石墨烯纳米器件的量子输运研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从2004年Novoselov等人成功制备单层石墨(石墨烯,Graphene)以来,石墨烯以其独特的电学性质,如Klein隧穿,狄拉克颤动,半整数霍尔效应等引起了科学家们的广泛关注.在科技迅猛发展的今天,石墨烯已经成为一种新型的碳纳米材料,并且由其制备出了许多纳米尺寸的石墨器件,如量子结,双层石墨结构,石墨烯纳米带(graphene nanoribbons, GNRs)等,它们具有巨大的应用前景.石墨烯纳米带作为一种准一维碳纳米材料,几何结构是决定电子结构的主要因素,在实际应用中具有强烈的边界效应和复杂的电学性质,因此对基于石墨烯纳米带的器件研究具有重要的意义。
     通过引入各种无序(包含缺陷和掺杂以及其他手段)来研究石墨烯纳米带的电子以及输运性质,成为了当前研究的热点话题。本文主要利用基于非平衡格林函数与密度泛函理论相结合的材料模拟软件ATK,研究了氮/硼掺杂的异质结的奇异的电荷输运性质,结合自旋密度泛函理论研究了全碳基的隧穿磁阻装置,并研究了一种新型的电压控制的无自旋轨道耦合的双向纯自旋流开关。
     对氮/硼掺杂的异质结的电荷输运性质的研究表明,两种直接连接或者有隔离区域的掺杂的扶手椅型异质结不仅在正负偏压下都具有较大峰谷比的负微分电阻现象,而且这种两种异质结也都出现了比较大整流系数的类二极管行为。我们的分析表明共振峰随着外加偏压的变化有很大变化,而这对异质结A和B的非线性行为有很重要的影响,同时我们也看到MPSH能隙在系统A的奇异输运性质中也扮演了很重要的角色。
     对于由部分打开的碳纳米管(石墨烯)和金属碳纳米管组成的全碳基的隧穿磁阻装置,我们研究了其巨磁阻效应。在这种部分打开碳纳米管边界碳原子为非对称饱和的结构中,其隧穿磁阻(TMR)随着外加偏压的变化呈现出不规则的振荡并逐渐衰减至0,同时在振荡过程中我们发现了正负TMR甚至出现了TMR反转现象。我们的分析表明这种奇异的隧穿磁阻现象与部分打开碳纳米管边界碳原子的非对称饱和结构有很大关系。同时我们发现这种装置的电子态受外加电压的影响很大。
     最后我们基于一种新型的掺杂的锯齿型自旋无能隙石墨烯纳米带构造了一种电压可以控制的不包含自旋轨道耦合的纯自旋流双向开关——通过改变电压的方向,我们可以得到100%自旋极化的方向相反的纯自旋流。我们从能带和投影自洽哈密顿本征值(MPSH)分析了出现这种现象的机制。由于无能隙自旋半导体在费米面附近的电子激发是100%自旋极化,并且不需要激发能,而且这种无能隙自旋半导体的载流子的移动速度很快,所以这种纯自旋流开关在自旋电子学、量子信息存储、量子计算等方面有很重要的应用。
Since Novoselov et al. successfully prepared the single-layer graphite(Graphene) in 2004. Graphene has arosed scientists'wide attention due to the unique electrical properties, such as Klein tunneling, Zitterbewegung and half an integer hall effect. In the rapid development of technology today, graphene become a new kind of carbon nano materials, and make out many nanometer sized graphene devices by it, such as quantum junction, double layer graphene structure, graphene nanoribbons(GNRs) etc, which has great application prospect. Graphene as a kind of quasi-one-dimensional nanomaterials, geometric structure is the main factors to determine its electronic structure, and it has strong boundary effect and complex electrical properties in practical application,therfore, the research on the device based on graphene has the vital significance.
     Through the introduction of various disorder (including defect and doping and other ways) to study the electronics and transport properties of graphene nanoribbons become the hot topic in the current research. This paper mainly ues material simulation software ATK which based on the non-balance green function combined with density functional theory to study the singular charge transport properties of nitrogen/boron doped heterojunction, and combined with spin density functional theory to study full carbon's tunneling of magnetic resistance device, and to study on a new type of no spin-orbital coupling two-way pure spin flow switch controled by voltage.
