超低能量阈高纯锗探测器的暗物质直接探测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暗物质是21世纪物理学最基本的课题之一。暗物质研究对于认识宇宙的起源、演变以及物质的本源、相互作用都有着十分重要的意义。近年来,10GeV·c-2以下低质量区域的暗物质粒子直接探测成为了暗物质研究的一个焦点。
     本课题作为中国暗物质实验(ChinaDark matter EXperiment,CDEX)研究项目的第一步,使用高纯锗探测器在10GeV·c-2以下的低质量区进行暗物质粒子的搜寻。
     为了降低环境本底对事例率的影响,实验选在了世界上岩石覆盖最深的中国锦屏地下实验室(China JinPing underground Laboratory,CJPL),构建了包括聚乙烯、铅、无氧铜等在内的优良的被动屏蔽系统,并且采用碘化钠探测器搭建了反康普顿主动屏蔽系统。为了获得低的能量阈值,本课题以20g超低能量阈高纯锗探测器为主体建立了包括探测器及液氮灌装系统,电子学信号处理及数据获取系统,数据采集软件系统三大部分的实验测量装置。经过调试与测试,该实验测量装置在9keV以下能区的线性偏离小于0.2%;在5keV的能量分辨率(半高宽)达到约200eV;噪声水平(半高宽)达到约120eV,可以实现220eV的能量阈值。这些性能基本满足低质量区暗物质实验研究的要求。
     为了降低噪声和颤噪等干扰,本课题建立了基于信号时间关系以及脉冲形状的分析方法,通过数据质量检查、物理事例筛选及效率修正,最终得出有效的物理事例能谱。
     本课题基于42天的实验数据,采用弹性散射理论模型和最大间隙法的统计学方法做了仔细的物理分析,给出了暗物质截面和暗物质质量二维参数的排除线结果。暗物质粒子质量在2-4GeV·c-2区域的测量灵敏度达到了国际最好的水平。
     另一方面,为了实现更高的灵敏度,CDEX正在升级更大质量的锗探测器。本课题对1kg P型点接触电极高纯锗探测器进行了测试研究,总结了大质量探测器的一些新的分析方法,为今后开展暗物质研究提供了良好借鉴。
     本课题利用20g超低能量阈高纯锗探测器系统地开展了低质量区的暗物质实验研究,是国内的首次尝试。基于0.207kg·day的有效数据,在2-4GeV·c-2的暗物质低质量区达到了国际最灵敏的水平。同时为CDEX今后的暗物质实验研究积累了经验。
Dark matter is one of the most fundamental subjects of physics in the21st century.Research of dark matter holds great significance to the extent that it can helpunderstanding the origin and evolution of our universe, as well as the basis andinteraction of matter. The direct detection of dark matter searches in the low massregion under10GeV·c-2becomes a new research topic of focus in recent years.
     As the first step of China Dark matter EXperiment (CDEX) project, thisdissertation work is focused on dark matter searching in the low mass region (below10GeV·c-2) with High-purity Germanium detector.
     To lower the background event rate, we set up our experiment in the world’sdeepest rock overburden China JinPing underground Laboratory, constructed a superiorpassive shielding system containing polyethylene, lead, copper, etc., and applied ananti-Compton active shielding system with a NaI detector. To practice low energythreshold, a20g Ultra-Low Energy threshold Germanium detector (20g-ULEGe) wasused as the essential part of the experiment setup, which included the detector and liquidnitrogen filling system, the electronics system of signal processing and data taking, andthe DAQ software system. Through the commissioning and testing, the experimentsetup realized an energy nonlinearity of less than0.2%below9keV, an energyresolution (full width at half maximum) of around200eV, and a noise level of roughly120eV which can provide potential merit of220eV energy threshold. These goodperformances are able to meet the demand of dark matter research below10GeV·c-2low mass region.
     A data analysis method based on time relationship and pulse shape characteristicswas established to filter noise and microphonics events. Data quality check, physicsevent selection and corresponding efficiency correction are carried out to derive thespectrum of selected physics events.
     With the experiment data of42days’ livetime, physics interpretation was carefullycarried out using elastic scattering theory and the maximum gap statistical method. Theexclusion curve in the parameter space of cross section and dark matter mass was plotted.The result shows the most sensitive behavior of dark matter searches at2-4GeV·c-2in the world.
     On the other hand, CDEX is upgrading more massive germanium detectors toachieve better sensitivity. A1kg P-type Point Contact Germanium detector was set upand tested. Several new analysis methods were summarized for the larger detector,which could be a good reference for its upcoming dark matter research.
