引水隧道在地震波入射时的动力响应解析解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨流域调水工程的建设能够有效缓解我国淡水资源空问分布极不均衡的矛盾,然而,长距离的调水工程不可避免地需要穿越地震多发区域,研究调水工程构筑物的地震响应问题对调水工程的成功建设和安全运营具有重要的意义。本文正是针对引水隧道这一调水工程中的常见结构,进行了一系列特殊场地中引水隧道动力响应的解析解研究。
     首先,本文提出在两斜交柱坐标系间谐波函数空间坐标变换的辅助平面方法,运用该方法,得到谐波函数在斜交柱坐标系间的坐标变换公式,作为研究隧道交叉等特殊场地地震响应问题的基础。通过建立与空间点对应的一系列辅助平面,将地震波三维散射研究中的谐波函数表达式从柱坐标系变换至辅助平面内的极坐标系,然后在辅助平面内运用Graf加法公式,将柱坐标系下的波函数表达式变换至与该柱坐标系斜交的另一柱坐标系下,从而将三维问题转换成二维问题进行处理,最终得到谐波函数在斜交柱坐标系下内域问题和外域问题的坐标变换公式。
     其次,本文建立了完全充水引水隧道场地模型,并采用波函数展开法给出了P波和SV波入射时引水隧道平面地震响应和三维地震响应的解析解。通过算例分析,重点讨论了入射波性质、隧道尺寸、衬砌材料参数、地层泊松比等因素对引水隧道动力响应的影响。算例分析结果表明,完全充水引水隧道衬砌的动力响应与入射波振幅成正比;在入射波无量纲频率不变时,衬砌的动应力峰值不受隧道内径变化的影响,而衬砌的动位移峰值则与隧道内径成正比;完全充水引水隧道衬砌的动应力峰值均随着衬砌厚度的增大而减小,动位移峰值则随着衬砌厚度的增大而增大;随着隧道衬砌弹性模量的增大,衬砌受到的动水压力峰值和衬砌的动位移峰值均逐渐减小,而切向动应力峰值和轴向动应力峰值均增大;土层泊松比的改变使得引水隧道的动力响应发生明显改变。此外,当P波和SV波倾斜入射时,入射波传播方向与引水隧道横断面之间的夹角对引水隧道的动力响应有着显著的影响。
     再次,本文建立了水下完全充水引水隧道场地模型,给出了P波和SV波入射时水下引水隧道平面地震响应的解析解。通过算例分析,重点讨论了入射波性质、地表水体深度、隧道埋深等因素对水下引水隧道动力响应的影响。研究表明,P波入射时水下引水隧道的动力响应随着地表水深的增大而增大,且低频P波入射时地表水深变化对衬砌动力响应的影响程度要大于高频P波入射情况;而在SV波入射时,地表水深改变对水下引水隧道衬砌的动应力峰值影响不大;随着隧道埋深的增大,低频P波入射引起的水下引水隧道衬砌动应力逐渐减小,动位移则逐渐增大,而低频SV波入射时,水下引水隧道衬砌的动应力和动位移随着隧道埋深的增大而减小。
     最后,本文建立了引水隧道下穿地铁区间隧道局部复杂场地模型,并采用波函数展开法给出了P波和SV波入射下该复杂场地地震响应的解析解。通过算例分析,讨论了上层地铁隧道和下层引水隧道之间的相互影响。研究表明,下层引水隧道对上层地铁隧道产生屏障作用,使得P波入射和SV波入射时上层地铁隧道定区域内的动应力峰值和动位移峰值均有所减小,而上层地铁隧道的存在则使得引水隧道在一定区域内的动应力峰值和位移峰值有所增大。两座隧道在交叉点两侧大致4-6倍的内半径范围内存在明显的相互影响。
:Long distance water diversions projects are constructed to alleviate the unbalanced distribution of water resources in China. However, it is inevitable that the long distance water diversions projects need through the seismic regions. Therefore, the study on the seismic response of water diversions projects has a vital significance to the projects construction and operation. This paper investigates the analytical solutions about the dynamic responses of convey tunnel, a commonly used structure in long distance water diversions projects, in a series of special fields.