     The research on the charge transport properties of nitrogen/boron doped heterojunctions show that the doped armchair heterojunctio which connect directly or have the separate region not only in positive and negative bias possess 1 negative differential resistance which have larger peak to valley value, and the two heterojunction also appeared diode-like phenomenon that rectifier coefficient is very large. Our analysis shows that the resonance peak chang a lot with external bias's change, which have very important influence on the nonlinear behavior for heterojunction A and B, and we also see MPSH gap also play a very important role for the singular transport properties of the system of A.
     we studied the giant magnetoresistance effect on the all carbon tunneling of magnetic resistance device which composed by partially open carbon nanotubes (graphene) and metal carbon nanotubes. In this partilly open carbon nanotubes structure which edge carbon atoms asymmetric saturated, its tunneling of magnetic resistance (TMR) as presents irregular oscillation with the change of external bias and gradually attenuation to 0,during oscillation process we found positive and negative TMR even appeared TMR reversal phenomenon. Our analysis shows that this bizarre tunneling reluctance phenomenon has the close relations with the asymmetric saturated structure of the partially open carbon nanotubes. And we find that the electronic states of this device are deeply influenced by the external voltage.
     Finally we make a pure spin flow two-way switch which have no spin-orbital coupling and controled by voltage based on a new type of doped zigzag spin gapless graphene nanoribbons(GNRs) -- through change voltage direction, we can get 100% spin polarization direction opposite pure spin flow. We analyzes the mechanism of the phenomenon through energy bands, molecular projected self-consistent Hamiltonian (MPSH) eigenvalues. Due 100% spin polarization of the excited electrons near the Feimi level, an don't need the energy of the excite, also the carriers of this spin gapless semiconductor can travel quickly, so this kind of pure spin flow switch have important application in spintronics, quantum information storage, quantum computing.
引文
[I]Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY) (1972).
    [2]Andreoni, W., The Physics of Fullerene-Based and Fullerene-Related Materials (Springer, Berlin) (2000)
    [3]Castro Neto, A. H., F. Guinea, and N. M. R. Peres, Phys. World 19,33 (2006a).
    [4]Saito, R., G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London) (1998).
    [5]Charlier, J.-C., X. Blase, and S. Roche, Rev. Mod. Phys.79,677 (2007).
    [6]Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Gregorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films Science 306,666 (2004).
    [7]Geim, A. K., and A. H. MacDonald, Graphene:Exploring carbon flatland Phys. Today 60,35 (2007)
    [8]Abergel, D. S. L., A. Russell, and V. I. Fal'ko, Visibility of graphene flakes on a dielectric substrate Appl. Phys. Lett.91,063125 (2007).
    [9]Blake, P., K. S. Novoselov, A. H. Castro Neto, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, and E. W. Hill, Making graphene visible Appl. Phys. Lett.91,063124 (2007).
    [10]Casiraghi, C., A., Hartschuh. E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, Rayleigh imaging of graphene and graphene layers Nano Lett.7,2711 (2007).
    [11]Phillips, P., Ann. Phys. (N.Y.) 321,1634 (2006).
    [12]Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY) (1972).
    [13]Maple, M. B., High-temperature superconductivity, Journal of magnetism and magnetic materials 177:18 (1998).
    [14]Wallace PR, The band theory of graphite, Phys. Rev.71:622 (1947).
    [15]Mcclure JW, Band structure of graphite and dehaas-vanalphen effect, Phys. Rev. 108:612 (1957).
    [16]Slonczewski JC, Band structure of graphite, Phys. Rev.109:272 (1958).
    [17]Boyle WS, Band structure and infrared absorption of graphite, Phys. Rev. 111:782 (1958).
    [18]Mcclure JW, Analysis of multicarrier galvanomagnetic data for graphite, Phys. Rev. 112:715(1958).
    [19]Spry WJ, Dehaas-vanalphen effect in graphite between 3 and 85 kilogauss, Phys. Rev.120:826(1960).
