双羧基配位超分子的合成及结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计和合成有机氢键超分子和配位氢键超分子是超分子化学的重要分支。有机氢键超分子是通过分子间的氢键、π-π堆积等非共价键作用形成的聚集体。配位氢键超分子则是通过对金属离子和配体的选择可以理性地设计和合成具有特定结构单元及特殊功能的配合物。
     本研究合成了两个双齿甜菜碱衍生物1,5-二(3-羧基吡啶基)-N-甲基二乙胺( L1)和1,5-二(4?羧基吡啶基)?N?甲基二乙胺(L2 ),并对L1的高氯酸盐进行了结构表征。用这两种配体与Zn(II)、Cd(II)和Ag(I)的不同的金属盐反应,得到了八个配合物,研究了配体对不同金属盐的配位能力及构筑配合物三维网络结构的能力。这八个配合物分别是: {[ZnL1Cl_2 ]·1.5H_2O}_n(2)、{ [ZnL1_2 ]·2ClO_4·H_2O}n(3)、{ [ZnL1(SCN) 2 ]·H_2O}n(4)、{[CdL1Cl_2 ]·H_2O}_n(5)、{[CdL1_2 ]·2ClO_4·H_2O}n(6)、[ZnL2Cl_2·H_2 O]n(7)、{[Zn_2 L2_4 (H_2O)_6 ]·4ClO_4·H_2O·DMF}n(8)和{[Ag_3 L2_2 (H_2O)]·3PF_6·4H_2 O}n(9),对所有的配合物用红外光谱和单晶X?射线衍射结构分析方法进行了表征。
     结构分析表明:(1)在配合物中,配体L1和L2中的羧基采用了三种配位模式:在与Zn(II)盐反应生成的配合物{[ZnL1Cl 2 ] ? 1.5H 2 O}n、{[ZnL1_2 ]·2ClO_4·H_2 O}_n、{[ZnL1(SCN) 2 ]·H_2O}n、[ZnL2Cl_2·H_2 O]n和{[Zn_2L2_4 (H_2O)_6 ]·4ClO_4·H_2O·DMF}_n中全部采用单齿模式;在与Cd(II)盐反应生成的配合物{[CdL1Cl_2 ]·H_2O}n中采用双齿螯合配位,而在配合物{[CdL1_2 ]·2ClO_4·H_2O}n中同时出现了单齿和双齿螯合两种配位模式;在配合物{[Ag_3 L2_2 (H_2 O)]·3PF6·4H_2O}n中是以双齿桥联的方式参与配位的。(2)配合物{[ZnL1Cl_2]·1.5H_2O}n和{[CdL1Cl_2 ]·H_2O}n是由L1分别和ZnCl_2、CdCl_2反应得到的,但是由于金属离子的不同,使得配体采用不同配位模式。(3)配合物{[ZnL1Cl·2]·1.5H_2O}n和{[ZnL1_2 ]·2ClO_4·H_2O}n是由L1分别和ZnCl_2、Z n(ClO_4 )2反应得到的,但是由于阴离子的不同,对中心原子的配位环境产生了重要影响;在配合物{[Zn_2 L2_4 (H_2O)_6 ]·4ClO_4·H_2 O·DMF}n和[ZnL2Cl 2 ? H 2 O]n中也存在相似的规律。(4)氢键在网络构筑中发挥了重要作用, [HL_2 ClO 4]n、[ZnL2Cl 2 ? H 2 O]n和{[Zn 2 L2 4 (H 2 O) 6 ] ? 4ClO4 ? H 2 O ? DMF}n中一维结构的构筑都依赖于氢键。(5)配合物{[Ag_3 L2_2 (H_2 O)]·3PF6·4H_2 O}n中,Ag(I)中心原子被配体桥联形成了一维的Ag(I)原子簇结构;在该化合物中,一维的配位链通过与PF6-阴离子的C ? H L F弱氢键作用而扩展为三维隧道结构
Design and synthesis of organic hydrogen-bonded and coordination hydrogen- bonded supramolecules are an important field in supramolecular chemistry. Organic hydrogen-bonded supramolecules is formed by non-bonding interactions, such as hydrogen bonds,π-πstacking etc. between molecules, while coordination hydrogen-bonded supramolecules of special structure and special functions can be reasonably designed and synthesized by properly choosing metal ions and ligands.
