海底隧道衬砌水压力分布规律和结构受力特征模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,今后几十年,我国要修建数条海底隧道。要在具有恒定高水头的海底修建隧道,就不可避免的遇到:防排水方式的设置,作用在衬砌结构上水压力的确定,水荷载和土荷载共同作用的耦合场中衬砌结构的受力特征,等等一系列问题,这些问题具有极高的工程实践价值。本文以我国大陆地区第一条以钻爆法修建的海底隧道——厦门翔安海底隧道为工程背景,以模型试验为主要研究方法,同时结合理论计算、数值模拟分析等多种手段,对隧道注浆圈、衬砌背后水荷载的分布规律,应力场、滲流场及应力场和渗流场共同作用下衬砌结构的受力特征进行了研究,主要研究成果如下:
     (1)通过对相似理论和模型试验原理的研究,求得了应力场、渗流场、应力场和渗流场共同作用的耦合场的相似准则。求得了均质围岩中针对公路隧道防排水形式下注浆圈外表面、衬砌背后水压力的理论解析公式。以原型为背景分析了衬砌背后水压力与围岩渗透系数、注浆圈渗透系数、注浆圈厚度和隧道控制排水量各个变量之间的关系。
     (2)利用隧道及地下工程试验中心研发的水土共同作用模型试验台架系统、引进了光纤光栅应变测试系统,以F4全强风化囊地段的S5d隧道工程为原型,研究了渗流场中注浆圈外、衬砌背后水压力在全封堵方式下、限排方式下和逐级加大水头的过程中的分布变化规律,得到了注浆圈的水压折减作用规律。进行了隧道模型在应力场、渗流场、应力场和渗流场共同作用的耦合场中的模型试验。
     (3)利用水压力作用系数的概念,形象说明了注浆圈外和衬砌背后水压力的分布和变化规律。注浆圈外侧水压分布近似圆形,衬砌背后水压分布近似“葫芦”状。环向盲管的设置对结构受力有利。
     (4)依靠光纤光栅精确的应变数据采集,得出了衬砌结构在应力场、滲流场和耦合场中的形变特征和应力变化规律。隧道结构在应力场和渗流场共同作用的耦合场中受力最不利,其次是渗流场,最后是在应力场中的受力。隧道结构受力的最不利部位为仰拱内表面,其次是拱脚外表面,最后是拱顶内表面。水荷载是隧道结构设计的主要荷载,衬砌仰拱部位是设计的重中之重。
     (5)隧道衬砌结构的应力和地下水静水头近似成正比例线性关系。限排方式下,随着排水量的增大,水压力作用系数减小,隧道衬砌结构的安全系数随之增大,衬砌结构上的应力随之减小。地下水渗流改变了土体结构,渗流体积力、渗透压力施加在衬砌结构上,隧道结构土产生应力增量,因此耦合场对衬砌结构的作用要大于应力场和渗流场单独作用的叠加。
     (6)结合相似原理和模型试验的特点,推得返回工程原型的相似准则,原型隧道衬砌结构的应力和内力计算公式,最终得出了衬砌结构各部位在应力场、渗流场和耦合场中的安全系数。
With the development of the social economy, our country will have to construct several subsea tunnels in the next several years. It is ineviTab.meeting many problems while people construct tunnels under the sea with the constant high hydraulic pressure. The high valuable problems are the setting of waterproof and drainage system, the value of the water pressure acting on the lining structure, the characteristics of the lining structure in coupled field with the interaction of water load and soil load. Considering the first subsea tunnel by drilling and blasting method in China mainland——subsea tunnel on Xiamen Xiang'an as the engineering background, using model test for the major research method, combined with other methods, such as the theoretical calculations, the numerical simulation analysis and so on, this thesis has made research on the distribution law of water pressure upon lining and outer surface of grouted ring, and the stress characteristics of lining structure in stress filed, seepage filed and coupled filed. Major research results are as follows:
     (1)Based on the study of the similar theory and the principles of model test, the similar criteria in stress filed, seepage filed and coupled filed, the theory analysis formula of the water pressure at outer surface of grouted ring and lining back in case of highway tunnel waterproof and drainage style are deduced. The relationship between the water pressure on lining back and the permeability coefficient of the surrounding rock, the permeability coefficient and the thickness of the grouted ring, the controlled drainage volume are analyzed in practical engineering.
     (2)Using the model test system researched by Tunnel &Underground Engineering Test Research Center, and the Fiber Bragg Grating Strain-testing System, as the tunnel project S5d in the strong decomposed bag F4 for the prototype, the distribution law of the water pressure at the outer surface of the grouted ring and the lining back in the process of the entire plugging, limited drainage and increasing the water load are researched. The law of water pressure reduction by grouted ring is attained. The model test in stress filed, seepage filed and coupled filed are carried out.