    [20]Schroeder PR, Location of electron and hole carriers in graphite from laser magnetoreflection data, Phys. Rev. Lett.20:1292 (1968).
    [21]McClure, J. W., Physics of Semi-Metals and Narrow-Gap Semiconductors, edited by D. L. Carter and R. T. Bate (Pergamon, New York) (1971).
    [22]RYDBERG H, Van der Waals density functional for layered structures, Phys. Rev. Lett.91:ARTN 126402 (2003).
    [23]Castro Neto, A. H., F. Guinea, and N. M. R. Peres, Phys. World 19,33 (2006a).
    [24]Katsnelson, M. I., and K. S. Novoselov, Graphene:New bridge between condensed matter physics and quantum electrodynamics Solid State Commun.143,3 (2007).
    [25]Gusynin, V. P., and S. G. Sharapov, Unconventional integer quantum Hall effect in graphene Phys. Rev. Lett.95,146801 (2005).
    [26]GUINEA F, Electronic states and Landau levels in graphene stacks, Phys. Rev. B 73, 245426 (2006).
    [27]Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438,197 (2005).
    [28]Zhang, Y., Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438,201(2005).
    [29]Stone. M., Quantum Hall Effect (World Scientific, Singapore) (1992).
    [30]Novoselov, K. S., Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-temperature quantum hall effect in graphene, Science 315,1379 (2007).
    [31]Calogeracos, A., and N. Dombey. History and physics of the Klein paradox Contemp. Phys.40,313(1999).
    [32]Itzykson, C., and J.-B. Zuber, Quantum Field Theory (Dover, New York)(2006).
    [33]Lee, P. A., and T. V. Ramakrishnan, Rev. Mod. Phys.57,287 (1985)
    [34]Meyer, J. C., A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, The structure of suspended graphene sheets, Nature 446,60 (2007).
    [35]Nelson, D., D. R. Piran, and S. Weinberg, Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore) (2004).
    [36]Fauser, B., J. Tolksdorf. and E. Zeidler, Quantum Gravity (Birkhauser, Basel) (2007).
    [37]Peres, N. M. R., A. H. Castro Neto, and F. Guinea, Conductance quantization in mesoscopic graphene, Phys. Rev. B 73,195411 (2006).
    [38]Katsnelson, M. I., Conductance quantization in graphene nanoribbons:adiabatic approximation, Eur. Phys. J. B 57,225 (2007).
    [39]Nakada, K., M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons:Nanometer size effect and edge shape dependence, Phys. Rev. B 54,17954(1996)
    [40]Wakabayashi, K., M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59,8271(1999)
    [41]Peres, N. M. R., F. Guinea, and A. H. Castro Neto, Electronic properties of disordered two-dimensional carbon, Phys. Rev. B 73,125411 (2006).
    [42]Akhmerov, A. R., and C. W. J. Beenakker, Boundary conditions for Dirac fermions on a terminated honeycomb lattice, Phys. Rev. B 77,085423 (2008).
    [43]Rycerz, A., J. Tworzydlo, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys.3,172 (2007).
    [44]Morozov, S., K. Novoselov, M. Katsnelson, F. Schedin, D. Jiang, and A. K. Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett.97,016801 (2006).
    [45]Recher. P., B. Trauzettel, Y. M. Blaner, C. W. J. Beenakker, and A. F. Morpurgo, Aharonov-Bohm effect and broken valley degeneracy in graphene rings, Phys. Rev. B 76.235404 (2007).
    [46]Russo, S., J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S.Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, e-print arXiv:0711.1508 (2007).
    [47]Cheianov, V. V., and V. I. Fal'ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene, Phys. Rev. B 74,041403 (2006).
    [48]Cheianov, V. V., V. Fal'ko, and B. L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p-n junctions, Science 315,1252 (2007).
    [49]Huard, B., J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett.98,236803 (2007).
    [50]Lemme, M. C., T. J. Echtermeyer, M. Baus, and H. Kurz, A graphene field-effect device, IEEE Electron Device Lett.28,282 (2007).