     The attempt of dark matter detection using20g-ULEGe in the low mass regionincluded in this dissertation is the first dark matter direct detection in China. The mostsensitive result within2-4GeV·c-2was achieved with0.207kg·day’s effective data.This work underlies further dark matter research of the CDEX new phase project.
引文
[1]崔振华,陈丹.世界天文学史.长春:吉林教育出版社,1993.
    [2] Halpern P.探寻万物至理——大强子对撞机.李晟,译.上海:上海教育出版社,2011.
    [3] Perkins D H. Introduction to High Energy Physics.4th ed. Cambridge: Cambridge UniversityPress,2000.
    [4] CERN experiments observe particle consistent with long-sought Higgs boson [EB/OL].(2012-07-04)[2013-03-19]. http://press.web.cern.ch/press-releases/2012/07/cern-experiments-observe-particle-consistent-long-sought-higgs-boson.
    [5] New results indicate that new particle is a Higgs boson [EB/OL].(2013-03-14)[2013-03-19].http://home.web.cern.ch/about/updates/2013/03/new-results-indicate-new-particle-higgs-boson.
    [6] Sanders R H. THE DARK MATTER PROBLEM: A Historical Perspective. New York:Cambridge University Press,2010.
    [7] Oort J H. The force exerted by the stellar system in the direction perpendicular to the galacticplane and some related problems. Bulletin of the Astronomical Institutes of the Netherlands,1932,6:249-287.
    [8] Zwicky F. Spectral displacement of extra-galactic nebulae. Helvetica Physica Acta,1933,6:110-127.
    [9] Begeman K G, Broeils A H, Sanders R H. Extended rotation curves of spiral galaxies-Darkhaloes and modified dynamics. Monthly Notices of the Royal Astronomical Society,1991,249:523-537.
    [10] Bertone G, Hooper D, Silk J. Particle Dark Matter: evidence candidates and constraints.Physics Reports,2005,405:279-390.
    [11] Mellier Y. Gravitational Lensing and dark matter//Bertone G. Particle Dark Matter:Observations, Models and Searches. New York: Cambridge University Press,2010:56-82.
    [12] Plain C. A Matter of Fact [EB/OL].(2006-08-21)[2013-03-21]. http://www.nasa.gov/vision/universe/starsgalaxies/dark_matter_proven.html.
    [13] Nemiroff R, Bonnell J. The Matter of the Bullet Cluster [EB/OL].(2006-08-24)[2013-03-21].http://apod.nasa.gov/apod/ap060824.html.
    [14]俞允强.物理宇宙学讲义.北京:北京大学出版社,2006.
    [15]俞允强.热大爆炸宇宙学.北京:北京大学出版社,2003.
    [16] Origin of the Universe--High Energy Physics [EB/OL].[2013-03-21].http://home.physics.ucla.edu/~arisaka/home/Particle/.
    [17] Blanton M. SDSS Galaxy Map [EB/OL].[2013-03-21]. http://www.sdss.org/includes/sideimages/sdss_pie2.html.
    [18]何香涛.观测宇宙学.2版.北京:北京师范大学出版社,2007.
    [19] Fields B D, Sarkar S. BIG-BANG NUCLEOSYNTHESIS//Particle Data Group. REVIEWOF PARTICLE PHYSICS. Physics Review D,2012,86(010001):275-279.
    [20] Jedamzik K, Pospelov M. Particle dark matter and Big Bang nucleosynthesis//Bertone G.Particle Dark Matter: Observations, Models and Searches. New York: Cambridge UniversityPress,2010:565-585.
    [21] Cho A. Universe's High-Def Baby Picture Confirms Standard Theory. Science,2013,339:1513.
    [22] Scott D, Smoot G F. COSMICMICROWAVE BACKGROUND//Particle Data Group.REVIEW OF PARTICLE PHYSICS. Physics Review D,2012,86(010001):297-304.
    [23] Bekenstein J D. Modified gravity as an alternative to dark matter//Bertone G. Particle DarkMatter: Observations, Models and Searches. New York: Cambridge University Press,2010:99-117.
    [24] Salucci P, Nesti F, Gentile G, et al. The dark matter density at the Sun’s location. Astronomy&Astrophysics,2010,523(A83):1-6.
    [25] Gelmini G, Gondolo P. DM production mechanisms//Bertone G. Particle Dark Matter:Observations, Models and Searches. New York: Cambridge University Press,2010:565-585.
    [26] Freeman K, McNamara G. In Search of Dark Matter. Chichester: Springer in association withPraxis Press,2006:93-104.
