锰氧化物薄膜晶格应力调控及电磁输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1950s年以来,由于钙钛矿型锰氧化物体系中的电子、自旋、轨道与晶格之间存在强烈相互作用,并由此导致一系列奇特的物理学现象,如金属-绝缘体转变、电荷有序、相分离以及超大磁阻效应等,一直吸引着人们的极大关注。这些物理现象的发现不仅极大地丰富了凝聚态物理的内涵,同时也推动了自旋电子学和强关联电子器件研究的发展。但至今还没有比较完整的理论来解释该金属氧化物体系中各种现象的物理本质,其原因是该体系中存在的各种相互作用过于复杂,因此关于钙钛矿型锰氧化物的更多实验研究是非常必要的。
     本论文主要针对在衬底应力诱导下La0.625Ca0.375MnO3外延薄膜晶体结构和电磁输运特性的一部分研究,并取得了一些成果,其中包括:钙钛矿型过渡金属氧化物薄膜脉冲激光沉积法的外延工艺探索及工艺优化;La0.625Ca0.375MnO3外延薄膜中应力诱导相分离和磁阻增强效应;退火诱导La0.625Ca0.375MnO3薄膜应力及相分离演化过程研究;La0.625Ca0.375MnO3外延薄膜的面内有序畴结构研究。各章节的主要内容概括分别如下:
     第一章概括了钙钛矿型锰氧化物的研究进展和现状,包括:钙钛矿型锰氧化物的基本性质和理论;各种磁阻效应及相关原理;晶格应力作用对锰氧化物外延薄膜性质的影响。
     第二章介绍了田口品质法,并在实验中利用该方法设计和分析实验,完成薄膜脉冲激光沉积法(PLD)的外延工艺优化控制:(1)讨论了激光能量、生长氧分压、衬底与靶材间距、衬底温度工艺对薄膜形貌的影响趋势;(2)取得了PLD制备高质量、表面平整的薄膜外延工艺优化参数;(3)归纳出生长氧分压对外延薄膜晶格畸变的调控能力,即氧缺失导致薄膜晶体结构发生膨胀,在后续工作中成为我们对薄膜应力控制的重要手段之一。通过对薄膜外延工艺以及相关测试表征技术的学习和探索,为开展此类材料细致的物性研究奠定了坚实的技术基础。
     第三章研究了La0.625Ca0.375MnO3外延薄膜中应力诱导相分离和磁阻增强效应。我们利用氧分压对外延薄膜晶格畸变的调控原理,在不同氧分压(20Pa,30Pa和40Pa)外延生长出有较大晶格畸变(30Pa和40Pa)和较小畸变(20Pa)的两类La0.625Ca0.375MnO3(LCMO)(001)薄膜。揭示了在衬底应力和合作的Jahn-Teller畸变作用下,较大晶格畸变诱导轨道有序产生稳定的AFI相。通过输运测试,我们认为这种相分离背景下形成的CMR和AMR增强效应,与样品中AFI相和FM相之间的激烈竞争密切相关,并导致CMR效应随磁场单调变化和AMR效应的非单调变化行为。
     第四章利用La0.625Ca0.375MnO3/LSAT (001)薄膜中衬底应力诱导轨道有序作用研究了退火诱导La0.625Ca0.375MnO3薄膜应力及相分离演化过程。通过x射线衍射实验对(001)晶面间距测量,退火处理造成了薄膜应力先增加后弛豫的演化过程。并揭示了在应力诱导轨道有序调制下,退火处理使得薄膜中的AFI态出现出早期增强,后期深度处理后又逐渐减弱直至最后完全消失的变化规律,显示出退火诱导La0.625Ca0.375MnO3薄膜应力及相分离协调演化过程。此外,表面形貌测试结果显示,退火过程的应力弛豫也使得薄膜表面形成纳米尺度的锯齿晶格台阶。
     第五章研究了La0.625Ca0.375MnO3外延薄膜的面内有序畴结构。采用PLD方法在YSZ(111)单晶衬底上生长高质量的(110)外延薄膜,结合x射线衍射线扫描和φ扫描测量,分析了由于薄膜和衬底在界面处的晶体结构对称性失配以及在外延应力作用下,薄膜被裁剪出有序的面内畴结构,以及晶界作用导致的低温磁阻增强效应。
Since the1950s, the existence of strong interactions between charge, spin, orbital and lattice in perovskite manganese oxide system lead to a series of fantastic phenomenon, such as metal-insulator transition, charge ordering, phase separation and colossal magnetoresistance et al., which have been attracting great attention. The discoveries of these interesting physical phenomenon are not only greatly enriched the connotation of condensed matter physics, but also contribute to the development of spintronics and strongly correlated electron devices research. But so far, the physical nature of the various phenomena is still not fully understood, due to the complex interactions in the materials systems. Hence, more experimental studies on the perovskite manganese oxide are very necessary.
     This thesis is focused on the crystal structure and electromagnetic transport properties of La0.625Ca0.375MnO3(LCMO) epitaxial films which are under the strain modulation of substrate. For LCMO films made by pulsed laser deposition (PLD) method, exploration and optimization on preparation process were performed. Phase separation and enhanced magnetoresistance in the strained epitaxial La0.625Ca0.375MnO3(001) films were found. At the same time, we observed annealing induced coherent evolutions of biaxial strain and antiferromagnetic-insulator phase in La0.625Ca0.375MnO3(001) films. On the other hand, we discussed In-plane ordered grain boundaries inducing enhanced magnetoresistance in epitaxial manganite films.
     This thesis consists of five chapters. The main contents of each chapter are summarized as follows:
     The first chapter summarizes the research progress and status of the perovskite manganese oxide, including basic properties and theories of perovskite manganese oxide, all kinds of magnetoresistance effects and lattice strain effect on the nature of the manganese oxide films.