    [51]Tworzydlo, J., I. Snyman, A. R. Akhmerov,Valley-isospin dependence of the quantum Hall effect in a graphene p-n junction, Phys. Rev. B 76,035411 (2007).
    [52]Williams, J. R., L. DiCarlo, and C. M. Marcus, Quantum hall effect in a gate-controlled p-n junction of graphene, Science 317,638 (2007).
    [53]Fogler, M. M., L. I. Glazman, D. S. Novikov, and B. I. Shklovskii, Effect of disorder on a graphene p-n junction, Phys. Rev. B 77,075420 (2008).
    [54]Zhang, L. M., and M. M. Fogler, Nonlinear screening and ballistic transport in a graphene p-n junction, Phys. Rev. Lett.100,116804 (2008).
    [55]Ossipov, A., M. Titov, and C. W. J. Beenakker, Reentrance effect in a graphene n-p-n junction coupled to a superconductor, Phys. Rev. B 75,241401(2007).
    [56]Berry, M. V., and R. J. Modragon, Proc. R. Soc. London, Ser. A 412,53 (1987).
    [57]Miao, F., S. Wijeratne, U. Coskun, Y. Zhang, and C. N. Lau, Phase-coherent transport in graphene quantum billiards, Science 317,1530 (2007).
    [58]Milton Pereira, J., Jr., P. Vasilopoulos, and F. M. Peeters, Nano Lett.7,946 (2007).
    [59]Geim, A. K., and K. S. Novoselov, The rise of graphene, Nature Mater.6,183 (2007).
    [60]Schedin, F., A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Mater.6,652 (2007).
    [61]Wehling, T. O., K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Molecular doping of graphene, Nano Lett.8.173 (2008).
    [62]Cho, S., Y.-F. Chen, and M. S. Fuhrer, Gate-tunable graphene spin valve Appl. Phys. Lett.91,123105(2007).
    [63]Hill, E. W., A. K. Geim, K. Novoselov, F. Schedin, and P. Blake, Graphene spin valve devices IEEE Trans. Magn.42,2694 (2007).
    [64]Ohishi, M., M. Shiraishi, R. Nouchi, T. Nozaki, T. Shinjo, and Y. Suzuki, Spin injection into a graphene thin film at room temperature, Jpn. J. Appl. Phys., Part 2 46, L605 (2007).
    [65]Tombros, N., C. Jozsa, M. Popinciuc, H. T. Jonkman, and J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448,571(2007).
    [66]Calandra, M., and F. Mauri, Electronic structure of heavily doped graphene:The role of foreign atom states, Phys. Rev. B 76,199901(2007).
    [67]Uchoa, B., C.-Y. Lin, and A. H. Castro Neto, Tailoring graphene with metals on top, Phys. Rev. B 77,035420 (2008).
    [68]Schedin, F.. A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Mater.6,652(2007).
    [69]Leenaerts, O., B. Partoens, and F. M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene:A first-principles study, Phys. Rev. B 77,125416 (2008).
    [70]Wehling, T. O., K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Molecular doping of graphene, Nano Lett.8,173 (2008).
    [71]Dresselhaus, M. S., G. Dresselhaus, J. E. Fischer, and M. J. Moran,, Intercalated Graphite (North-Holland, New York) (1983).
    [72]Tanuma, S., and H. Kamimura, Graphite Intercalation Compounds:Progress of Research in Japan (World Scientific, Singapore) (1985).
    [73]Dresselhaus, M. S., and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys.51,1 (2002).
    [74]Martins, T. B., R. H. Miwa, A. J. R. da Silva, and A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons, Phys. Rev. Lett.98,196803 (2007).
    [75]Peres, N. M. R., F. D. Klironomos, S.-W. Tsai, J. R. Santos, J. M. B. Lopes dos Santos, and A. H. Castro Neto, Electron waves in chemically substituted graphene, Europhys. Lett.80.67007 (2007).
    [76]Stephan, O., P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, and P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266,1683.(1994).
    [77]Calizo, I., W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, The effect of substrates on the Raman spectrum of graphene:Graphene-on-sapphire and graphene-on-glass, Appl. Phys. Lett.91,201904 (2007).