     Firstly, this paper presents an auxiliary plane method for harmonic function transformation between two skew cylindrical coordinate systems. By creating a series of auxiliary plane corresponded with spatial point, the3-D harmonic wave function is transformed from cylindrical coordinate system to polar coordinate. Then the wave function under a cylindrical coordinate system is transformed into another which is skewed with the former by using the Graf's addition formula on the auxiliary plane method. Thus the problem is transformed from3-D to2-D. At last, the coordinate transformation formula between two skew cylindrical coordinate systems is given.
     Secondly, it is given that the plane and3-D analytical solutions of the dynamic responses of water-filled convey tunnel induced by plane P waves and SV waves by using the wave function expansion method in this paper. The example analysis shows the effects of the incident wave parameters, the tunnel dimension, the material of tunnel lining, and the Poisson's ratio of half space on the seismic response of the water-filled convey tunnel. It is proved that the dynamic responses of water-filled diversion tunnel are proportional to the amplitude of incident wave. And the maximums of the dynamic displacements of tunnel lining are proportional to the tunnel radius, but the maximums of the dynamic stresses are irrelevant to the radius. With the increasing of the tunnel lining thickness, the maximums of the dynamic stresses of tunnel are decrease, but the maximums of the dynamic displacements are increase. Moreover, the elastic modulus of the lining and the Poisson's ratio of the soil have a significant effects on the dynamic responses of water-filled convey tunnel.
     Thirdly, this paper establishes a model of underwater water-filled convey tunnel, and gives the plane analytical solution of the dynamic responses of the model caused by the incident P waves and SV waves. The example analysis shows the effects of the incident wave parameters, the depth of surface water, and the buried depth of underwater tunnel on the seismic response of the tunnel lining. It can be found from the results that the dynamic responses of underwater convey tunnel is increase with the increasing of the surface water depth when the P waves incidences. Moreover, with the increasing of the buried depth of underwater convey tunnel, the maximums of the dynamic stresses of tunnel lining caused by incident P waves with a low frequency are decrease, but the maximums of the dynamic displacements are increase. While, when the incident wave is SV waves, the dynamic responses of underwater convey tunnel is decrease with the increasing of tunnel buried depth.
     Finally, this paper gives the analytical solution of the dynamic responses of a complicated partial field in which a convey tunnel is beneath and pass through a subway tunnel caused by incident P waves and SV waves. Through the example analysis, the interaction between the convey tunnel and the subway tunnel is investigated. The results show that the lower convey tunnel acts as a barrier to the subway tunnel, and it makes the dynamic responses of the upper subway tunnel reduced around the intersection. Inversely, the upper subway tunnel makes the dynamic responses of the lower convey tunnel magnified around the intersection.
引文
[1]潘昌实.隧道地震灾害综述[J].隧道及地下工程.1990,11(2):1-9.
    [2]梁建文.地下管线抗震研究述评[J].世界地震工程.1995(4):1-7.
    [3]W. L. Wang, T. T. Wang, J. J. Su, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake [J]. Tunnelling and Underground Space Technology.2001(16): 133-150.
    [4]Youssef M. A. Hashash, Jeffrey J. Hook, Birger Schmidt, et al. Seismic design and analysis of underground structures [J]. Tunnelling and Underground Space Technology.2001(16):247-293.
    [5]季倩倩,杨林德.地下铁道震害与震后修复措施[J].灾害学.2001,16(2):31-36.
    [6]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全科学学报,2003,13(11):55-58.
    [7]高波,王峥峥,袁松,等.汶川地震公路隧道震害启示[J].西南交通大学学报.2009,44(3):336-341.
    [8]胡亚元,王立忠,陈云敏,等.饱和土中平面应变波在圆柱体上的散射和折射[J].地震学报.1998,20(3):300-307.
    [9]李伟华,赵成刚.饱和半空间中圆柱形孔洞对平面P波的散射[J].岩士力学.2004,25(12):1867-1872.
    [10]于翔,陈启亮,赵跃堂,等.地下结构抗震研究方法及其现状[J].解放军理工大学学报.2000,l(5):63-69.
    [11]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2004.
    [12]孙钧,候学渊.地下结构(上、下册)[M].北京:科学出版社,1987.