    [27] Drees M, Gerbier G. DARK MATTER//Particle Data Group. REVIEW OF PARTICLEPHYSICS. Physics Review D,2012,86(010001):289-296.
    [28] Ellis J, Olive K A. Supersymmetric dark matter candidates//Bertone G. Particle Dark Matter:Observations, Models and Searches. New York: Cambridge University Press,2010:142-163.
    [29] Servant G. Dark matter at the electroweak scale: non-supersymmetric candidates//Bertone G.Particle Dark Matter: Observations, Models and Searches. New York: Cambridge UniversityPress,2010:164-189.
    [30] Feng J L. Non-WIMP candidates//Bertone G. Particle Dark Matter: Observations, Modelsand Searches. New York: Cambridge University Press,2010:190-203.
    [31] Sikivie P. Axions//Bertone G. Particle Dark Matter: Observations, Models and Searches.New York: Cambridge University Press,2010:204-227.
    [32] Shaposhnikov M. Sterile neutrinos//Bertone G. Particle Dark Matter: Observations, Modelsand Searches. New York: Cambridge University Press,2010:228-248.
    [33] Cui Jianwei, He Hongjian, Li Lanchun, et al. Spontaneous mirror parity violation, commonorigin of matter and dark matter, and the LHC signatures. Physical Review D,2012,85(096003):1-31.
    [34] Cui Jianwei, He Hongjian, Li Lanchun, et al. GeV SCALE ASYMMETRIC DARK MATTERFROM MIRROR UNIVERSE: DIRECT DETECTION AND LHC SIGNATURES.International Journal of Modern Physics: Conference Series,2012,10:21-34.
    [35] Han Tao. Particle Dark Matter And Their Searches [R/OL].(2011-02-01)[2011-03-10].http://www.pheno.wisc.edu/~than/DM-CDEX-2011.pdf.
    [36] Feng J L. Dark Matter and Indirect Detection in Cosmic Rays. ArXiv,2012(1211.3116):1-8.
    [37] Bergstr m L, Bertone G. Gamma-rays//Bertone G. Particle Dark Matter: Observations,Models and Searches. New York: Cambridge University Press,2010:491-506.
    [38] Halzen F, Hooper D. High-energy neutrinos from WIMP annihilations in the Sun//Bertone G.Particle Dark Matter: Observations, Models and Searches. New York: Cambridge UniversityPress,2010:507-520.
    [39] Salati P, Donato F, Fornengo N. Indirect dark matter detection with cosmic antimatter//Bertone G. Particle Dark Matter: Observations, Models and Searches. New York: CambridgeUniversity Press,2010:521-546.
    [40] Profumo S, Ullio P. Multi-wavelength studies//Bertone G. Particle Dark Matter:Observations, Models and Searches. New York: Cambridge University Press,2010:547-564.
    [41] Chang J, Adams J H, Ahn H S, et al. An excess of cosmic ray electrons at energies of300-800GeV. Nature,2008,456:362-365.
    [42] Adriani O, Barbarino G C, Bazilevskaya G A, et al. An anomalous positron abundance incosmic rays with energies1.5-100GeV. Nature,2009,458:607-609.Adriani O, Barbarino G C, Bazilevskaya G A, et al. Cosmic-Ray Electron Flux Measured bythe PAMELA Experiment between1and625GeV. Physical Review Letters,2011,106(201101):1-5.
    [43] Ackermann M, Ajello M, Allafort A, et al. Measurement of Separate Cosmic-Ray Electron andPositron Spectra with the Fermi Large Area Telescope. Physical Review Letters,2012,108(011103):1-7.
    [44] Aguilar M, Alberti G, Alpat B, et al. First Result from the Alpha Magnetic Spectrometer onthe International Space Station: Precision Measurement of the Positron Fraction in PrimaryCosmic Rays of0.5–350GeV. Physical Review Letters,2013,110(141102):1-10.
    [45] Saab T. An Introduction to Dark Matter Direct Detection Searches&Techniques. ArXiv,2012(1203.2566):1-28.
    [46] Goodman M W, Witten E. Detectability of certain dark matter candidates. Physics Review D,1985,31:3059-3063.
    [47] Yue Qian, Wong Henry Tsz-king. Dark Matter Search with sub-keV Germanium Detectors atthe China Jinping Underground Laboratory. Journal of Physics: Conference Series,2012,375(042061):1-4.
    [48] Aalseth C E, Barbeau P S, Colaresi J, et al. Search for an Annual Modulation in a p-TypePoint Contact Germanium Dark Matter Detector. Physical Review Letters,2011,107(141301):1-5.