    [78]Giovannetti, G., P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van der Brink, Substrate-induced band gap in graphene on hexagonal boron nitride:Ab initio density functional calculations, Phys. Rev. B 76,073103 (2007).
    [79]Varchon, F., R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Electronic structure of epitaxial graphene layers on SiC:Effect of the substrate, Phys. Rev. Lett.99,126805 (2007).
    [80]Das, A., B. Chakraborty, and A. K. Sood, Raman spectroscopy of graphene on different substrates and influence of defectsBull, Mater. Sci.31,579 (2008).
    [81]Faugeras, C., A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. de Heer, Few-layer graphene on SiC, pyrolitic graphite, and graphene:A Raman scattering study, Appl. Phys. Lett.92,011914 (2008).
    [82]Uchoa, B., and A. H. Castro Neto, Superconducting states of pure and doped graphene, Phys. Rev. Lett.98,146801(2007).
    [83]Wallace, P. R., The band theory of graphite, Phys. Rev.71,622(1947).
    [84]Ando, T., T. Nakanishi, and R. Saito, Berry's phase and absence of back scattering in carbon nanotubes,J. Phys. Soc. Jpn.67,2857(1998).
    [85]Dresselhaus, M. S., and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys.51,1(2002).
    [86]Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos. and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438,197 (2005).
    [87]Ashcroft, N. W., and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia) (1976).
    [88]Deacon, R. S., K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Cyclotron resonance study of the electron and hole velocity in graphene monolayers, Phys. Rev. B 76,081406(R) (2007).
    [89]Bena, C., and S. A. Kivelson, Quasiparticle scattering and local density of states in graphite, Phys. Rev. B 72,125432 (2005).
    [90]Hobson, J. P., and W. A. Nierenberg, The statistics of a 2-dimensional, hexagonal net, Phys. Rev.89,662 (1953).
    [91]Saito, R., M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic-structu re of chiral graphene tubules, Appl. Phys. Lett.60,2204 (1992).
    [92]Saito, R., M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic-structu re of graphene tubules based on c-60, Phys. Rev. B 46,1804(1992).
    [93]Semenoff, G. W., Condensed-matter simulation of a 3-dimensional anomaly, Phys. Rev. Lett.53,2449(1984).
    [94]www.quanwise.com
    [95]Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, "Energy Gaps in Graphene Nanoribbons", Physical Review Letters 97,216803 (2006).
    [96]Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. "Half-Metallic Graphene Nanoribbons", Nature 444,347 (2006)
    [97]A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Mater.6,183 (2007).
    [98]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306,666 (2004).
    [99]M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, J. Phys. Soc. Jpn.65,1920 (1996).
    [100]K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Edge state in graphene ribbons:Nanometer size effect and edge shape dependence, Phys. Rev. B 54,17954 (1996).
    [101]K. Wakabayashi, M. Sigrist, M. Fujita. Spin Wave Mode of Edge-Localized Magnetic States in Nanographite Zigzag Ribbons, J. Phys. Soc. Jpn.67,2089 (1998).
    [102]K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59,8271 (1999).
    [103]T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga, Ribbons without Hydrogen-Termination:Electronic Structures and Stabilities, Phys. Rev. B 62, R116349 (2000).
    [104]K. Kusakabe, M. Maruyama, Magnetic nanographite. Phys. Rev. B 67,092406 (2003).
    [105]A. Yamashiro. Y. Shimoi, K. Harigaya, K.Wakabayashi, Spin-and charge-polarized states in nanographene ribbons with zigzag edges, Phys. Rev. B 68,193410 (2003)
    [106]Y.-W. Son, M. L. Cohen, S. G. Louie, Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett.97,216803(2006).
    [107]F. Zhai and K. Chang, Theory of huge tunneling magnetoresistance in graphene, Phys. Rev. B 77.113409(2008).
    [108]X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 319,1229 (2008).
    [109]K. A. Ritter. J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater.8,235 (2009).
    [110]D. L. Carrol, Ph. Redlich, X. Blase, J.-C. Charlier. S. Curran, P. M. Ajayan. S. Roth, M. hle Ru, Ideal Quantum Communication over Noisy Channels:a Quantum Optical Implementation, Phys. Rev. Lett.81,2332 (1997).