     (3)Using the concept of water pressure action coefficient, the distribution and change law of the water pressure at the outer surface of the grouted ring and the lining back were vividly illustrated. The distribution of the water pressure at the outer surface of the grouted ring approximates a circle. The distribution of the water pressure at the lining back approximates a calabash. The setting of ring blind pipe is advantageous to the structure.
     (4)By the precise date collected by the FBG, the deformation characteristics and the stress change law of the lining structure in stress filed, seepage filed and coupled field are attained. The runnel structure is the most disadvantageous in the coupled field, next is in the seepage field, and finally is in the stress field. The most unfavorable part of the tunnel structure is the inner surface of the invert, next is outer surface of the arch foot, and finally is in the inner surface of the vault crown. For design the tunnel structure, the water load is the main load.
     (5)The stress of the tunnel structure is in proportion to the groundwater static water head approximately. In the process of the limited drainage, with the increasing of the displacement, water pressure action coefficient decreases, the safety coefficient of the tunnel lining structure increases, the stress of the lining structure decreases. The groundwater seepage flow changes the structure of the soil, so the seepage body force and the seepage pressure act on the lining structure, the stress increment of the tunnel structure is produced. So for acting on the lining structure, the influence of the coupled field is more than the superposition influence of the stress field and the seepage field.
     (6)Combined with similar theory and the characteristics of the model test, the similar criteria of returning to engineering prototype, the formula of the stress and the internal force of the lining structure are deduced. Finally the safety factor of the lining structure in the stress field, the seepage field and the coupled field are attained.
引文
铩颷1]中交第二公路勘察设计研究院.厦门东通道工程可行性研究报告.2003
    [2]中交第二公路勘察设计研究院.厦门市路桥建设投资建设总公司.厦门翔安隧道施工图设计.2005.2
    [3]王梦恕.蓬勃发展的中国水底隧道.海底与水下隧道国际学术报告会.北京:2005
    [4]曾超、张建斌.厦门翔安(海底)隧道土建工程简介.海底与水下隧道国际学术报告会.北京:2005
    [5]郭小红.对厦门东通道海底隧道几个设计问题的探讨.海底与水下隧道国际学术报告会.北京:2005
    [6]李廷春,李术才,陈卫忠,邱详波.厦门海底隧道的流固耦合分析.岩土工程学报.2004(26)
    [7]徐继源.日本海下隧道.隧道译丛.1990(5).54-56
    [8]T.Inoue,R.Shimizu.等.叶欢译.青函隧道中抵抗盐害的措施.隧道译丛.1990(12).34-38
    [9]Syogo Matsuo.孙卫明译.日本青函隧道处理海底涌水的施工方法.隧道译丛.1989(4).27-31
    [10]Toshitaka.张可诚译.青函隧道的勘测.隧道译丛.1988(8).37-45
    [11]C.D Warren,P.M Vardey.孙全德译.英吉利海峡隧道贯通中的岩土监测.隧道译丛.1994(1).64
    [12]H.Bejui,T.Avril.何声虎译.法国修建海底隧洞的经验.隧道译丛.1988(8).8-18
    [13]邓德全.世界最宏伟地下工程-英法海峡隧道.北京:人民交通出版社.1995
    [14]谢仁根.城陵矶长江穿越隧道泥水盾构施工技术.隧道建设.2004(6).20-23