     In present studies, two novel double betaine ligands, namely 1,5·bis(3-carboxy- pyridinium)-N-methyl-diethylamine (L1) and 1,5-bis(4-carboxy-pyridinium)-N– methyl-diethylamine ( L2 ) have been synthesized and allowed to interact with various metal salts of Zn(II),Cd(II) and Ag(I) to investigate their coordination behavior and the ability of constructing coordination supramolecules. The single crystals of eight coordination compounds with the former two ligands, namely L1 and L2 , were obtained, and their molecular and crystal structures have been determined by X-ray single crystal structure analysis. The compounds include: {[ZnL1Cl_2 ]·1.5H_2 O}n(2), {[ZnL1_2 ]·2ClO_4·H_2 O}_n(3), {[ZnL1(SCN) 2 ]·H 2 O}n(4),{[CdL1Cl_2 ]·H_2 O}n(5), {[CdL1_2 ]·2ClO 4·H_2O}n(6), [ZnL_2Cl_2·H 2 O]n(7),{[Zn_2 L2_4 (H_2 O)_6 ]·4ClO_4·H_ 2 O·DMF}n(8) and {[Ag 3 L2_2 (H_2 O)]·3PF6·4H 2 O}n(9).
     The results show that: (1) The carboxylate group involved in ligand of L adopted three coordination fashions. Monodentate mode has been acted in compounds {[ZnL1Cl_2 ]·1.5H_2 O}n, {[ZnL1_2 ]·2ClO_4·H_2O}n, {[ZnL1(SCN) 2 ]·H_ 2 O}n,[ZnL2Cl_2·H_2 O]n and {[Zn_2 L2_4 (H_2 O)_6 ]·4ClO_4·H_2O·DMF}n, while chelate coord ination mode has been adopted in compounds {[CdL1Cl 2 ]·H 2 O}n. In compound {[CdL1_2 ]·2ClO_4·H_2O}n, one of carboxylate group of L1 acts in monodentate mode and the other in chelate coordination mode. However, syn-syn bridging mode was adopted in compound {[Ag_3 L2_2 (H 2 O)]·3PF6·4H 2 O}n. (2) Metal ion with different coordination geometry and different metal atom radius will affect the formation of network. In compound {[ZnL1Cl_2 ]·1.5H_2 O}nand {[CdL1Cl_2 ]·H_2 O}n, the carboxylate group adopted different coordination mode due to different coordination geometry and different metal atom radius. (3) In coordination polymers {[ZnL1Cl_2 ]·1.5H_2O}n and derived from the ligand L1, the cations are Zn(II) , but the anions are Cl - and ClO4·, respectively; The same law is exhibited in [ZnL2Cl_2·H_2 O]n and {[Zn_2 L2_4 (H_2O) 6 ]·4ClO_4·H_2O·DMF}n.
     The nature of anions has great influence on the configuration of these coordination polymers as revealed in the structure of {[ZnL1Cl 2 ]·1.5H 2 O}n and {[ZnL12 ]·2ClO_4·H_2 O}n, [ZnL2Cl_2·H_2O]n and {[Zn_2 L2_4 (H_2 O)_6 ]·4ClO_4·H 2 O·DMF}n. (4) The hydrogen bonds take an important part in one-dimensional formation of [HL1ClO_4 ]n , [ZnL2Cl_2·H_2 O]n and {[Zn_2 L2_4 (H_2 O)_6 ]·4ClO_4·H_2 O·DMF}n. (5) Silver (I) has various coordination modes and silver (I) cluster has been formed through the bridging of ligand as shown in compound {[Ag_3 L2_2 (H_2O)]·3PF6·4H 2 O}n. Although the anion PF6 - has not coordinated to metal ion, it plays an import role in the formation of 3D.
引文
[1] J. M. Lehn, Supramolecular Chemistry--Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem. Int. Ed. Engl., 1989, 27, 89-112.
    [2] F. J. Dietrich, Molecular recognition in aqueous solution: Supermolecular complexation and catalysis (SYMP) [J], Chem. Educ., 1990, 67(10): 813.
    [3]a) B. Dietrich, P. Viout, J. M. Lehn,“Macrocyclic Chemistry:Aspects of Organic and Inorganic Supra Molecular Chemistry, Weinheim Germany, 1993. b) Yoshikawa, Sadao, Murakamic, Ed,“New Frontierin Supra Molecular Chemistry, Mita, Tokyo 1990.
    [4]周公度,超分子结构化学,北京:北京大学化学学院,北京100871。
    [5] Y. Liu, C. C. You, H. Y. Zhang, Supramolecular chemistry: Molecular recognition and assembly of synthetic receptors, 2001, 3-4.