     In chapter2, we have designed and analyzed our experiments by Taguchi method, and achieve the optimized process parameters of PLD method. After all, we obtain three important consequences:(1) we discuss the effects of laser energy, oxygen partial pressure, substrate-target distance and substrate temperature process on the morphology of films;(2) the process parameters for films with high quality and optimized surface roughness have been selected carefully;(3) we found that an effective control of the lattice distortion by the oxygen partial pressure in epitaxial films, and this approach plays an important role in our future work. The study and exploration on the preparation process lay a solid foundation for the physical properties about such materials
     In chapter3, La0.62Ca0.375MnO3(LCMO) films which were deposited on (LaAlO3)0.3(Sr2AlTaO6)0.35(001)[(LSAT)(001)] single crystal substrates with various oxygen partial pressure (20Pa,30Pa and40Pa) during deposition show controlled tetragonal distortion, due to oxygen partial pressure having a regulatory role for lattice distortion of epitaxial films. The structural and transport measurements demonstrate that the films deposited at30Pa and40Pa have a larger lattice strain and distortion, in which enhanced colossal magnetoresistance (CMR) and anisotropic magnetoresistance (AMR) are observed with stable antiferromagnetic-insulator (AFI) phase. We have discussed the possible origin of the enhanced CMR and AMR effect in the strained LCMO films, relating to the strong competition between AFI and ferromagnetic (FM) phase. In addition, we also explained the nonmonotonic behavior of AMR dependence on magnetization.
     In chapter4, annealing induced coherent evolutions of biaxial strain and antiferromagnetic-insulator phase in Lao.62sCao37sMnO3(001)[LCMO (001)] films were observed, due to the strain-driven orbital ordered state. For all the LCMO films which deposited on LSAT (001) substrates with different thickness, it is confirmed that the annealing induced strain evolution in each film includes strain enhancement and then relaxation with increasing annealing treatments. Moreover, after annealing process, the fluctuation of antiferromagnetic-insulator (AFI) phase shows coherent evolution with strain state in each film due to the strain-driven orbital ordered state.
     In chapter5, La5/gCa3/8MnO3(LCMO) films with [110]-orientation were epitaxially grown on yttria-stabilized zirconia (111)[YSZ (111)] single crystal substrates. The results of x-ray diffractions confirmed that these LCMO/YSZ films show in-plane ordered grain boundaries, which are attributed to the symmetry mismatch between the films and the substrates. Large magnetoresistance over a broad temperature range was observed in these films due to the grain boundary effects.
引文
[1]C. Zener, Physical Review.81 (1951) 440.
    [2]C. Zener, Physical Review.82 (1951) 403.
    [3]Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai, H. Kuwahara, M. Kawasaki, K. Terakura, Y. Tokura, Journal of the Physical Society of Japan.68 (1999) 3790.
    [4]G. H. Jonker, J. H. Vansanten, Physica.16 (1950) 337.
    [5]J. B. Goodenough, A. L. Loeb, Physical Review.98 (1955) 391.
    [6]J. B. Goodenough, Reports on Progress in Physics.67 (2004) 1915.
    [7]C. Li, K. C. K. Soh, P. Wu, Journal of Alloys and Compounds.372 (2004) 40.
    [8]E. O. Wollan, W. C. Koehler, Physical Review.100 (1955) 545.
    [9]W. Prellier, A. M. Haghiri-Gosnet, B. Mercey, P. Lecoeur, M. Hervieu, C. Simon, B. Raveau, Applied Physics Letters.77 (2000) 1023.
    [10]Y. G. Zhao, M. Rajeswari, R. C. Srivastava, A. Biswas, S. B. Ogale, D. J. Kang, W. Prellier, Z. Y. Chen, R. L. Greene, T. Venkatesan, Journal of Applied Physics.86 (1999) 6327.
    [11]S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky, I. O. Troyanchuk, H. Szymczak, Journal of Physics-Condensed Matter.15 (2003) 1783.
    [12]H. A. Jahn, E. Teller, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences.161 (1937)220.
    [13]G. Van Tendeloo, O. I. Lebedev, M. Hervieu, B. Raveau, Reports on Progress in Physics.67 (2004) 1315.
    [14]V. Goldschmidt, Oxford University Press. (1958)
    [15]J. B. Goodenough, New York:Wiley-Interscience. (1966)
    [16]P. Dai, J. Zhang, H. A. Mook, S. H. Liou, P. A. Dowben, E. W. Plummer, Physical Review B. 54(1996)R3694.
    [17]P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S. W. Cheong, J. D. Jorgensen, D. N. Argyriou, Physical Review B.56 (1997) 8265.
    [18]P. G. Radaelli, M. Marezio, H. Y. Hwang, S. W. Cheong, B. Batlogg, Physical Review B.54 (1996) 8992.
    [19]N. L. Allan, M. J. Dayer, D. T. Kulp, W. C. Mackrodt, Journal of Materials Chemistry.1 (1991) 1035.
    [20]C. J. Howard, B. J. Kennedy, Journal of Physics-Condensed Matter.11 (1999) 3229.
    [21]S. Bueble, K. Knorr, E. Brecht, W. W. Schmahl, Surface Science.400 (1998) 345.
    [22]W. E. Pickett, D. J. Singh, Physical Review B.53 (1996) 1146.
    [23]J. Kanamori, Journal of Applied Physics.31 (1960) S14.
    [24]Y. Tokura, Reports on Progress in Physics.69 (2006) 797.
    [25]J. M. D. Coey, M. Viret, S. von Molnar, Advances in Physics.48 (1999) 167.
    [26]A. J. Millis, P. B. Littlewood, B. I. Shraiman, Physical Review Letters.74 (1995) 5144.
    [27]H. Roder, J. Zang, A. R. Bishop, Physical Review Letters.76 (1996) 1356.
    [28]A. J. Millis, Nature.392 (1998) 147.
    [29]P. W. Anderson, H. Hasegawa, Physical Review.100 (1955) 675.
    [30]P. G. de Gennes, Physical Review.118 (1960) 141.
    [31]J. B. Goodenough, Physical Review.100 (1955) 564.
