Phys. Rev. Lett.98 (2007) 117203.
    [89]F. Elste, C. Timm, Resonant and Kondo tunneling through molecular magnets, Phys. Rev. B 81 (2010) 024421.
    [90]H.-Z. Lu, B. Zhou, S.-Q. Shen, Spin-bias driven magnetization reversal and nondestructive detection in a single molecular magnet, Phys. Rev. B 79 (2009) 174419.
    [91]C. Romeike, M. R. Wegewijs, W. Hofstetter, S. H., Quantum Tunneling Induced Kondo Effect in Single Molecular Magnets, Phys. Rev. Lett.96 (2006) 196601.
    [92]M. J. Martinez-Perez, S. Cardona-Serra, C. Schlegel, F. Moro, P. J. Alonso, H. Prima-Garcia, J. M. Clemente-Juan, Gd-Based Single-Ion Magnets with Tun-able Magnetic Anisotropy:Molecular Design of Spin Qubits, Phys. Rev. Lett. 108(2012)247213.
    [93]J. Yang, Y. Wang, Z. Wang, X. Rong, C.-K. Duan, J.-H. Su, J. Du, Observing Quantum Oscillation of Ground States in Single Molecular Magnet, Phys. Rev. Lett.108(2012)230501.
    [94]S.-H. Ji, T. Zhang, Y.-S. Fu, X. Chen, J.-F. Jia, Q.-K. Xue, X.-C. Ma, Application of magnetic atom induced bound states in superconducting gap for chemical identification of single magnetic atoms, Applied Physics Letters 96 (7).
    [95]S. Teber, C. Holmqvist, M. Fogelstrom, Transport and magnetization dynam-ics in a superconductor/single-molecule magnet/superconductor junction, Phys. Rev. B 81 (2010) 174503.
    [96]B. Parks, J. Loomis, E. Rumberger, E.-C. Yang, D. N. Hendrickson, G. Christou, Inhomogeneous broadening of single photon transitions in molecular magnets, Journal of Applied Physics 91 (10) (2002) 7170-7172.
    [97]M. Misiorny, J. Barnas', Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching, Phys. Rev. Lett.111 (2013) 046603.
    [98]M. N. Leuenberger, E. R. Mucciolo, Berry-Phase Oscillations of the Kondo Ef-fect in Single-Molecule Magnets, Phys. Rev. Lett.97 (2006) 126601.
    [99]W. Wernsdorfer, R. Sessoli, Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters, Science 284 (5411) (1999) 133-135.
    [100]A. C.. M. A. N. R. Sessoli, D. Gatteschi, Magnetic bistability in a metal-ion cluster, Nature 365 (1993) 141-143.
    [101]D. Gatteschi, R. Sessoli, Quantum Tunneling of Magnetization and Related Phe-nomena in Molecular Materials, Angewandte Chemie International Edition 42 (3) (2003) 268-297.
    [102]M. Mannini, F. Pineider, F. Totti, L. Sorace, P. Sainctavit, M.-A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, R. Sessoli, Quantum tunnelling of the magneti-zation in a monolayer of oriented single-molecule magnets, Nature 468 (2010) 417-421.
    [103]D. Futterer, M. Governale, M. G. Pala, J. Konig, Nonlocal andreev transport through an interacting quantum dot, Phys. Rev. B 79 (2009) 054505.
    [104]A. Gonzalez-Tudela, F. J. Rodriguez, L. Quiroga, C. Tejedor, Dissipative dy-namics of a solid-state qubit coupled to surface plasmons:From non-Markov to Markov regimes, Phys. Rev. B 82 (2010) 115334.
    [105]E. Vaz, J. Kyriakidis, Transient dynamics of confined charges in quantum dots in the sequential tunneling regime, Phys. Rev. B 81 (2010) 085315.
    [106]G. Schaller, G. Kieβlich, T. Brandes, Transport statistics of interacting dou-ble dot systems:Coherent and non-markovian effects, Phys. Rev. B 80 (2009) 245107.
    [107]M. Thorwart, J. Eckel, E. R. Mucciolo, Non-markovian dynamics of double quantum dot charge qubits due to acoustic phonons, Phys. Rev. B 72 (2005) 235320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700