    [15]张芹,张琳等.海底隧道衬砌结构静力分析.土工基础.2006(20).71-74
    [16]铁路隧道设计规范(TB 10003-2005 J 117-2005).北京:中国铁道出版社,2001
    [17]公路隧道设计规范(JTG D70-2004).北京:人民交通出版社,2004
    [18]水工隧道设计规范(DL/T5195-2004).北京:中国计划出版社,2004
    [19]王建宁.再谈隧道衬砌水压力.现代隧道技术.2003(6).5-10
    [20]张有天.岩石隧道衬砌外水压力问题的讨论.现代隧道技术.2003(6).1-4
    [21]张有天.水工隧洞及压力管道外水压力修正系数.水力发电.1996(12).30-35
    [22]张有天.地下结构的地下水荷载.工程力学增刊.1996
    [23]张有天、张武功.再论隧洞水荷载的静力计算.水利学报.1985(3)
    [24]张有天.论水工隧洞外水荷载问题.地下工程经验交流会论文选集.地质出版社.1986
    [25]张有天.地下结构的地下水荷载.工程力学增刊.1996
    [26]蔡晓鸿、蔡勇平.水工压力隧洞结构应力计算.中国水利水电出版社.2004
    [27]李定越.铁路隧道衬砌水荷载探讨.铁路标准设计.1993(9).9-13
    [28]王建宇、胡元芳.对岩石隧道衬砌结构防水问题的讨论.现代隧道技术.2001(1)
    [29]王建宇.对隧道工程技术若干问题的质疑.现代隧道技术.2002年增刊
    [30]Lee I.M.,Park K.J.,Nam S.W.,Analysis of an underwater tunnel with the consideration ofseepage,Tunnel and Metropolises,Negro Jr & Ferreira(eds),Balkema,Rotterdam,1998.315-319
    [31]In-Mo Lee,Seok-Woo Nam.The study of seepage forces acting on the tunnel lining and tunnelface in shallow tunnels.Tunnelling and Underground Space Technology 16(2001)31-40
    [32]In-Mo Lee,Seok-Woo Nam.Effect of tunnel advance rate on seepage forces acting on theunderwater tunnel face.Tunnelling and Underground Space Technology 19(2004)273-281
    [33]Bobet,A.Effect of pore water pressure on tunnel support during static and seismic loading,Tunnelling and underground space technology,2003(18),377-393
    铩颷34]Bobet,A.Analytical solutions for shallow tunnels in saturated ground.ASCE Journal ofEng.Mech.12,1258-1266
    [35]关宝树译.青函隧道土压研究报告.隧道译丛.1980(10).38-50
    [36]许彦卿.岩体裂隙系统渗流场与应力场耦合模型.地质灾害与环境保护.1996(1).31-34
    [37]徐曾和.渗流的流固耦合问题及应用渗流的流固耦合问题及应用.沈阳:东北大学,1998
    [38]黄涛.渗流场与应力场耦合环境下裂隙围岩型隧道涌水量预测的研究.成都:西南交通大学,1997
    [39]许彦卿.岩体裂隙系统渗流场与应力场耦合模型.地质灾害与环境保护.1996(1).31-34
    [40]懂国贤.水下公路隧道.人民交通出版社.1984
    [41]邹成杰.水利水电岩溶工程地质.水利电力出版社.1994
    [42]周小文、濮家骝、殷昆亭、包承纲.南水北调穿黄隧洞衬砌土压力离心试验研究.水利水电技术.1999(30).58-60
    [43]姚燕明、杨龙才、刘建国.地铁车站施工对地面沉降影响的试验分析.城市轨道交通研究.2002(5).70-73
    [44]张杰、骆建军、吴波.地铁区间三连拱隧道施工地表沉降的数值模拟及模型试验研究.隧道建设.2005(25).3-6
    [45]孙钧候学渊.地下结构.北京:科学出版社.1988
    [46]程桦、孙钧、吕渊.软弱围岩复合式隧道衬砌模型试验研究.岩石力学与工程学报.1997(16).162-170
    [47]李志业、王明年、翁汉民.大跨度公路隧道结构模型试验研究.铁道学报.1996(18).114-120
    [48]钟新樵.土质偏压隧道衬砌模型试验分析.西南交通大学学报.1996(31).602-606
    [49]林刚、何川.双连拱公路隧道支护结构体系试验研究.西南交通大徐学报.1997(16).162-170
    [50]唐志成、何川、林刚.地铁盾构隧道管片结构力学行为模型试验研究.岩土工程学报.2005(27).85-89
    [51]周乐凡.考虑外水荷载作用的铁路隧道衬砌结构设计研究[学位论文].铁道科学院研究院.2004
    [52]中铁西南科学研究院.圆梁山隧道室内模型试验分项研究报告.中铁西南科学研究院.2004
    [53]左尔启等著.模型试验的理论和方法.北京:水利水电出版社.1983
    [54]水利水电科学研究院等.水工模型试验(第二版).北京:水利水电出版社.1985
    [55][意]E.富马加利著.蒋彭年 彭光履 赵欣译.静力学模型与地力学模型.北京:水利水电出版社.1979年
    [56]华东水利学院.模型试验量测技术.北京:水利水电出版社.1983
    [57]王华、Asaku.T.隧道衬砌模型试验.隧道译丛.1994(3).58-80
    [58]陈兴华.脆性材料结构模型实验.北京:水利水电出版社.1984.8
    [59]李鸿昌.矿山压力的相似模拟试验.徐州:中国矿业出版社.1988.12
    [60]董志明.厦门翔安海底隧道结构模型试验研究[学位论文].北京交通大学.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700