    [32]K. Kubo, Journal of the Physical Society of Japan.33 (1972) 929.
    [33]N. Furukawa, Journal of the Physical Society of Japan.64 (1995) 2734.
    [34]N. Furukawa, Journal of the Physical Society of Japan.63 (1994) 3214.
    [35]N. Furukawa, Journal of the Physical Society of Japan.64 (1995) 3164.
    [36]N. Furukawa, Journal of the Physical Society of Japan.69 (2000) 1954.
    [37]J. J. Neumeier, M. F. Hundley, J. D. Thompson, R. H. Heffner, Physical Review B.52 (1995) R7006.
    [38]T. A. Tyson, J. Mustre De Leon, S. D. Conradson, A. R. Bishop, J. J. Neumeier, H. Roder, J. Zang, Physical Review B-Condensed Matter and Materials Physics.53 (1996) 13985.
    [39]G. J. Snyder, R. Hiskes, S. DiCarolis, M. R. Beasley, T. H. Geballe, Physical Review B.53 (1996) 14434.
    [40]M. Ziese, C. Srinitiwarawong, Physical Review B-Condensed Matter and Materials Physics. 58(1998)11519.
    [41]J. S. Zhou, J. B. Goodenough, A. Asamitsu, Y. Tokura, Physical Review Letters.79 (1997) 3234.
    [42]M. Jaime, H. T. Hardner, M. B. Salamon, M. Rubinstein, P. Dorsey, D. Emin, Physical Review Letters.78 (1997) 951.
    [43]L. Wang, J. Yin, S. Huang, X. Hunag, J. Xu, Z. Liu, K. Chen, Physical Review B-Condensed Matter and Materials Physics.60 (1999) R6976.
    [44]C. P. Adams, J. W. Lynn, Y. M. Mukovskii, A. A. Arsenov, D. A. Shulyatev, Physical Review Letters.85 (2000) 3954.
    [45]S. Yoon, H. L. Liu, G. Schollerer, S. L. Cooper, P. D. Han, D. A. Payne, S. W. Cheong, Z. Fisk, Physical Review B.58 (1998) 2795.
    [46]C. Kapusta, P. C. Riedi, W. Kocemba, G. J. Tomka, M. R. Ibarra, J. M. De Teresa, M. Viret, J. M. D. Coey, Journal of Physics-Condensed Matter.11 (1999) 4079.
    [47]V. S. Achutharaman, P. A. Kraus, V. A. Vas'Ko, C. A. Nordman, A. M. Goldman, Applied Physics Letters.67 (1995) 1019.
    [48]P. Schiffer, A. P. Ramirez, W. Bao, S. W. Cheong, Physical Review Letters.75 (1995) 3336.
    [49]S. W. Cheong, H. Y. Hwang, Colossal Magnetoresitance Oxides. (2000)
    [50]S. Mori, C. H. Chen, S. W. Cheong, Nature.392 (1998) 473.
    [51]C. H. Chen, S. W. Cheong, Physical Review Letters.76 (1996) 4042.
    [52]C. H. Chen, S. W. Cheong, H. Y. Hwang, Journal of Applied Physics.81 (1997) 4326.
    [53]P. G. Radaelli, D. E. Cox, M. Marezio, S. W. Cheong, Physical Review B-Condensed Matter and Materials Physics.55 (1997) 3015.
    [54]H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, Y. Tokura, Physical Review Letters.78 (1997) 4253.
    [55]P. D. Battle, T. C. Gibb, P. Lightfoot, Journal of Solid State Chemistry.84 (1990) 271.
    [56]K. Knizek, Z. Jirak, E. Pollert, F. Zounova, S. Vratislav, Journal of Solid State Chemistry. 100(1992)292.
    [57]C. N. R. Rao, Journal of Physical Chemistry B.104 (2000) 5877.
    [58]H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura, Science.270 (1995) 961.
    [59]Y. Moritomo, H. Kuwahara, Y. Tomioka, Y. Tokura, Physical Review B.55 (1997) 7549.
    [60]V. Kiryukhin, D. Casa, J. P. Hill, B. Keimer, A. Vigliante, Y. Tomioka, Y. Tokura, Nature. 386(1997)813.
    [61]A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Nature.388 (1997) 50.
    [62]S. Parashar, E. E. Ebenso, A. R. Raju, C. N. R. Rao, Solid State Communications.114 (2000) 295.
    [63]K. Miyano, T. Tanaka, Y. Tomioka, Y. Tokura, Physical Review Letters.78 (1997) 4257.
    [64]Y. Tokura, N. Nagaosa, Science.288 (2000) 462.
    [65]J. Orenstein, A. J. Millis, Science.288 (2000) 468.
    [66]C. N. R. Rao, P. V. Vanitha, Current Opinion in Solid State & Materials Science.6 (2002) 97.
    [67]C. N. R. Rao, A. K. Kundu, M. M. Seikh, L. Sudheendra, Dalton Transactions. (2004) 3003.
    [68]E. Dagotto, J. Burgy, A. Moreo, Solid State Communications.126 (2003) 9.
    [69]N. Mathur, P. Littlewood, Physics Today.56 (2003) 25.
    [70]J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, S. Uchida, Nature.375 (1995) 561.
    [71]A. L. Chemyshev, A. H. C. Neto, A. R. Bishop, Physical Review Letters.84 (2000) 4922.
    [72]B. I. Belevtsev, Low Temperature Physics.30 (2004) 421.
    [73]J. C. Burley, J. F. Mitchell, S. Short, Physical Review B.69 (2004)
    [74]A. K. Kundu, P. Nordblad, C. N. R. Rao, Journal of Solid State Chemistry.179 (2006) 923.
    [75]E. L. Nagaev, Sov. Phys. Lett.27 (1968) 122.
    [76]E. L. Nagaev, Physics Reports-Review Section of Physics Letters.346 (2001) 388.
    [77]C. N. R. Rao, A. Arulraj, A. K. Cheetham, B. Raveau, Journal of Physics Condensed Matter. 12(2000)R83.
