云南山岭公路隧道修筑技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部广大地区地形、地质条件复杂,山岭区公路建设中遇到大量的隧道工程。为了提升山岭公路隧道修筑技术水平,并丰富和发展我国公路隧道的设计与施工方法,本文采用调查分析、数值模拟和模型试验等方法从隧道围岩压力特征与取值、隧道结构选型、设计技术、施工工法、动态反馈设计与信息化施工等方面开展了山岭公路隧道设计与施工技术的系统研究。论文研究的主要结论如下:
     (1)研究了单洞隧道、连拱隧道和小净距隧道围岩压力及深埋隧道围岩的形变压力。其中,对于单洞隧道,分别提出了深埋单洞隧道的围岩水平压力、地面接近水平时浅埋隧道的围岩压力、地形偏斜时浅埋隧道围岩压力的计算方法;对于连拱隧道,提出了深埋连拱隧道围岩压力、连拱隧道深浅埋分界值、浅埋连拱隧道围岩压力和偏压地形围岩压力计算方法;对于小净距隧道,提出了深埋小净距隧道的围岩压力、作用在深埋小净距隧道支护结构两侧的水平土压力荷载和隧道均布垂直压力及两侧水平围岩压力的计算方法;在深埋隧道围岩的形变压力方面,研究了单洞隧道形变压力计算、作用在隧道二次衬砌之上的形变压力和隧道支护结构之上的围岩的形变压力的计算问题。在对复杂地质条件下山岭公路隧道围岩分级研究的基础上,提出了其物理力学参数确定方法。
     (2)通过山岭公路隧道结构选型分析认为,无论是分离式隧道、连拱隧道、小间距隧道都有其各自的优点,因此,不能一概而论那种形式最好,它们都有各自适用的条件,只有基于这些条件下,才可论证其优劣。当对该处进行各种隧道方案的对比时,考虑到工程造价制约,选用分离式隧道;以环境保护、占地宽度、接线难度为首选条件,则选用连拱隧道或小间距隧道。当对连拱隧道和小间距隧道举棋不定时:若考虑到占地面积极少、地形特别复杂、桥隧接线、景观设计、科技创新、地质预报、环境保护角度,连拱隧道优于小间距隧道。若考虑工程造价、施工难度,可以优选小间距隧道。同时,还讨论了特殊地质条件下公路隧道的结构选型问题。
     (3)针对山岭公路隧道设计问题,分别研究了分离式隧道、连拱隧道和小净距隧道的设计技术。对于分离式隧道,研究了隧道的洞室结构、支护结构与类型、超前支护参数、初期支护措施、二次衬砌参数和预留变形量参数。在连拱隧道设计方面,研究了连拱隧道的结构型式、中墙的设计、防排水、衬砌支护参数、洞外接线型式,并进行了各种衬砌断面的比较。在小净距遂道设计方面,研究了隧道支护体系选取对策,并结合云南平年小净距隧道的实际工程情况,进行了有偏压和错台情况下的相似模型试验,采用二维和三维数值计算方法对小净距隧道在浅埋、偏压、有错台高度的情况下各个施工阶段的位移和应力进行了研究。
     (4)对于连拱隧道的中墙型式设计,作者提出应综合分析连拱隧道所处位置的地形、地质条件,隧道洞口的接线条件,全面分析整体直中墙、中空直中墙、分层直中墙、整体曲中墙、中空曲中墙和三层曲中墙的适用条件,择优选择。同时,认为在条件允许的情况下,可较多地考虑三层曲中墙连拱隧道型式。
     (5)研究了山岭公路隧道中分离式隧道、连拱隧道和小净距隧道的施工工法。针对分离式隧道,分别研究了洞口施工、洞身开挖、初期支护、二次衬砌的施工,并提出了不良地质段分离式隧道施工方法。针对连拱隧道,对比分析了连拱隧道典型施工方法,研究了其洞口与明洞施工、超前支护、中导洞的掘进与初期支护、中墙施工、主洞的掘进与初期支护、二次衬砌以及特殊与不良地质条件下的连拱隧道施工。对于小净距隧道施工,提出了小净距隧道施工措施选取的原则及对策、相邻隧道掌子面合理距离、支护体系的施作时机的确定方法、开挖、爆破控制等施工技术和中岩墙加固技术。
     (6)在山岭公路隧道动态反馈设计与信息化施工方面,提出了信息化施工的执行程序、数据采集手段和数据处理与信息反馈手段、动态反馈设计与信息化施工的实施要点与流程。
Because of complicated terrain and geological conditions in western China, a great number of tunnel engineering may occur during the highway construction in mountainous areas. In order to improve the building technology of highway tunnels in mountainous areas, also, to enrich and to develop highway tunnel design and construction methods of China, this thesis systematically studied the design and construction technology of highway tunnels in mountainous areas of Yunnan Province from such aspects as the characteristics and values of wall rock pressure, tunnel structure-type selection, design technology, construction technology, dynamic feedback design and information construction etc by means of site investigation, numerical modeling and model test. The main research results are as follows:
     (1)The wall rock pressure of single tunnel, multi-arch tunnel, and neighborhood tunnel, and deformation pressure of deep tunnel are studied. For single tunnel, the author offered horizontal pressure of the wall rock of the deep single tunnel, wall rock pressure of shallow tunnel when the ground is nearly horizontal and the calculation methods of wall rock pressure of shallow tunnel when ground is inclined. For multiple-arch tunnel, the author puts forward the calculation method of wall rock pressures of the deep multiple-arch tunnels, the dividing value between deep and shallow tunnels, the wall rock pressure of the shallow multiple-arch tunnels and the wall rock pressure of multiple-arch tunnels with bias pressure. For neighborhood tunnel, the author put forward the calculation methods of wall rock pressure of the deep neighborhood tunnels, horizontal loads at the both sides of retaining structures of deep neighborhood tunnels, the uniform vertical pressure and horizontal wall rock pressure on the both sides. As for the aspect of deformation pressure of deep tunnels, the author studied calculation problems including deformation pressure calculation of single tunnel, deformation pressure of tunnel secondary lining and wall rock deformation pressure above tunnel retaining structure. On the basis of studying the classification of wall rock of highway tunnels in mountainous areas with complicated geological conditions, the methods of determining physical and mechanical parameters are proposed.