    [13]福季耶娃著.徐显毅译.地震区地下结构支护的计算[M].北京:煤炭出版社,1986.
    [14]Kuesel, T. R. Earthquake Design Criteria for Subways. Journal of the Structural Division[J]. ASCE 1969,6:1213-1231.
    [15]高田至郎,骆文海.地下生命线的耐震设计[J].隧道译丛,1991(7):44-51.
    [16]川岛一彦.地下构筑物の耐震设计[M].日本:鹿岛出版社,1994.
    [17]G. Dasgupta. A finite element formulation for unbounded homogeneous continua[J]. Journal of Applied Mechanics. ASME.1982,49(1):136-140.
    [18]John P. Wolf, Chongming Song. Dynamic-stiffness matrix of unbounded soil by finite-element multi-cell cloning[J]. Earthquake Engineering & Structural Dynamics.1994,23(3):232-250.
    [19]Chongming Song, John P. Wolf. Dynamic stiffness of unbounded medium based on damping-solvent extraction[J]. Earthquake Engineering & Structural Dynamics.1994,23(2): 169-181.
    [20]Song C M, Wolf J P. The scaled boundary finite element method-a primer solution procedures[J]. Computers and Structures.2000,78(3):211-225.
    [21]季倩倩.地铁车站结构振动台模型试验研究[D].上海:同济大学,2002.
    [22]周德培.地铁抗震设计准则[J].世界隧道.1995(2):36-45.
    [23]蒋通.“上海市盾构法隧道的抗震设计研究”研究报告[R].上海:上海市建设技术发展基 金会科研项目(A9706108-4).1996.
    [24]邵根大,骆文海,李福庭,等.强地震作用下铁路隧道衬砌耐震性的研究[J].中国铁道科学.1992,13:92-109.
    [25]郑永来,刘曙光,杨林德,等.软土中地铁区间隧道抗震设计研究[J].地下空间.2003,23(2):111-114.
    [26]杨德林,季倩倩,郑永来,等.软土地铁车站结构的振动台模型试验[J].现代隧道技术.2003,40(1):7-11.
    [27]杨德林,杨超,季倩倩,等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报.2003,23(10):1135-1140.
    [28]林皋,梁青槐.地下结构的抗震设计[J].士木工程学报.1996,29(1):15-24.
    [29]林皋.地下结构抗震分析综述(上)[J].世界地震工程.1990(2):1-10.
    [30]林皋.地下结构抗震分析综述(下)[J].世界地震工程.1990(3):1-10.
    [31]中华人民共和国国家标准.铁路工程抗震设计规范(GB 50111-2006).北京:中国计划出版社,2006.
    [32]中华人民共和国国家标准.铁路工程抗震设计规范(GBJ111-87)[S].北京:铁道出版社,1998.
    [33]中华人民共和国国家标准.地铁设计规范(GB 50157-2003)[S].北京:中国计划出版社,2003.
    [34]中华人民共和国国家标准.公路工程抗震设计规范(JTJ 004-89)[S].北京:人民交通出版社,2003.
    [35]中华人民共和国电力行业标准.水工建筑物抗震设计规范(DL 5073-2000)[S].北京:人[民交通出版社,2001.
    [36]中华人民共和国水利标准.水工隧洞设计规范(SL 279-2002)[S].北京:中国水利水电出版社,2003.
    [37]张建民,张嘎.土体与结构物动力相互作用研究进展[J].岩石力学与工程学报.2001.20(Sup 1):854-865.
    [38]Okamoto Shunzo. Introduction to Earthquake Engineering (2nd Ed) [M]. University of Tokyo Press,1984.
    [39]Hamada H, Kitahara M. Earthquake observation and BIE analysis on dynamic behavior of rock cavern [J]. Proceedings of the Fifth International Conference on Numerical Method in Geomechanics. Nagoya,1985, Vol.3:1525-1532.
    [40]ASCE. Earthquake damage evaluation and design consideration for underground structures [J]. American Society of Civil Engineers, Los Angeles Section,1974.
    [41]JSCE. Earthquake Resistant Design for Civil Engineering Structure in Japan [M]. Japanese Society of Civil Engineering, Tokyo,1988.