    [78]H. Wakai, Journal of Physics-Condensed Matter.13 (2001) 1627.
    [79]P. M. Woodward, D. E. Cox, T. Vogt, C. N. R. Rao, A. K. Cheetham, Chemistry of Materials. 11(1999)3528.
    [80]A. Moreo, S. Yunoki, E. Dagotto, Science.283 (1999) 2034.
    [81]E. Dagotto, T. Hotta, A. Moreo, Physics Reports-Review Section of Physics Letters.344 (2001) 1.
    [82]A. Moreo, M. Mayr, A. Feiguin, S. Yunoki, E. Dagotto, Physical Review Letters.84 (2000) 5568.
    [83]M. Fath, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, J. A. Mydosh, Science.285 (1999) 1540.
    [84]A. Biswas, S. Elizabeth, A. K. Raychaudhuri, H. L. Bhat, Physical Review B.59 (1999) 5368.
    [85]V. N. Smolyaninova, A. Biswas, X. Zhang, K. H. Kim, B. G. Kim, S. W. Cheong, R. L. Greene, Physical Review B.62 (2000) R6093.
    [86]M. Bibes, L. Balcells, S. Valencia, J. Fontcuberta, M. Wojcik, E. Jedryka, S. Nadolski, Physical Review Letters.8706 (2001) 067210.
    [87]C. Renner, G. Aeppli, B. G. Kim, Y. A. Soh, S. W. Cheong, Nature.416 (2002) 518.
    [88]L. W. Zhang, C. Israel, A. Biswas, R. L. Greene, A. de Lozanne, Science.298 (2002) 805.
    [89]C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, J. J. Neumeier, Physical Review Letters.80 (1998) 853.
    [90]P. C. Dai, J. A. Fernandez-Baca, N. Wakabayashi, E. W. Plummer, Y. Tomioka, Y. Tokura, Physical Review Letters.85 (2000) 2553.
    [91]V. Chechersky, A. Nath, C. Michel, M. Hervieu, K. Ghosh, R. L. Greene, Physical Review B-Condensed Matter and Materials Physics.62 (2000) 5316.
    [92]R. H. Hefmer, J. E. Sonier, D. E. MacLaughlin, G. J. Nieuwenhuys, G. M. Luke, Y. J. Uemura, W. Ratcliff Ii, S. W. Cheong, G. Balakrishnan, Physical Review B-Condensed Matter and Materials Physics.63 (2001) 944081.
    [93]B. F. Woodfield, M. L. Wilson, J. M. Byers, Physical Review Letters.78 (1997) 3201.
    [94]A. S. Moskvin, E. V. Zenkov, Y. P. Sukhorukov, E. V. Mostovshchikova, N. N. Loshkareva, A. R. Kaul, O. Y. Gorbenko, Journal of Physics-Condensed Matter.15 (2003) 2635.
    [95]M. M. Savosta, P. Novak, M. Marysko, Z. Jirak, J. Hejtmanek, J. Englich, J. Kohout, C. Martin, B. Raveau, Physical Review B.62 (2000) 9532.
    [96]Y. Q. Ma, W. H. Song, R. L. Zhang, J. M. Dai, J. Yang, J. J. Du, Y. P. Sun, C. Z. Bi, Y. J. Ge, X. G. Qiu, Physical Review B.69 (2004)
    [97]V. Podzorov, M. Uehara, M. E. Gershenson, T. Y. Koo, S. W. Cheong, Physical Review B. 61 (2000) R3784.
    [98]H. T. Hardner, M. B. Weissman, M. Jaime, R. E. Treece, P. C. Dorsey, J. S. Horwitz, D. B. Chrisey, Journal of Applied Physics.81 (1997) 272.
    [99]B. Raquet, A. Anane, S. Wirth, P. Xiong, S. von Molnar, Physical Review Letters.84 (2000) 4485.
    [100]G. B. Alers, A. P. Ramirez, S. Jin, Applied Physics Letters.68 (1996) 3644.
    [101]R. D. Merithew, M. B. Weissman, F. M. Hess, P. Spradling, E. R. Nowak, J. O'Donnell, J. N. Eckstein, Y. Tokura, Y. Tomioka, Physical Review Letters.84 (2000) 3442.
    [102]A. Anane, B. Raquet, S. von Molnar, L. Pinsard-Godart, A. Revcolevschi, Journal of Applied Physics.87 (2000) 5025.
    [103]V. Podzorov, M. E. Gershenson, M. Uehara, S. W. Cheong, Physical Review B.6411 (2001)
    [104]D. D. Sarma, D. Topwal, U. Manju, S. R. Krishnakumar, M. Bertolo, S. La Rosa, G. Cautero, T. Y. Koo, P. A. Sharma, S. W. Cheong, A. Fujimori, Physical Review Letters.93 (2004)
    [105]M. Viret, F. Ott, J. P. Renard, H. Glattli, L. Pinsard-Gaudart, A. Revcolevschi, Physical Review Letters.93 (2004)
    [106]D. Saurel, A. Brulet, A. Heinemann, C. Martin, S. Mercone, C. Simon, Physical Review B.73 (2006)
    [107]J. X. Ma, D. T. Gillaspie, E. W. Plummer, J. Shen, Physical Review Letters.95 (2005)
    [108]M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Physical Review Letters.61 (1988) 2472.
    [109]S. S. P. Parkin, N. More, K. P. Roche, Physical Review Letters.64 (1990) 2304.
    [110]S. S. P. Parkin, B. R. York, Applied Physics Letters.62 (1993) 1842.
    [111]C. Yu, S. Li, W. Lai, M. Yan, Y. Wang, Z. Wang, Physical Review B.52 (1995) 1123.
    [112]W. P. Pratt, Jr., S. F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder, J. Bass, Physical Review Letters.66 (1991) 3060.
    [113]S. S. P. Parkin, Z. G. Li, D. J. Smith, Applied Physics Letters.58 (1991) 2710.