    [111]]H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen, Defects, Quasibound States, and Quantum Conductance in Metallic Carbon Nanotubes, Phys. Rev. Lett.84,2917 (1999).
    [112]H. S.Kang, S. Jeong, Nitrogen doping and chirality of carbon nanotubes, Phys. Rev. B 70,233411 (2004).
    [113]Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, M.Morinaga, A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes, Carbon 42,2677 (2004).
    [114]Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon,44,939 (2006)
    [115]T. B. Martins, R. H. Miwa, A. J. R. da Silva, A. Fazzio, Electronic and Transport Properties of Boron-Doped Graphene Nanoribbons, Phys. Rev. Lett.98,196803 (2007).
    [116]T. B. Martins, R. H. Miwa, A. J. R. da Silva, A. Fazzio, sigma- and pi-defects at graphene nanoribbon edges:building spin filters, Nano Lett.8,2293 (2008).
    [117]S. S.Yu, Q. B.Wen, W. T.Zheng, Q. Jiang, First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges, Carbon 46,537 (2008).
    [118]F. Cervantes-Sodi, G. Csa'nyi, S. Piscanec, A. C.Ferrari, Edge-functionalized and substitutionally doped graphene nanoribbons:Electronic and spin properties,Phys. Rev. B 77,165427(2008).
    [119]M. Deifallah, P. F. McMillan, F.Cora, Electronic and Structural Properties of Two-Dimensional Carbon Nitride Graphenes, J. Phys. Chem. C 112,5447 (2008).
    [120]DC Wei, YQ Liu, Y Wang, et al. Identification of Electron Donor States in N-Doped Carbon Nanotubes, NANO LETTERS Vol.9 No.5 1752 (2009).
    [121]Qimin Yan, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, NANO LETTERS Vol.7, No.6 1469 (2007).
    [122]V. Nam Do, P. Dollfus, Negative differential resistance in zigzag-edge graphene nanoribbon junctions, Journal of applied physics 107,063705 (2010).
    [123]Bing Huang, Making a field effect transistor on a single graphene nanoribbon by selective doping, Appl. Phys. Lett.91,253122 (2007).
    [124]Sudipta Dutta, Arun K. Manna, and Swapan K. Pa Intrinsic Half-Metallicity in Modified Graphene Nanoribbons, Phys. Rev. Lett.102,096601 (2009)
    [125]Blanca Biel, X. Blase, Franc,ois Triozon, and Stephan Roche, Anomalous doping effects on charge transport in graphene nanoribbons, Phys. Rev. Lett.102,096803 (2009)
    [126]Zhiyong Wang, Huifang Hu, and Hui Zeng, The electronic properties of graphene nanoribbons with boron/nitrogen codoping, Appl. Phys. Lett.96,243110 (2010).
    [127]Fengnian Xia, Damon B. Farmer, Yu-ming Lin, and Phaedon Avouris, Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Lett.10,715-718 (2010).
    [128]Z. Z. Zhang, K. Chang and K. S. Chan, Resonant tunneling through double-bended graphene nanoribbons, Appl. Phys. Lett.93,062106(2008).
    [129]M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65, 165401 (2002).
    [130]J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63,245407 (2001)
    [131]Troullier, N.; Martins, J. L., Efficient pseudopotentials for plane-wave calculations, Phys. ReV. B 43,1993(1991)
    [132]S. Datta, Electronic Transport in Mesoscopic Systems Cambridge University Press, New York, (1996).
    [133]M. Buttiker, Y. Imry, R. Landauer, S.Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31,6207 (1985).
    [134]J. C. Slonczewski, Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier, Phys. Rev. B 39,6995 (1989).
    [135]J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Phys. Rev. Lett.74,3273 (1995).
    [136]S. S. P. Parkin et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater.3,862 (2004).
    [137]S. Yuasa et al., Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater.3,868 (2004).
    [138]S. A. Wolf et al., Spintronics:A Spin-Based Electronics Vision for the Future, Science 294,1488(2001).