    [6] C. L. D. Gibb, B. C. Gibb, Estimating the efficiency of self-assemblies, J. Supram. Chem., 2001, 1, 39.
    [7] P. J. Stang, B. Olenyuk, Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra, Acc. Chem. Res., 1997, 30, 502.
    [8] B. Olenyuk, A. Fechtenkotter, P. J. Stang, Molecular architecture of cyclic nanostructures: use of co-ordination chemistry in the building of supermolecules with predefined geometric shapes, J. Chem. Soc., Dalton Trans., 1998, 1707.
    [9] C. C. Jiang, Y. G. Wei, Q. Liu, Self-assembly of a novel nanoscale giant cluster: [Mo176O496 (OH) 32(H2O)80] et al, Chem. Commun., 1998,1937.
    [10] X. L. Jin, X. J. Xie, K. L. Tang, Syntheses and X-ray crystal structures of dumbbell-shaped bis-fullerene tungsten and molybdenum complexes, Chem. Commun., 2002, 750.
    [11] L. Carlucci, G. Ciani, et al, Novel Networks of Unusually Coordinated Silver(I) Cations: The Wafer-Like Structure of [Ag(pyz)2][Ag2(pyz)5](PF6)3·2G and the Simple Cubic Frame of [Ag(pyz)3](SbF6), Angew. Chem. Int. Ed. Eng1., 1995, 34, 1895.
    [12] M. L. Tong, et al, Clathration of Two-Dimensional Coordination Polymers: Synthesis and Structures of [M(4,4‘-bpy)2(H2O)2](ClO4)2·(2,4‘-bpy)2·H2O and [Cu(4,4’-bpy)2(H2O)2](ClO4)4·(4,4’-H2Bpy) (M = Cd(II), Zn(II) and bpy = Bipyridine), Inorg. Chem., 1998, 37, 2645.
    [13](a) J. Lu, et al, Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4’-Bipyridine: Syntheses and Structures, Inorg. Chem., 1997, 36, 923. (b) O. S. Jung, S. H. Park, Solvent-Dependent Structures of Co(NO3)2 with 1,2-Bis(4-pyridyl)ethylene. Interconversion of Molecular Ladders versus Mono nuclear Complexes, Inorg. Chem., 1998, 37, 5781. (c) M. A. Withersby, A. J. Blake, et al, Solvent Control in the Synthesis of 3,6-Bis (pyridine-3-yl)-1,2,4,5-tetrazine-Bridged Cadmium(II) and Zinc(II) Coordination Polymers, Inorg. Chem., 1999, 38, 2259.
    [14] A. J. Blake, et al, Controlling copper(I) halide framework formation using N-donor bridging ligand symmetry: use of 1,3,5-triazine to construct architectures with threefold symmetry, J. Chem. Soc., Dalton Trans., 1999, 2103.
    [15](a) L. Pan,X. Y. Huang, J. Li, et al, W-Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation. Angew. Chem. int. Ed., 2000, 39, 527. (b) N. Matsumoto, Y. Motoda, et al, pH-Dependent Monomer ? Oligomer Interconversion of Copper(II) Complexes with N-(2-R-imidazol-4-ylmethylidene)-2- aminoethylpyridine (R = Methyl, Phenyl), Inorg. Chem., 1999, 38, l165.
    [16] Kondo. M, T. Yoshitomi, K. Seki, et al, Three dimensional framework with channeling cavities for small molecules: M (4,4’-bPY)3(NO3)4 (M =Co,Ni,Zn) [J], Angew. Chem. Int. Ed. Engl., 1997, 36, 1725-1727.
    [17] K. N. Power, T. L. Hennigar, M. J. Zaworotko, Crystal structure of the coordination polymer [Co (bipy) 1,3(NO3)4].cs2(bipy=4,4’-bipyridine), a new motif for a network sustained by‘T-shaped’building block [J]. New. J. Chem., 1998, 177-181.
    [18] O. M. Yaghi, H. Li, T. L. Groy, A molecular railroad with large pores: synthesis and structure of Ni(4,4’-bpy)2.s(H2O)2 (ClO4)fi.5(4,4’-bpy)”2H2O[J], Inorg. Chem., 1997, 36, 4292-4293.
    [19] C. V. K. Sharma, R. D. Rogers, Molecular Chinese blinds: self-organization of tetrameter to lanthanide complexes in to open, chiral hydrogen bonded networks [J], Chem. Commun., 1999, 83-84.