    [114]S. S. P. Parkin, R. Bhadra, K. P. Roche, Physical Review Letters.66 (1991) 2152.
    [115]M. Julliere, Physics Letters A.54 (1975) 225.
    [116]M. Coey, Nature Materials.4 (2005) 9.
    [117]Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, H. Ohno, Applied Physics Letters.90 (2007)
    [118]G. H. Jonker, J. H. Van Santen, Physica.16 (1950) 337.
    [119]K. Chahara, T. Ohno, M. Kasai, Y. Kozono, Applied Physics Letters.63 (1993) 1990.
    [120]R. Vonhelmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Physical Review Letters.71 (1993) 2331.
    [121]S. Jin, T. H. Tiefel, M. Mccormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science. 264(1994)413.
    [122]M. Mccormack, S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Phillips, R. Ramesh, Applied Physics Letters.64 (1994) 3045.
    [123]A. D. Giddings, O. N. Makarovsky, M. N. Khalid, S. Yasin, K. W. Edmonds, R. P. Campion, J. Wunderlich, T. Jungwirth, D. A. Williams, B. L. Gallagher, C. T. Foxon, New Journal of Physics.10 (2008)
    [124]K. K. Choi, T. Taniyama, Y. Yamazaki, Journal of Applied Physics.90 (2001) 6145.
    [125]M. Egilmez, M. M. Saber, A. I. Mansour, R. Ma, K. H. Chow, J. Jung, Applied Physics Letters.93 (2008) 182505.
    [126]Y. Y. Yuzhelevski, Y., V. Markovich, G. Jung, G. Gorodetsky, Journal of Applied Physics.109(2011)063908.
    [127]J. B. Yau, X. Hong, A. Posadas, C. H. Ahn, W. Gao, E. Airman, Y. Bason, L. Klein, M. Sidorov, Z. Krivokapic, Journal of Applied Physics.102 (2007) 103901.
    [128]M. L. Tian, S. Yue, S. Y. Li, Y. H. Zhang, J. Shi, Journal of Applied Physics.89 (2001) 3408.
    [129]N. Garcia, M. Mufioz, Y. W. Zhao, Physical Review Letters.82 (1999) 2923.
    [130]H. D. Chopra, S. Z. Hua, Physical Review B.66 (2002) 020403.
    [131]S. Z. Hua, H. D. Chopra, Physical Review B.67 (2003) 060401.
    [132]H. Y. Hwang, S. W. Cheong, N. P. Ong, B. Batlogg, Physical Review Letters.77 (1996) 2041.
    [133]Z. Y. Zhou, G. S. Luo, F. Y. Jiang, Journal of Magnetism and Magnetic Materials.321 (2009) 1919.
    [134]N. D. Mathur, G. Burnell, S. P. Isaac, T. J. Jackson, B. S. Teo, J. L. MacManusDriscoll, L. F. Cohen, J. E. Evetts, M. G. Blamire, Nature.387 (1997) 266.
    [135]K. Steenbeck, T. Eick, K. Kirsch, K. ODonnell, E. Steinbeiss, Applied Physics Letters. 71(1997)968.
    [136]R. Gross, L. Alff, B. Buchner, B. H. Freitag, C. Hofener, J. Klein, Y. F. Lu, W. Mader, J. B. Philipp, M. S. R. Rao, P. Reutler, S. Ritter, S. Thienhaus, S. Uhlenbruck, B. Wiedenhorst, Journal of Magnetism and Magnetic Materials.211 (2000) 150.
    [137]R. Gross, C. Hofener, J. B. Philipp, J. Klein, L. Alff, A. Marx, B. Buchner, Europhysics Letters.50 (2000) 681.
    [138]R. Mathieu, P. Svedlindh, R. Gunnarsson, Z. G. Ivanov, Physical Review B.63 (2001) 132407.
    [139]P. Lyu, D. Y. Xing, J. M. Dong, Journal of Magnetism and Magnetic Materials.202 (1999)405.
    [140]P. Lyu, Journal of Magnetism and Magnetic Materials.268 (2004) 251.
    [141]H. S. Wang, E. Wertz, Y. F. Hu, Q. Li, Journal of Applied Physics.87 (2000) 6749.
    [142]H. S. Wang, Q. Li, K. Liu, C. L. Chien, Applied Physics Letters.74 (1999) 2212.
    [143]H. S. Wang, Q. Li, Applied Physics Letters.73 (1998) 2360.
    [144]J. O'Donnell, M. Onellion, M. S. Rzchowski, J. N. Eckstein, I. Bozovic, Physical Review B.55(1997)5873.
    [145]J. N. Eckstein, I. Bozovic, J. ODonnell, M. Onellion, M. S. Rzchowski, Applied Physics Letters.69(1996)1312.
    [146]J. O'Donnell, M. S. Rzchowski, J. N. Eckstein, I. Bozovic, Applied Physics Letters.72 (1998) 1775.
    [147]A. Gupta, G. Q. Gong, G. Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang, V. P. Dravid, J. Z. Sun, Physical Review B.54 (1996) 15629.
    [148]X. W. Li, A. Gupta, G. Xiao, G. Q. Gong, Applied Physics Letters.71 (1997) 1124.
    [149]L. F. Wang, Z. Huang, X. L. Tan, P. F. Chen, B. W. Zhi, G. M. Li, W. B. Wu, Applied Physics Letters.97 (2010) 242507.
    [150]J. Shen, T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. F. Yin, Nature Physics.5 (2009) 885.
    [151]E. W. Plummer, R. W. Li, H. B. Wang, X. W. Wang, X. Z. Yu, Y. Matsui, Z. H. Cheng, B. G. Shen, J. D. Zhang, Proceedings of the National Academy of Sciences of the United States of America.106 (2009) 14224.
    [152]A. Miniotas, A. Vailionis, E. B. Svedberg, U. O. Karlsson, Journal of Applied Physics. 89(2001)2134.
    [153]A. M. Haghiri-Gosnet, J. P. Renard, Journal of Physics D-Applied Physics.36 (2003) R127.