     (2)After analyzing the structure selection of highway tunnels in mountainous areas, the author thought that whether it is separated tunnel, multiple-arch tunnel or neighborhood tunnel, it has its own advantages. Therefore, which one is the best can not be lumped together. These tunnels all have their own applicable conditions, so, their advantages and disadvantages can be discussed only based on these conditions. For example, separated tunnel is used when considering engineering cost; multiple-arch tunnel or neighborhood tunnel is used with environmental protection, occupied area, connecting difficulty as first choice. When hesitating to choose multiple-arch tunnel or neighborhood tunnel, if considering less occupied area, very complex topography, bridge tunnel connection, landscape design, technology innovation, geological forecast, and environmental protection, multiple-arch tunnel is superior to neighborhood tunnel; if considering engineering cost, construction difficulty, neighborhood tunnel is optimal. At the same time, the problems of structure selection on highway tunnels under special geological conditions are also discussed in the thesis.
     (3)For design problems of highway tunnels in the mountainous areas, the design technologies of separated tunnel, multiple-arch tunnel and neighborhood tunnel are studied respectively. In the design of separated tunnel, the author studied cavity structure of tunnel, supporting structure and types, pre-reinforcement parameters, initial supporting measures, secondary lining parameters and reservation deformation parameters. In the design of multi-arch tunnel, the author studied the structure of multi-arch tunnel, the design of center pillar, water-resistance and abstraction of water, lining supporting parameters, and connection pattern outside of the tunnel entrance. Also, the author carried out a comparison about various lining cross-sections. In the design of neighborhood tunnel, the author studied the strategy for selecting supporting system, carried out similar model test in the case of bias pressure and differential height, and simulated the displacements and stresses of different construction stages in the case of shallow location, bias pressure and different height by two- and three-dimensional numerical modeling taking the Pingnian tunnel as an example.
     (4)It is thought that the key design of multi-arch tunnel is the design of center pillar, including the type selections of center pillar, construction plan, technologies of water-resistance and abstraction of water, etc. Design of center pillar on multiple-arch tunnel should be selected based on its merits according to analyzing systematically the terrain and geological conditions of tunnel, connection conditions of tunnel and a comprehensive analysis of conditions including straight integral type center pillar, hollow straight center pillar, straight layer center pillar, flexural integral type center pillar, hollow flexural center pillar, and three layer flexural center pillar. At the same time, if conditions permit, three layers curved middle wall multi-arch highway tunnel should be more considered.