    [42]Nakamura S, Yoshida N, Iwatate T. Damage to Daikai Subway Station During the 1995 Hyogoken-Nambu Earthquake and Its Investigation [J]. Japan Society of Civil Engineers, Committee of Earthquake Engineering.1996,287-295.
    [43]Stevens P R. A review of the effects of earthquakes on underground mines [R]. United States Geological Survey Open File Report 77-313:US Energy Research and Development Administration, Reston, VA.1977.
    [44]Dowding C H, Rozen A. Damage to rock tunnels from earthquake shaking [J]. J. Geotech. Eng. Div., ASCE.1978, Vol.104(GT2):175-191.
    [45]Sharma S, Judd W R. Underground opening damage from earthquakes [J]. Eng. Geol.1991, Vol.30(3,4):263-276.
    [46]Power M, Rosidi D, Kaneshiro J. Seismic vulnerability of tunnels-revisited [C]. L. Ozedimir, Ed., Proceedings of the North American Tunneling Conference. Long Beach, CA, USA. Elsevier,1998.
    [47]Kabashiro J Y, Power M. Empirical correlations of tunnel performance during earthquake and a seismic aspects of tunnel design [C]. Proceedings of the conference on lessons learned from recent earthquakes Turkey 1999.
    [48]Phillips J S, Luke B A. Tunnel damage resulting from seismic loading. Proc [C].2nd Inter. Conf. on Rec. Adv. In Geot. Earthq. Eng.& Soil Dyn. St. Louis, Missouri,1991.207-217.
    [49]Yakovlevich D I, Borisovna M J. Behavior of tunnel liner model on seismic platform [C]. VI. Sump. On Earthquake Engineering, University of Roorkee,1978, Vol.1:379-382.
    [50]Goto Y, Matsuda Y, Ejiri J, et al. Influence of Distance between Juxtaposed Shield Tunnels on their Seismic Response [C]. Proc.9th World Conf. on Earthq. Eng. Tokyo-Kyoto, Japan,1988, 569-574.
    [51]南昆铁路8、9度地震隧道洞口及浅埋大跨段新机构设计试验研究[R].铁道部第二勘测设计院.1996.
    [52]周德培.强震区隧道洞口段的动力特性研究[J].地震工程与工程振动.1998,18(1):124-130.
    [53]宫必宁,赵大鹏.地下结构与土动力相互作用实验研究[J].地下空间.2002,22(4):320-324.
    [54]Pao Y H, Mow C C. Diffraction of elastic waves and dynamic stress concentrations [R]. New York:Crane Russak and Company,1973.
    [55]Lee V W, Trifunac M D. Response of tunnels to incident SH-wave [J]. Journal of Engineering Mechanics, ASCE.1979,105(4):643-659.
    [56]Wong K C, Shah A H, Datta S K. Diffraction of elastic waves in half-space [J]. Analytical and numerical solution. Bulletin of the Seismological Society of America.1985,75:69-92.
    [57]Lee V W, Karl J. Diffraction of SV waves by underground circular, cylindrical cavities [J]. Soil Dynamics and Earthquake Engineering.1992,11(8):445-456.
    [58]Lee V W, Karl J. On deformation of near a circular underground cavity subjected to incident plane P wave [J]. European Journal of Earthquake Engineering.1993,7(1):29-36.
    [59]Davis C A, Lee V W, Bardet J P. Transverse response of underground cavities and pipes to incident SV waves [J]. Earthquake Engineering and Structural Dynamic.2001,30:383-410.
    [60]梁建文,张浩.地下双洞室在SV波入射下动力响应问题解析解[J].振动工程学报.2004,17(2):132-140.
    [61]梁建文,张浩,Vincent W Lee平面P波入射下地下洞室群动应力集中问题解析解[J].岩土工程学报.2004,26(6):815-819.
    [62]梁建文,纪晓东,Vincent W Lee地下圆形衬砌隧道对沿线地震动的影响(Ⅰ):级数解[J].岩土力学.2005,26(4):520-524.
    [63]梁建文,纪晓东,Vincent W Lee地下圆形衬砌隧道对沿线地震动的影响(Ⅱ):数值结果[J].岩土力学.2005,26(5):687-692.