    [154]Y. Ogimoto, M. Izumi, T. Manako, T. Kimura, Y. Tomioka, M. Kawasaki, Y. Tokura, Applied Physics Letters.78 (2001) 3505.
    [155]I. C. Infante, F. Sanchez, J. Fontcuberta, M. Wojcik, E. Jedryka, S. Estrade, F. Peiro, J. Arbiol, V. Laukhin, J. P. Espinos, Physical Review B.76 (2007) 224415.
    [156]J. Wang, F. X. Hu, R. W. Li, J. R. Sun, B. G. Shen, Applied Physics Letters.96 (2010) 052501.
    [157]J. Gao, E. J. Guo, H. B. Lu, Applied Physics Letters.98 (2011) 081903.
    [158]Z. Fang, I. V. Solovyev, K. Terakura, Physical Review Letters.84 (2000) 3169.
    [159]F. S. Razavi, G. Gross, H. U. Habermeier, O. Lebedev, S. Amelinckx, G. Van Tendeloo, A. Vigliante, Applied Physics Letters.76 (2000) 155.
    [160]S. I. Khartsev, P. Johnsson, A. M. Grishin, Journal of Applied Physics.87 (2000) 2394.
    [161]M. Izumi, Y. Konishi, T. Nishihara, S. Hayashi, M. Shinohara, M. Kawasaki, Y. Tokura, Applied Physics Letters.73 (1998) 2497.
    [162]B. Vengalis, A. Maneikis, F. Anisimovas, R. Butkute, L. Dapkus, A. Kindurys, Journal of Magnetism and Magnetic Materials.211 (2000) 35.
    [163]R. B. Praus, B. Leibold, G. M. Gross, H. U. Habermeier, Applied Surface Science.138 (1999)40.
    [164]T. Kanki, H. Tanaka, T. Kawai, Physical Review B.64 (2001)
    [165]A. Sadoc, B. Mercey, C. Simon, D. Grebille, W. Prellier, M.-B. Lepetit, Physical Review Letters.104 (2010) 046804.
    [166]Z. Fang, K. Terakura, Journal of Physics-Condensed Matter.14 (2002) 3001.
    [167]M. J. Calderon, A. J. Millis, K. H. Ahn, Physical Review B.68 (2003)
    [168]K. H. Ahn, T. Lookman, A. R. Bishop, Nature.428 (2004) 401.
    [169]K. H. Ahn, T. Lookman, A. R. Bishop, Journal of Applied Physics.99 (2006)
    [170]Y. Wakabayashi, D. Bizen, H. Nakao, Y. Murakami, M. Nakamura, Y. Ogimoto, K. Miyano, H. Sawa, Physical Review Letters.96 (2006) 017202.
    [171]Y. Ogimoto, M. Nakamura, N. Takubo, H. Tamaru, M. Izumi, K. Miyano, Physical Review B.71 (2005) 060403.
    [172]M. Nakamura, Y. Ogimoto, H. Tamaru, N. Izumi, K. Miyano, Applied Physics Letters. 86 (2005) 182504.
    [173]K. Shibuya, T. Ohnishi, M. Lippmaa, M. Kawasaki, H. Koinuma, Applied Physics Letters.84(2004)2142.
    [174]C. U. Jung, H. Yamada, M. Kawasaki, Y. Tokura, Applied Physics Letters.84 (2004) 2590.
    [175]G. Y. Gao, S. W. Jin, W. B. Wu, Applied Physics Letters.90 (2007) 012509.
    [1]J. B. Goodenough, A. L. Loeb, Physical Review.98 (1955) 391.
    [2]J. B. Goodenough, Reports on Progress in Physics.67 (2004) 1915.
    [3]A. Goyal, M. Rajeswari, R. Shreekala, S. E. Lofland, S. M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan, Applied Physics Letters.71 (1997) 2535.
    [4]Z. Yang, L. Sun, C. Ke, X. Chen, W. Zhu, O. Tan, Journal of Crystal Growth.311 (2009) 3289.
    [1]Z. X. Shen, K. J. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M. A. Kelly, Science.329(2010)190.
    [2]J. Shen, T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. F. Yin, Nature Physics.5 (2009) 885.
    [3]E. Dagotto, Science.309 (2005) 257.
    [4]Y. Murakami, H. Kasai, J. J. Kim, S. Mamishin, D. Shindo, S. Mori, A. Tonomura, Nature Nanotechnology.5 (2010) 37.
    [5]X. Z. Yu, Y. Tomioka, T. Asaka, K. Kimoto, T. Arima, Y. Tokura, Y. Matsui, Applied Physics Letters.94 (2009) 082509.
    [6]X. Z. Yu, R. W. Li, T. Asaka, K. Ishizuka, K. Kimoto, Y. Matsui, Applied Physics Letters. 95 (2009) 092504.
    [7]X. Z. Yu, R. Mathieu, T. Arima, Y. Kaneko, J. P. He, M. Uchida, T. Asaka, T. Nagai, K. Kimoto, A. Asamitsu, Y. Matsui, Y. Tokura, Physical Review B.75 (2007) 174441.
    [8]D. Okuyama, M. Nakamura, Y. Wakabayashi, H. Itoh, R. Kumai, H. Yamada, Y. Taguchi, T. Arima, M. Kawasaki, Y. Tokura, Applied Physics Letters.95 (2009) 152502.
    [9]Y. Wakabayashi, D. Bizen, H. Nakao, Y. Murakami, M. Nakamura, Y. Ogimoto, K. Miyano, H. Sawa, Physical Review Letters.96 (2006) 017202.
    [10]L. F. Wang, Z. Huang, X. L. Tan, P. F. Chen, B. W. Zhi, G. M. Li, W. B. Wu, Applied Physics Letters.97 (2010) 242507.
    [111]Z. Huang, L. F. Wang, X. L. Tan, P. F. Chen, G. Y. Gao, W. B. Wu, Journal of Applied Physics.108(2010)083912.