     (5)The construction technology of separated tunnel, multiple-arch tunnel, and neighborhood tunnel in mountainous areas are studied. For separated tunnel, the author studied construction technology of tunnel entrance, tunnel excavation, primary supporting, secondary lining construction, and put forward construction methods of separated tunnel in poor geologic section. For multiple-arch tunnel, the author contrasted and analyzed the typical construction methods of multiple-arch tunnel. Also, tunnel entrance, construction of open cut tunnel, pre-reinforcement, tunneling and primary supporting of middle drift, center pillar construction, excavation and primary supporting of the main tunnel, secondary lining and the multi-arch tunnel construction under special and poor geological conditions are studied. For neighborhood tunnel construction, the author put forward the principles and countermeasures for selecting construction measures on neighborhood tunnels, the determination method for a suitable distance of adjacent tunnels face, the time determination method of supporting system, the excavation technology and blast-controlling technology and the reinforcement technology of middle rock walls.
     (6) As for dynamic feedback design and information construction of highway tunnels in mountainous areas with complicated geological conditions, the author presented executive routine of information construction, means of data acquisition, methods of data processing and information feedback, and implement outline and process of the dynamic feedback design and information construction.
引文
[1](日)T.川田,M.大冢,M.小林,1996,最小净距的大型双线公路隧道的观测施工,水电技术信息[J],146-154
    [2]Barton N,Lien R,Lunde J.1974,Engineering classification of rock masses for the design of tunnel support[J].RockMech,6 (4):183-236
    [3]Bieniawski Z T.,1989,Engineering Rock Mass Classification[M].Znc:John Wiley & Sons,1-105
    [4]Dasari G.R.,Rawlings,C.G.,Bolton M.D.,1996,Numerical Modelling of a NATM Tunnel Construction in London Clay[A],Geotechnical Aspects of Under ground Construction in Soft Ground[C],Balkema,London,UK,491-496.
    [5]Goel R.K.,Jethwa J.L.,1991,Prediction of Support Pressure using RMR Classification,Proc.Indian Geotechnical Conf.,Surat,India,December 1991
    [6]Goel R.K.,1994,Correlations for Predicting Support Pressures and Closures in tunnels Ph.D.Thesis,Nagpur University India,308
    [7]Goel R.K.,Jethwa,J.L.,Paithankar,A.G.1995,Indian experiences with Q and RMR system[J],Tunneling Underground Space Technology,101:97-109.
    [8]Hiroshi Kuriyama,Tokuji Koga and Takaya Ogata,2000,The design and construction of pillar reinforcement at horizontal twin tunnels,Proceedings of Tunnel Engineering,JSCE,Vol.10,125-130
    [9](日)今田辙等,1996,山岭隧道施工[M],鹿岛出版社,271-277
    [10]Jiang Y.,Yoneda H.,Tanabashi Y.,2001,Theoretical estimation of loosening pressure on tunnels in soft rocks[J],Tunnelling and Underground Space Technology,16:99-105
    [11]Kim,Hak Joon.1997,Estimation for tunnel lining loads (D),Canada:University of Alberta
    [12]Kimmance J.P.,Lawence S.,Hassoan G.,Purchase N.J.and Tollinger G.,1996,Deformation created in existing tunnels by adjacent and cross cutting,Proceedings of International Symposium Geotechnical Aspects of Underground Construction in Soft Ground,London
    [13]Lo K.W.,Chong L.K.,Leung L.F.,Lee S.L.,Makino H.and Tajima H.,1998,Field instrumentation of a multiple tunnel interaction problem[J],Tunnels and Tunnelling,No.6
    [14]Marcio Muniz de Farias,Alvaro Henrique Moraes Junior,2004,Andre Pacheco de Assis.Displacement control in tunnels excavated by the NATM:3-D numerical simulations[J],Tunneling and Under-ground Space Technology,19:283-293
    [15]Oreste,P.P.,Peila D.,Poma,A.1999,Numerical Study of Low Depth Tunnel Behaviour[A],World Tunnel Congress on Challenges for the 21st Century[C],Balkema,Oslo,Norway,155-162.