    [64]梁建文,纪晓东.地下衬砌洞室对Rayleigh波的放大作用[J].地震工程与工程振动.2006,26(4):24-31.
    [65]Cao H, Lee V W. Scattering and diffraction of plane P waves by circular-cylindrical canyons with variable depth-to-width ratio [J]. Soil Dynamics and Earthquake Engineering,1990,9(3): 141-150.
    [66]刘殿魁,刘宏伟.SH波散射与界面圆孔附近的动应力集中[J].力学学报.1998,30(5):597-604.
    [67]何钟怡,樊洪明.用波函数展开法求解界面圆孔的SH波散射问题[J].地震工程与工程振动.2000,20(3):1-7.
    [68]李伟华.含饱和土的复杂局部场地波动散射问题的解析解和显式有限元数值模拟[D].北京:北京交通大学.2003.
    [69]李伟华,赵成刚.平面SV波在饱和土半空间中圆柱形孔洞周边的散射[J].地震工程与工程振动.2008,28(6):1-7.
    [70]李伟华,中齐豪,赵成刚.饱和土半空间中地下圆形衬砌洞室对平面SV波的散射[J].防灾减灾工程学报.2009,29(2):172-178.
    [71]N. M. Newmark. Problems in wave propagation in soil and rock [C]. Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials. New Mexico, Albuquerque,1986,7-26.
    [72]T. R. Kuesel. Earthquake design criteria for subways [J]. Journal of Structure Division. ASCE ST6.1969,1213-1231.
    [73]C. M. St John, T. F. Zahrah. Aseismic design of underground structures [J]. Tunnel Underground Space Technology.1987,2(2):165-197.
    [74]M. S. Power, D. Rosidi, J. Kaneshiro. Screening, evaluation and retrofit design of tunnels [R]. Report Draft, National Center for Earthquake Engineering Research, Buffalo, New York,1996, Vol.Ⅲ:212-215.
    [75]A. K. Chopra, G. Dasgupta, P. Chakrabarti. Dynamic stiffness matrices for viscoelastic half-plane foundations [J]. Journal of the Engineering Mechanics Division. ASCE.1976, 102(3):497-514.
    [76]P. Bettess, O. C. Zienkiewicz. Diffraction and refraction of surface waves using finite and infinite elements [J]. International Journal for Numerical Methods in Engineering.1977, 11(8):1271-1290.
    [77]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报.1986,26(3):51-63.
    [78]陈惠发,A.F.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [79]谢树艺.矢量分析与场论[M].北京:高等教育出版社,2010.
    [80]数学手册编写组.数学手册[M].北京:高等教育出版社,1979.
    [81]陈中轩.现代量子力学教程[M].北京:原子能出版社,1984.
    [82]Eringen A C, Suhubi E S. Elastiodynamics.Vol.Ⅱ. Linear theory [M]. New York:Academic Press,1975.
    [83]孔玲.可压缩流体动力学[M].北京:水利水电出版社,1991.
    [84]冯劲梅.流体力学[M].武汉:华中科技大学出版社,2010.
    [85]杨建国,张兆营,鞠晓丽,等.工程流体力学[M].北京:北京大学出版社,2010.
    [86]刘殿魁,刘宏伟.SH波散射与界面圆孔附近的动应力集中[J].力学学报.1998,30(5):597-604.
    [87]朱镜清,周建.海底地震动估计的一个流体力学基础[J].地震工程与工程振动.1991,11(3):87-93.
    [88]马宏伟,陈文化.大型引水隧道在平面地震波入射下动力响应的解析解[J].地震工程与工程振动.2011,31(6):1-10.
    [89]马宏伟,陈文化.SV波入射下衬砌尺寸对引水隧道动力响应的影响[J].北京交通大学学报.2012,36(3):25-31.
    [90]吴世明.土介质中的波[M].北京:科学出版社.1997.
    [91]王进廷,张楚汉,金峰.位于弹性半空间上的理想流体层动力反应—平面SV波入射[J].工程力学.2004,21(1):15-20.
    [92]王进廷,金峰,张楚汉.位于弹性半空间上的理想流体层动力反应—平面P波斜入射[J].工程力学.2003,20(6):12-17.