    [139]Kim,W. Y.& Kim, K. S., Prediction of very large values of magnetoresistance in a graphene nanoribbon device, Nature Nanotech.3,408-412 (2008).
    [140]Munoz-Rojas, F., Fernandez-Rossier, J.& Palacios, J. J., Giant Magnetoresistance in Ultrasmall Graphene Based Devices, Phys. Rev. Lett.102,136810 (2009).
    [141]J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. Duan, Very large magnetoresistance in graphene nanoribbons, Nat. Nanotechnol. 5,655(2010).
    [142]D.V. Kosynkin et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,Nature (London) 458,872 (2009).
    [143]L. Jiao et al., Narrow graphene nanoribbons from carbon nanotubes, Nature (London) 458,877 (2009).
    [144]A. G. Cano-Marquez et al., Ex-MWNTs:Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes, Nano Lett.9,1527 (2009).
    [145]H. Santos, L. Chico, and L. Brey, Carbon Nanoelectronics:Unzipping Tubes into Graphene Ribbons, Phys. Rev. Lett.103,086801 (2009).
    [146]B. Wang and J. Wang, First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes, Phys. Rev. B 81,045425(2010).
    [147]K. Kusakabe and M. Maruyama, Magnetic nanographite, Phys. Rev. B 67,092406 (2003).
    [148]B. Wang, J. Wang, and H. Guo, Ab initio calculation of transverse spin current in graphene nanostructures, Phys. Rev. B 79,165417 (2009).
    [149]L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Chaotic dirac billiard in graphene quantum dots, Science 320,356 (2008)
    [150]J. M. D. Teresa, A. Barthe'le'my, A. Fert, J. P. Contour, R. Lyonnet, Inverse Tunnel Magnetoresistance in Co/SrTiO3/La0.7Sr0.3MnO3:New Ideas on Spin-Polarized Tunneling, Phys. Rev. Lett.82,4288 (1999).
    [151]Jose Maria De Teresa, et al. Role of Metal-Oxide Interface in Determining the Spin Polarization of Magnetic Tunnel Junctions,Science 286,507 (1999).
    [152]S. Yuasa, et al. Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions, Science 297,234 (2002).
    [153]Christian Heiliger, Peter Zahn, Bogdan Yu. Yavorsky, and Ingrid Mertig, Influence of the interface structure on the bias dependence of tunneling magnetoresistance, Phys. Rev. B 72,180406(R) (2005).
    [154]Evgeny Y. Tsymbal, et al. Tunneling Across a Ferroelectric, Science 313,181 (2006).
    [155]Er-jun Kan, Zhenyu Li, Jinlong Yang,and J. G. Hou, Half-Metallicity in Edge-Modified Zigzag Graphene Nanoribbons, JACS 130,4224-4225 (2008).
    [156]Kyle A. Ritter, and Joseph W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons NATURE MATERIALS VOL 8,235(2009).
    [157]Minggang Zeng,Lei Shen, Ming Yang,Chun Zhang, and Yuanping Feng, Charge and spin transport in graphene-based heterostructure, Appl. Phys. Lett.98,053101 (2011).
    [158]See, for example, Semiconductor Spintronics andQuantum Computation, edited by D. D. Awschalom, D. Loss, and N. Samarth (Springer-Verlag, Berlin,2002).
    [159]M. J. Stevens et al.. Quantum Interference Control of Ballistic Pure Spin Currents in Semiconductors, Phys. Rev. Lett.90,136603 (2003);J. Hu'bner et al., ibid. Direct Observation of Optically Injected Spin-Polarized Currents in Semiconductors, Phys. Rev. Lett.90,216601 (2003).
    [160]R. A. de Groot, F. M. Mueller. P.G. van Engen, and K. H. J. Buschow. New Class of Materials:Half-Metallic Ferromagnets, Phys. Rev. Lett.50.2024 (1983).
    [161]Isaak M. Tsidilkovski, in Electron Spectrum of Gapless Semiconductors, edited by Klaus von Klitzing, Springer Series in Solid-State Sciences Vol.116 (Springer, New York.1996) and references therein.