    [12]I. C. Infante, F. Sanchez, J. Fontcuberta, M. Wojcik, E. Jedryka, S. Estrade, F. Peiro, J. Arbiol, V. Laukhin, J. P. Espinos, Physical Review B.76 (2007) 224415.
    [13]M. Egilmez, M. M. Saber, A. I. Mansour, R. Ma, K. H. Chow, J. Jung, Applied Physics Letters.93 (2008) 182505.
    [14]Y. Y. Yuzhelevski, Y., V. Markovich, G. Jung, G. Gorodetsky, Journal of Applied Physics. 109(2011)063908.
    [15]J. B. Yau, X. Hong, A. Posadas, C. H. Ann, W. Gao, E. Altaian, Y. Bason, L. Klein, M. Sidorov, Z. Krivokapic, Journal of Applied Physics.102 (2007) 103901.
    [16]E. W. Plummer, R. W. Li, H. B. Wang, X. W. Wang, X. Z. Yu, Y. Matsui, Z. H. Cheng, B. G. Shen, J. D. Zhang, Proceedings of the National Academy of Sciences of the United States of America.106(2009) 14224.
    [17]A. Goyal, M. Rajeswari, R. Shreekala, S. E. Lofland, S. M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan, Applied Physics Letters.71 (1997) 2535.
    [18]Z. Yang, L. Sun, C. Ke, X. Chen, W. Zhu, O. Tan, Journal of Crystal Growth.311 (2009) 3289.
    [19]S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky, I. O. Troyanchuk, H. Szymczak, Journal of Physics-Condensed Matter.15 (2003) 1783.
    [20]Z. Fang, I. V. Solovyev, K. Terakura, Physical Review Letters.84 (2000) 3169.
    [1]E. Dagotto, Science.309 (2005) 257.
    [2]Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai, H. Kuwahara, M. Kawasaki, K. Terakura, Y. Tokura, Journal of the Physical Society of Japan.68 (1999) 3790.
    [3]W. Prellier, P. Lecoeur, B. Mercey, Journal of Physics-Condensed Matter.13 (2001) R915.
    [4]F. Yang, N. Kemik, M. D. Biegalski, H. M. Christen, E. Arenholz, Y. Takamura, Applied Physics Letters.97 (2010) 092503.
    [5]A. M. Haghiri-Gosnet, J. Wolfman, B. Mercey, C. Simon, P. Lecoeur, M. Korzenski, M. Hervieu, R. Desfeux, G. Baldinozzi, Journal of Applied Physics.88 (2000) 4257.
    [6]M. Bibes, L. Balcells, S. Valencia, J. Fontcuberta, M. Wojcik, E. Jedryka, S. Nadolski, Physical Review Letters.8706 (2001) 067210.
    [7]A. Biswas, M. Rajeswari, R. C. Srivastava, T. Venkatesan, R. L. Greene, Q. Lu, A. L. de Lozanne, A. J. Millis, Physical Review B.63 (2001) 184424.
    [8]J. Klein, J. B. Philipp, G. Carbone, A. Vigliante, L. Alff, R. Gross, Physical Review B.66 (2002)052414.
    [9]I. C. Infante, F. Sanchez, J. Fontcuberta, M. Wojcik, E. Jedryka, S. Estrade, F. Peiro, J. Arbiol, V. Laukhin, J. P. Espinos, Physical Review B.76 (2007) 224415.
    [10]J. Wang, F. X. Hu, R. W. Li, J. R. Sun, B. G. Shen, Applied Physics Letters.96 (2010) 052501.
    [111]Z. X. Cheng, X. L. Wang, S. X. Dou, M. Osada, H. Kimura, Applied Physics Letters.99 (2011)
    [12]Y. Ogimoto, M. Izumi, T. Manako, T. Kimura, Y. Tomioka, M. Kawasaki, Y. Tokura, Applied Physics Letters.78 (2001) 3505.
    [13]J. Gao, E. J. Guo, H. B. Lu, Applied Physics Letters.98 (2011) 081903.
    [14]X. Z. Yu, R. Mathieu, T. Arima, Y. Kaneko, J. P. He, M. Uchida, T. Asaka, T. Nagai, K. Kimoto, A. Asamitsu, Y. Matsui, Y. Tokura, Physical Review B.75 (2007) 174441.
    [15]X. Z. Yu, R. W. Li, T. Asaka, K. Ishizuka, K. Kimoto, Y. Matsui, Applied Physics Letters. 95 (2009) 092504.
    [16]X. Z. Yu, Y. Tomioka, T. Asaka, K. Kimoto, T. Arima, Y. Tokura, Y. Matsui, Applied Physics Letters.94 (2009) 082509.
    [17]Y. Murakami, H. Kasai, J. J. Kim, S. Mamishin, D. Shindo, S. Mori, A. Tonomura, Nature Nanotechnology.5 (2010) 37.
    [18]Z. X. Shen, K. J. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M. A. Kelly, Science.329 (2010) 190.
    [19]Y. T. Tsai, W. J. Chang, C. C. Hsieh, C. W. Luo, K. H. Wu, T. M. Uen, J. Y. Juang, J. Y. Lin, Journal of Applied Physics.105 (2009) 013705.
    [20]B. Kim, D. Kwon, T. Yajima, C. Bell, Y. Hikita, B. G. Kim, H. Y. Hwang, Applied Physics Letters.99(2011)092513.
    [21]Y. Zhizhen, G. Guanyin, H. Zhen, J. Xingli, L. Qinzhuang, W. Wenbin, Journal of Physics D: Applied Physics. (2009) 125002 (5 pp.).
    [22]Z. Huang, L. F. Wang, X. L. Tan, P. F. Chen, G. Y. Gao, W. B. Wu, Journal of Applied Physics.108 (2010) 083912.
    [23]D. Okuyama, M. Nakamura, Y. Wakabayashi, H. Itoh, R. Kumai, H. Yamada, Y. Taguchi, T. Arima, M. Kawasaki, Y. Tokura, Applied Physics Letters.95 (2009) 152502.