    [16]Samue H.R.,Mair R.J.,Lu Y.C.,Chudleigh I.L.J.,Readings P.and Addenbrooke T.I.,1999,The effect of boring a new tunnel under an existing masonry tunnel,293-298
    [17]Swoboda G.,Abu-Krisha A.,1999,Three-dimensional numerical modeling for TBM tunneling in consolidated clay[J],Tunneling and Underground Space Technology,14 (3):327-333.
    [18]柏松平,周建昆,我省第一座整体式双跨连拱隧道的设计与施工[J],云南交通科技,第15卷,第4期1999,42-46
    [19]曹林,胡居义,黎冬林,2007,小净距公路(双洞)隧道围岩破坏模式研究,中国地质灾害与防治学报[J],第18卷,第3期,65-69
    [20]陈宝林,1999,宝成复线须家河隧道控爆施工[J],世界隧道,第12期,56-58
    [21]陈斌,李泳伸等,1999,石梯沟双连拱公路隧道施工对策[J],现代隧道技术,第5期,5-10
    [22]陈文辉,秦峰,陈贵华,2005,小净距隧道、连拱隧道、普通分离式隧道造价对比分析[J],公路交通技术,第6期,20-22
    [23]重庆交通科研设计院,2007,公路隧道设计规范(JTGD70-2004),北京:人民交通出版社
    [24]重庆建筑工程学院,同济大学,1981,岩体力学[M],北京: 中国建筑工业出版社,127-136
    [25]戴文亭,白宝玉,2000,我国隧道及地下工程发展现状和前景展望[J],东北公路,第23卷,第4期,90-92
    [26]杜菊红,黄宏伟,熊玉朝,小净距隧道净距研究及施工技术应用[J],地下空间与工程学报,第3卷,第3期,488-493
    [27]房营光,孙钧,地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J],岩石力学与工程学报,1998,第17卷,第3期,239-247
    [28]冯卫星,1998,铁路隧道设计[M],北京:中国铁道出版社
    [29]傅鹤林,韩汝才,朱汉华,2004,破碎围岩中单拱隧道荷载计算的理论解[J],中南大学学报(自然科学版),第35卷,第3期,478-483
    [30]高军,李建华,2007,浅埋大跨软弱地层隧道动态反馈施工技术,隧道建设[J],第27卷,第2期,57-59
    [31]谷兆祺,彭守拙,李仲奎,1994,地下洞室工程[M],北京:清华大学出版社
    [32]关宝树,2003,隧道工程设计要点集[M],北京:人民交通出版社
    [33]胡冰,2008,软弱围岩、浅埋偏压隧道的设计与施工[J],公路与汽运,第2期,155-157
    [34]胡元芳,2002,小线间距城市双线隧道围岩稳定性分析[J],岩石力学与工程学报,第21卷,第9期,1335-1338
    [35]黄伦海,刘伟,蒋树屏,2007,小净距公路隧道模型试验研究[J],公路交通技术,第2期,127-132
    [36]蒋树屏,胡学兵.云南扁平状大断面公路隧道施工力学响应数值模拟[J],岩土工程学报.2004,26(2):178-182.
    [37]赖德良,2003,金旗山小净距隧道施工技术探讨[J],华东公路,第2期,32-37
    [38]赖锦兴,2001,里洋小净距隧道设计[J],福建交通勘察设计
    [39]李树良,1998,对邻近隧道爆破施工的几点体会[J],铁道建筑技术,第4期,26-29
    [40]李云鹏,王芝银,韩常领等,2006,不同围岩类别小间距隧道施工过程模拟研究[J],岩土力学,27(1)
    [41]刘洪洲,黄伦海,2001,连拱隧道设计施工技术研究现状[J],西部探矿工程,第1期,54-55
    [42]刘惠,史雅语,1999,招宝山小净间距双线隧道控制[J],爆破监测,第12期,25-28
    [43]刘慧,2000,招宝山超小净距双线隧道的安全控爆研究[J],工程爆破,第3 期,49-55
    [44]刘艳青,钟世航,卢汝绥,马荣田,2000,小净距并行隧道力学状态的试验研究[J],岩石力学与工程学报,第19卷,第5期,590-594
    [45]凌昌荣,张子新,偏压小间距隧道荷载结构计算模型研究[J],2007,地下空间与工程学报,48-53
    [46]陆文超,钟政,王旭,2003,浅埋隧道围岩应力场的解析解[J],力学季刊,第24卷,第1期,50-54
    [47]马念杰,张益东,1996,圆形巷道围岩变形压力新解法[J],岩石力学与工程学报,第15卷,第1期,84-89
    [48]毛坚强,周德培,2002,滑坡—隧道相互作用受力变形规律的研究[J],西南交通大学学报,第37卷,第4期,371-376
    [49]莫勋涛,2001,围岩的站立时间与初期支护荷载的关系研究[D],北京:北京交通大学
    [50]秦峰,吴存兴,2003,小净距隧道开挖方法浅论[J],现代隧道技术,第40卷,第6期,39-42.