    [162]K. S. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films, Science 306,666 (2004).
    [163][K. S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in grapheme, Nature (London) 438,197 (2005).
    [164]Y. Zhang et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature (London) 438,201 (2005).
    [165]X. L. Wang, Proposal for a New Class of Materials:Spin Gapless Semiconductors, Phys. Rev. Lett.100,156404 (2008)
    [166]Yafei Li,Zhen Zhou, Panwen Shen,and Zhongfang Chen, Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons, NANO VOL.3, NO.7,1952-1958 (2009).
    [167]A. Aviram and M. A. Ratner, Relativistic all-electron Hartree-Fock-Dirac calculation of a quasi one-dimensional chain of selenium atoms, Chem. Phys. Lett. 29,277(1974).
    [168]A. S. Martin, J. R. Sambles, and G. J. Ashwell, Molecular rectifier, Phys. Rev. Lett. 70,218(1993).
    [169]C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones, and J. M. Tour, Nanoscale metal self-assembled monolayer metal heterostructures, Appl. Phys. Lett.71,611 (1997).
    [170]M. K. Ng and L. P. Yu, Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes., Angew. Chem., Int. Ed. Engl.41,3598 (2002).
    [171]M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. V. Hanisch, F. Weigend, F. Evers, H. B. Weber, and M. Mayor, A single-molecule diode, Proc. Natl. Acad. Sci. U.S.A. 102,8815(2005).
    [172]R. M. Metzger, Unimolecular Rectifiers and Proposed Unimolecular Amplifier, Ann. N.Y. Acad. Sci.1006,252 (2003).
    [173]M. K. Ng, D. C. Lee, and L. P. Yu, Molecular Diodes Based on Conjugated Diblock Co-oligomers J. Am. Chem. Soc.124,11862(2002).
    [174]J. Jiang, G. M. Morales, W. You, and L. P. Yu, Synthesis of diode molecules and their sequential assembly to control electron transport, Angew. Chem., Int. Ed. Engl.43, 4471 (2004).
    [175]Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Giant magnetoresistance in organic spin-valves, Nature (London) 427,821 (2004).
    [176]S. J. Xie, K. H. Ahn, D. L. Smith, A. R. Bishop, and A. Saxena, Symmetrical analysis of complex two-dimensional hexagonal photonic crystals, Phys. Rev. B 67, 125202(2003).
    [177]H. Dalgleish and G. Kirczenow, Spin-current rectification in molecular wires, Phys. Rev. B 73,235436 (2006).
    [178]G. C. Hu, J. H. Wei, and S. J. Xie, Bias-induced orbital hybridization in diblock co-oligomer diodes, Appl. Phys. Lett.91,142115 (2007).
    [179]G. C. Hu, J. H. Wei, and S. J. Xie, Spin-current rectification in an organic magnetic/nonmagnetic device, J. Chem. Phys.129,234708 (2008).
    [180]D. Schmeltzer, A. Saxena, A. R. Bishop, and D. L. Smith, Spin diode in the ballistic regime, Phys. Rev. B 68,195317 (2003).
    [181][181]F. M. Souza, J. C. Egues, and A. P. Jauho, Spin transverse force and intrinsic quantum transverse transport, Phys. Rev. B 75,165303 (2007).
    [182]Y. Guo, X. Y. Chen, F. Zhai, B. L. Gu, and Y. Kawazoe, Spin-filter diode based on ZnSe/Znl-xMnxSe/Znl-yMnySe/ZnSe heterostructures, Appl. Phys. Lett.80,4591 (2002).
    [183]F. Zhai, Y. Guo, and B. L. Gu, Giant magnetoresistance effect in a magnetic-electric barrier structure,J. Appl. Phys.94,5432 (2003).
    [184]C. A. Merchant and N. Markovic, Electrically Tunable Spin Polarization in a Carbon Nanotube Spin Diode, Phys. Rev. Lett.100,156601 (2008).
    [185]Weymann, J. Barnas,and S. Krompiewski, Transport through single-wall metallic carbon nanotubes in the cotunneling regime, Phys. Rev. B 78,035422 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700