    [24]J. Shen, T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. F. Yin, Nature Physics.5 (2009) 885.
    [25]Y. Zhang-Steenwinkel, J. Beckers, A. Bliek, Applied Catalysis a-General.235 (2002) 79.
    [26]D. S. Shang, L. D. Chen, Q. Wang, W. D. Yu, X. M. Li, J. R. Sun, B. G. Shen, Journal of Applied Physics.105 (2009)063511.
    [27]W. D. Wu, C. Israel, N. Hur, S. Park, S. W. Cheong, A. De Lozanne, Nature Materials.5 (2006) 881.
    [28]P. A. Sharma, S. El-Khatib, I. Mihut, J. B. Berts, A. Migliori, S. B. Kim, S. Guha, S. W. Cheong, Physical Review B.78 (2008)
    [29]L. Ghivelder, R. S. Freitas, M. G. das Virgens, M. A. Continentino, H. Martinho, L. Granja, M. Quintero, G. Leyva, P. Levy, F. Parisi, Physical Review B.69 (2004) 214414.
    [30]L. F. Wang, Z. Huang, X. L. Tan, P. F. Chen, B. W. Zhi, G. M. Li, W. B. Wu, Applied Physics Letters.97 (2010) 242507.
    [1]A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. H. Sun, E. E. Fullerton, Journal of Physics D-Applied Physics.35 (2002) R157.
    [2]R. Wood, M. Williams, A. Kavcic, J. Miles, leee Transactions on Magnetics.45 (2009) 917.
    [3]L. Mechin, G. J. Gerritsma, J. G. Lopez, Physica C-Superconductivity and Its Applications. 324 (1999) 47.
    [4]S. M. Liu, X. B. Zhu, J. Yang, B. C. Zhao, Z. G. Sheng, W. H. Song, J. M. Dai, Y. P. Sun, Physica B-Condensed Matter.353 (2004) 238.
    [5]W. C. Goh, K. Yao, C. K. Ong, Journal of Applied Physics.97 (2005) 073905.
    [6]W. C. Goh, K. Yao, C. K. Ong, Applied Physics Letters.87 (2005) 072906.
    [7]X. Y. Zhou, J. Miao, J. Y. Dai, H. L. W. Chan, C. L. Choy, Y. Wang, Q. Li, Applied Physics Letters.90(2007)012902.
    [8]P. Perna, L. Mechin, M. P. Chauvat, P. Ruterana, C. Simon, U. S. di Uccio, Journal of Physics-Condensed Matter.21 (2009) 306005.
    [9]P. K. Muduli, G. Singh, R. Sharma, R. C. Budhani, Journal of Applied Physics.105 (2009) 113910.
    [10]S. Jin, T. H. Tiefel, M. Mccormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science.264 (1994)413.
    [11]P. Schiffer, A. P. Ramirez, W. Bao, S. W. Cheong, Physical Review Letters.75 (1995) 3336.
    [12]H. Y. Hwang, S. W. Cheong, N. P. Ong, B. Batlogg, Physical Review Letters.77 (1996) 2041.
    [13]Z. Y. Zhou, G. S. Luo, F. Y. Jiang, Journal of Magnetism and Magnetic Materials.321 (2009) 1919.
    [14]N. D. Mathur, G. Burnell, S. P. Isaac, T. J. Jackson, B. S. Teo, J. L. MacManusDriscoll, L. F. Cohen, J. E. Evetts, M. G. Blamire, Nature.387 (1997) 266.
    [15]K. Steenbeck, T. Eick, K. Kirsch, K. ODonnell, E. Steinbeiss, Applied Physics Letters.71 (1997)968.
    [16]R. Gross, L. Alff, B. Buchner, B. H. Freitag, C. Hofener, J. Klein, Y. F. Lu, W. Mader, J. B. Philipp, M. S. R. Rao, P. Reutler, S. Ritter, S. Thienhaus, S. Uhlenbruck, B. Wiedenhorst, Journal of Magnetism and Magnetic Materials.211 (2000) 150.
    [17]R. Gross, C. Hofener, J. B. Philipp, J. Klein, L. Alff, A. Marx, B. Buchner, Europhysics Letters.50(2000)681.
    [18]R. Mathieu, P. Svedlindh, R. Gunnarsson, Z. G. Ivanov, Physical Review B.63 (2001) 132407.
    [19]J. Li, P. Wang, J. Y. Xiang, X. H. Zhu, W. Peng, Y. F. Chen, D. N. Zheng, Z. W. Li, Applied Physics Letters.86 (2005) 112514.
    [20]R. Shreekala, M. Rajeswari, K. Ghosh, A. Goyal, J. Y. Gu, C. Kwon, Z. Trajanovic, T. Boettcher, R. L. Greene, R. Ramesh, T. Venkatesan, Applied Physics Letters.71 (1997) 282.
    [21]P. Mandal, P. Choudhury, B. Ghosh, Physical Review B.74 (2006) 094421.
    [22]Y. Ogimoto, M. Nakamura, N. Takubo, H. Tamaru, M. Izumi, K. Miyano, Physical Review B.71(2005)060403.
    [23]I. C. Infante, F. Sanchez, J. Fontcuberta, M. Wojcik, E. Jedryka, S. Estrade, F. Peiro, J. Arbiol, V. Laukhin, J. P. Espinos, Physical Review B.76 (2007) 224415.
    [24]F. H. Zhang, Z. Huang, G. Y. Gao, P. F. Chen, L. F. Wang, X. L. Tan, W. B. Wu, Applied Physics Letters.96 (2010) 062507.
    [25]A. Gupta, G. Q. Gong, G. Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang, V. P. Dravid, J. Z. Sun, Physical Review B.54 (1996) 15629.
    [26]P. Lyu, D. Y. Xing, J. M. Dong, Journal of Magnetism and Magnetic Materials.202 (1999) 405.
    [27]P. Lyu, Journal of Magnetism and Magnetic Materials.268 (2004) 251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700