    [93]Kouretzis G P, Bouckovalas G D and Gantes C J.3-D shell analysis of cylindrical underground structures under seismic shear (S) wave action [J]. Soil Dynamics and Earthquake Engineering, 2006,26:909-921.
    [94]陈厚群.南水北调工程抗震安全性问题[J].中国水利水电科学研究院学报,2003,1(1):17-22.
    [95]吴杰芳,彭定,李声平.南水北调中线工程穿黄隧道抗震性能研究[J].工程力学,2000,增刊:544-550.
    [96]陈健云,刘金云.地震作用下输水隧道的流-固耦合分析[J].岩士力学,2006,27(7):1077-1081.
    [97]陈健云,刘金云.输水隧道流-固耦合地震反应研究[J].沈阳建筑大学学报(自然科学版),2006,22(2):242-247.
    [98]刘金云,陈健云.输水隧道二维地震反应分析[J].哈尔滨工业大学学报,2008,40(8):1297-1301.
    [99]Davis C A, Lee V W, D Bardet J P. Transverse response of underground cavities and pipes to incident SV waves [J]. Earthquake Engineering & Structure Dynamics,2001,30(3):383-410.
    [100]纪晓东,梁建文,杨建江.地下圆形衬砌洞室在平面P波和SV波入射下动应力集中问题的级数解[J].天津大学学报,2006,39(5):511-517.
    [101]高广运,李育枢,李天斌.P波作用下浅埋圆形衬砌隧道动力反应分析[J].中南公路工程,2007,32(2):56-60.
    [102]马宏伟,陈文化.两斜交柱坐标系间谐波函数坐标变换的辅助平面方法[J].地震学报.2011,33(5):683-690.
    [103]中华人民共和国国家标准.中国地震烈度表(GB/T 17742-2008)[S].北京:中国标准出版社,2009.
    [104]中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2010)[S].北京:中国建筑工业出版社,2011.
    [105]Lee V W. A note on the scattering of elastic plane waves by a hemispherical canyon [J]. Soil Dynamic and Earthquake Engineering,1982,1(3):122-129.
    [106]Lee V W. Three-dimensional diffraction of plane P, SV and SH waves by a hemispherical alluvial valley [J]. Soil Dynamic and Earthquake Engineering,1984,3(3):133-144.
    [107]董俊,赵成刚.半球形凹陷饱和土半空间对入射平面SV波三维散射问题的解析解[J].地球物理学报,2005,48(6):1412-1421.
    [108]赵成刚,韩铮.半球形饱和沉积谷场地对入射平面Rayleigh波的三维散射问题的解析解[J].地球物理学报,2007,50(3):905-914.
    [109]梁建文,魏新磊,Vincent W Lee圆弧形沉积谷地对平面SV波三维散射解析解[J].岩土工程学报,2009,31(9):1345-1353.
    [110]梁建文,魏新磊,Lee Vincent W.圆弧形沉积谷地对Rayleigh波三维散射解析解[J].天津大学学报,2009,42(1):24-34.
    [111]梁建文,魏新磊,Vincent W Lee圆弧形沉积谷地对平面P波的三维散射解析解[J].岩石力学,2010,31(2):461-470.
    [112]蔡袁强,丁光亚,徐长节.饱和士中排桩对入射s波隔离的三维分析[J].自然灾害学报,2008,17(2):1-7.
    [113]蔡袁强,丁光亚,徐长节.饱和土中单排弹性桩对平面S波的屏蔽[J].岩土工程学报,2008,30(7):964-969.
    [114]丁光亚,蔡袁强,徐长节.饱和土中刚性排桩对平面SV波的隔离分析[J].岩土力学,2009,30(3):849-854.
    [115]丁光亚,蔡袁强,王军,等.饱和土中管桩对倾斜入射弹性波的隔离[J].振动与冲击,2010,29(3):121-125.
    [116]Hongwei Ma, Wenhua Chen. Transverse Response of Underwater Shield Tunnel to Incident P Waves. Applied Mechanics and Materials.2011,90-93:1602-1609.
    [117]Hongwei Ma, Wenhua Chen, Manman Ding. Study on the Seismic Response of Underwater Tunnel Induced by SV Waves. New Technologies of Railway Engineering. Beijing.2012. 899-904.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700