    [20] L. Carlucci, C. Ciani, D. M. Proserpio, A sirloin,extended networks via hydrogen bond cross-linkages of [M(bipy)](M=Zn2+ or Fe2+, bipy=4,4’-bipyridine) linear co-ordination polymers[J], Chem. Soc. Dalton Trans., 1997, 1801-1803.
    [21] S. D. Huang, R. G. Xiong, Molecular recognition of organic ho-mophones coordination polymers: design and construction of nonlinear optical supramolecular assembles [J], Polyhe-dron1997, 16, 3929-3939.
    [22] S. Kitagawa, M. Kondo, Functional microspore chemistry of crystalline metal complex-assembled compounds[J], Bul1. Chem. Soc. Jpn., 1998, 71, 1739-1753.
    [23] Q. X. Jia, et al, Manganese (II) coordination polymers with bis(5-tetrazolyl) methane: Synthesis, structure and magnetic properties, Inorg. Chim. Acta., 362, (2009) 2213-2216.
    [24] H. F. Zhu, Z. H. Zhang, W. Y. Sun, et al., Syntheses, Structures, and Properties of Two-Dimensional Alkaline Earth Metal Complexes with Flexible Tripodal Tricarboxylate Ligands, Crystal Growth & Design, 2005, 5(1), 177-182.
    [25] M. B. Zaman, M. D. Smith, et al, New Cd(II)-,Co(II)-,and Cu(II)-containing Coordination Polymers Synthesized by Using the Rigid Ligand 1,2-Bis(3- pyridyl) ethyne(3,3’-DPA), Inorg. Chem., 2002, 41, 4895-49036.
    [26] Y. B. Dong, R. C. Layland, M. D. Smith, et al, Synthesis and Characterization of One-Dimensional Coordination Polymers Generated from Cadmium Nitrate and Bipyridine Ligands, Inorg. Chem., 1999, 38, 3056-3060.
    [27] S. R. Batten, R. Robson, Angew Interpenetrating Nets: Ordered, Periodic Entanglement, Chem. Int. Ed., 1998, 37, 1460.
    [28] S. Leininger, B. Olenyuk, P. J. Stang, Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals, Chem. Rev., 2000, 100, 853.
    [29] O. M. Yaghi, H. Li, C. Davis, et al, Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids?, Acc. Chem. Res., 1998, 31, 474.
    [30]朱声逾,周永洽,申泮文,配位化学简明教程,天津:天津科学技术出版社,1990。
    [31] Y. B. Dong, J. P. Ma, R. Q. Huang, Synthesis and Characterization of New Coordination Polymers Generated form Oxadiazole-Containing Organic Ligands and Inorganic Silver (I) Salts, Inorg. Chem., 2003, 42, 294-300.
    [32]周公度,段连运,结构化学基础,北京:北京大学出版社, 1995。
    [33] X. Q. Song, et al, Structure variation and luminescence properties of lanthanide complexes with 1, 9-bis[2-(2’-picolylaminoformyl)]-1,4,7,9-tetraoxadecane Journal of Solid State Chemistry, 182 (2009) 841-848.
    [34] H. Z. Kou, et al, Pseudohalide-bridged five-coordinate Ni(II) or Co(II) complexes with bulky bidentate ligands: Magneto-structural correlationship, Inorg. Chim. Acta., 361 (2008) 2396-2406.
    [35] L. J. Prints, D. N. Reinhoudt, P. Timmerman, Noncovalent Synthesis Using Hydrogen Bonding, Angew. Chem. Int. Ed, 2001, 40:2382-2426.
    [36] R. Taylor, O. Kennard, Hydrogen-bond geometry in organic crystals, Acc. Chem. Res., 1984, 17, 320.
    [37] J. A. R. P. Sárma, G. H. Desiraju, The role of Cl L Cl and C ? H L O interactions in the crystal engineering of 4-.ANG. short-axis structures, Acc. Chem. Res., 1986, 19, 222.
    [38] R. Taylor, O. Kennard, W. J. Versichel, Geometry of the nitrogen-hydrogenL oxygen-carbon( N ? H L O ?C) hydrogen bond, Three-center(bifurcated) and four- center(trifurcated) bonds, J. Am. Chem. Soc., 1984, 106, 244.
    [39] G. A. Jeffrey, J. Mitra, Three-center (bifurcated) hydrogen bonding in the crystal structures of amino acids J. Am. Chem. Soc., 1984, l06, 5546.
    [40] Double Hydrogen Bond- and Stacking-Assembled Two-Dimensional Copper(I) Complex of 2-Hydroxyquinoxaline, Inorg. Chem., 1997, 36, 2688-2690.