    [51]曲海锋,杨重存,朱合华等,2007,公路隧道围岩压力研究与发展[J],地下空间与工程学报,第3卷,第3期,536-543
    [52]邱道宏,陈剑平,王坛华,2006,分离式隧道非同步开挖两洞相互影响程度研究大连理工大学学报[J],第46卷,增刊,151-156
    [53]沈明荣,1991,岩体力学[M],上海:同济大学出版社
    [54]沈习文,邓荣贵,邓林,2007,小净距偏压公路隧道围岩应力分析[J],路基工程,第4期,90-91
    [55]孙钧,侯学渊,1987,地下结构[M],北京:科学出版社
    [56]孙钧,山岭隧道工程的技术进步[J],西部探矿工程,2000年第1期,1-6
    [57]谭忠盛等,2003,复线隧道施工爆破对既有隧道德影响分析[J],岩石力学与工程学报,第22卷,第2期,282-287
    [58]唐雨春,徐林生,金美海,2007,小净距隧道建设的若干问题综述[J],隧道建设,第27卷,第1期,22-25
    [59]铁道第二勘察设计院,2005,铁路隧道设计规范(TB10003-2005),北京:中国铁道出版社
    [60]王建宇,2004,隧道工程的技术进步[M],北京:中国铁道出版社
    [61]王明年,刘智成等,2002,软弱围岩3孔小间距平行隧道施工力学研究[J],铁道建筑技术,第4期,11-14
    [62]王新荣,2001,采用微振爆破技术组织小间距并行隧道施工[J],西部探矿工程,第5期,78-79
    [63]王毅才,2000,隧道工程[M],北京:人民交通出版社
    [64]吴波,高波,2005,城市地铁小间距隧道施工性态的力学模拟与分析[J],中国公路学报,第18卷,第3期
    [65]夏才初,龚建伍,唐颖,朱合华,2007,大断面小净距公路隧道现场监测分析研究[J],岩石力学与工程学报,第26卷,第1期,44-50
    [66]谢家杰,1964,浅埋隧道的地层压力[J].土木工程学报
    [67]谢康和,周健,2002,岩土工程有限元分析理论与应用[M].北京:科学出版社
    [68]徐爱敏等,1997,特种条件下德隧道施工——招宝山隧道德开挖[J],铁道建筑,第6期,5-9
    [69]严宗雪,张少锦,谢军,谭忠盛,2008,龙头山双洞八车道公路隧道浅埋段施工技术探讨[J],施工技术,第37卷,第4期,114-117
    [70]阳生权,1997,小间距平行隧道爆破震动加速度测试[J],爆破,第12期,38-40
    [71]杨建民,1999,金竹林双连拱公路隧道设计[J],现代隧道技术,第1期,16-20
    [72]杨小礼,眭志荣,2007,浅埋小净距偏压隧道施工工序的数值分析[J],中南大学学报(自然科学版),第38卷,第4期,64-70
    [73]姚勇,何川,2003,小净距隧道支护结构设计原则与施工措施研究[C],伍勇,刘国琦,何川等,地下铁道新技术文集,成都:西南交通大学出版社
    [74]尹光志,曹多阳,李铃,2007,复杂地质条件下隧道围岩和支护稳定性分析[J],湖南科技大学学报(自然科学版),第22卷,第2期
    [75]原部兵,2002,板桃隧道洞口段两超小净距隧道德施工[J],现代隧道技术,第2期,54-57
    [76]周玉宏,赵燕明,程崇国,2002,偏压连拱隧道施工过程的优化研究[J],岩互力学与工程学报,第21卷,第5期,679-683
    [77]中华人民共和国国家发展和改革委员会,2003,水工隧洞设计规范(SL279—2002),北京:中国电力出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700