    [41] L. Snchez, M. T. Rispens, J. C. Hummelen, A Supramolecular Array of Fullerenes by Quadruple Hydrogen Bonding, Angew. Chem. Int. Ed., 2002, 41, 838-840.
    [42] T. Steiner, G. Kocllner, Hydrogen bonds withπ-acceptors in Proteins: frequence and role in stabilizing local 3D structures [J], J. Mol. Biol., 2001, 305, 535-557.
    [43] C. A. Janiak, Critical account onπ?πstacking in metal complexes with aromatic nitrogen?containing ligands[J], J. Chem. Soc. Dalton Trans., 2000, 21, 3885-3896 .
    [44] M. A. Glowka, D. Martynowski, K. Kozlowska, Stacking of six?membered aromatic rings in crystals[J], J. Mol. Struct., 1999, 447, 81-89.
    [45] C. A. Hunter, J. K. M. Sanders, The nature ofπ?πinteractions [J], J. Am. Chem. Soc., 1990, 112, 5525-5534.
    [46] Y. Yang, Supramolecular networks of hexanuclear cadmium (II): Synthesis, crystal structure and emission property, Inorg. Chim. Acta., 362 (2009), 3065-3068.
    [47] S. L. Li, T. C. W. Mak, Synthesis and structural characterization of discrete mono-, bi-, tri-, and tetranuclear complexes of cadmium(II) with triphenylphosphonio propionate, Inorg. Chim. Acta., 1997, 258, 11.
    [48] Brain S. Furniss, Antory J. Hannaford, et al, Vogel Practical Organic Chemistry, Fifth Edition, 1078-1079.
    [49] B. Smith, Infrared Spectral Interpretation CRC, Press: New York Washington D. C, 1999.
    [50]中本一雄,无机和配位化合物的红外和拉曼光谱(黄德如,汪仁庆译),北京:化学工业出版社,1986。
    [51] G. M. Sheldick, SHELXTL Version 5: Structure Determination Software Programs, Madison, WI, USA: Siemens Industrial Automation Inc., 1995.
    [52] Y. H. Liu, Y. L. Lu, H. C. Wu, et al, [CdII(bpdc)·H2O]n: A Robust, Thermally Stable Porous Framework through a Combination of a 2D Grid and a CadmiumDicarboxylate Cluster Chain (H2bpdc = 2,2’-Bipyridyl-4,4’-di- carboxylic Acid), Inorganic Chemistry, 2002, 41(9), 2592-2597.
    [53] W. B. Lin, O. R. Evans, Y. Cui, Synthesis and X-ray Structures of Zinc and Cadmium Pyridinecarboxylate Coordination Networks, Crystal Growth & Design, 2002, 2(5), 409-414.
    [54] J. C. Dai, X. T. Wu, Z. Y. Fu, et al, Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)-Trimesate Coordination Polymers with Different Coordination Architectures, Inorganic Chemistry, 2002, 41(6), 1391-1396.
    [55]许寿昌,有机化学(第二版)高等教育出版社,1994。
    [56]孙亚光,二元羧酸根桥联金属的超分子作用及捕收性能研究[D],沈阳:东北大学,2005。
    [57] C. A. Hunter, Meldola Lecture: The role of aromatic interactions in molecular recognition, Chem. Soc. Rev., 1994, 101.
    [58](a) D. Tsaousis, A. Michaelides, S. Skoulika, et al, A 2-D Framework Built from the Tetranuclear Ag4(2,2-dimethylglutarate)2 Oligomeric Unit, J. Solid State Chem., 1997,134, 332-337. (b) G. Smith, A. N. Reddy, K. A. Byriel, et al, Preparation and Crystal Structures of the Silver(I) Carboxylates [Ag2{C6H4(CO2)2}(NH3)2], [NH4][Ag5{C6H3(CO2)3}2 (NH3)2(H2O)]?H2O and [NH4][Ag{C4H2N2(CO2)2}], J. Chem. Soc., Dalton Trans., 1995, 3565.
    [59] D. F. Sun, R. Cao, W. H. Bi, et al, Synthesis and characterizations of a series of silver-carboxylate polymers, Inorg. Chim. Act., 2004, 357, 991-1001.
    [60]游效曾,孟庆金,韩万书,配位化学进展,北京:高等教育出版社,2000, 133 -146。
    [61] R. Q. Lü, et al, Theoretical Study on Ionic Liquid Based on 1-Ethyl-3-Methyl - Imidazolium Cation and Hexafluorophosphate or Tetrafluoroborate, Journal of Natural Gas Chemistry, 16(2007),428-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700