    [49] Daw E, Dorofeev A, Fox J R, et al. The DRIFT Directional Dark Matter Experiments.European Astronomical Society Publications Series,2012,53:11-18.
    [50] Aprile E, Angle J, Arneodo F, et al. Design and performance of the XENON10dark matterexperiment. Astroparticle Physics,2011,34:679-698.
    [51] Aprile E, Alfonsi M, Arisaka K, et al. Dark Matter Results from225Live Days ofXENON100Data. ArXiv,2013(1207.5988v2):1-6.
    [52]倪凯旋,魏月环.基于液氙的暗物质直接探测.中国科学:物理学力学天文学,2011,41(12):1414-1422.
    [53] Gong H, Giboni K L, Ji X, et al. The cryogenic system for the Panda-X dark matter searchexperiment. Journal of Instrumentation,2013,8(P01002):1-11.
    [54] Acciarri R, Antonello M, Baibussinov B, et al. The WArP Experiment. Journal of Physics:Conference Series,2011,308(012005):1-8.
    [55] Marchionni A, Amsler C, Badertscher A, et al. ArDM: a ton-scale LAr detector for direct DarkMatter searches. Journal of Physics: Conference Series,2011,308(012006):1-11.
    [56] Bettini A. The Canfranc Underground Laboratory (LSC). The European Physical Journal Plus,2012,127(112):1-7.
    [57] Bernabei R, Belli P, Cappella F, et al. New results from DAMA/LIBRA. European PhysicalJournal C,2010,67:39-49.
    [58] Sekiya H. XMASS. Journal of Physics: Conference Series,2011,308(012011):1-6.
    [59] Hime A. The MiniCLEAN Dark Matter Experiment. ArXiv,2011(1110.1005):1-8.
    [60] Angloher G, Bauer M, Bavykina I, et al. Results from730kg days of the CRESST-II DarkMatter search. The European Physical Journal C,2012,72:1-22.
    [61] Cebrián S, Coron N, Dambier G, et al. First results of the ROSEBUD dark matter experiment.Astroparticle Physics,2001,15:79-85.
    [62] Zacek V, Archambault S, Behnke E, et al. Dark matter search with PICASSO. Journal ofPhysics: Conference Series,2012,375(012023):1-4.
    [63] Behnke E, Behnke J, Brice S J, et al. First dark matter search results from a4-kg CF3I bubblechamber operated in a deep underground site. Physical Review D,2012,85(052001):1-9.
    [64] Felizardo M, Girard T A, Morlat T, et al. Final Analysis and Results of the Phase II SIMPLEDark Matter Search. Physical Review Letters,2012,108(201302):1-5.
    [65] Ahmed Z, Akerib D S, Arrenberg S, et al. Results from a low-energy analysis of the CDMS IIgermanium data. Physical Review Letters,2011,106(131302):1-5.
    [66] Armengaud E, Augier C, Benoit A, et al. First results of the EDELWEISS-II WIMP searchusing Ge cryogenic detectors with interleaved electrodes. Physics Letters B,2010,687:294-298.
    [67] Wu Yucheng, Hao Xiqing, Yue Qian, et al. Measurement of Cosmic Ray Flux in ChinaJinPing underground Laboratory. Chinese Physics C (HEP&NP), to be published.
    [68] Robinson M, Kudryavtsev V A, Lüscher R, et al. Measurements of muon flux at1070mvertical depth in the Boulby underground laboratory. Nuclear Instruments and Methods inPhysics Research Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment,2003,511:347-353.
    [69] Nosengo N. Gran Sasso: Chamber of physics. Nature,2012,485:435-438.
    [70] Bettini A. The Canfranc Underground Laboratory (LSC). The European Physical Journal Plus,2012,127(112):1-7.
    [71] Eguchi K, Enomoto S, Furuno K, et al. First Results from KamLAND: Evidence for ReactorAntineutrino Disappearance. Physical Review Letters,2003,90(021802):1-6.
    [72] Aharmim B, Ahmed S N, Andersen T C, et al. Measurement of the cosmic ray andneutrino-induced muon flux at the Sudbury neutrino observatory. Physical Review D,2009,80(012001):1-15.
    [73] Li H B, Liao Heng Ye, Lin Shin Ted, et al. Limits on spin-independent couplings of WIMPdark matter with a p-type point-contact germanium detector. ArXiv,2013(1303.0925):1-4.
    [74] Baudis L, Hellmig J, Heusser G, et al. New limits on dark-matter weakly interacting particlesfrom the Heidelberg-Moscow experiment. Physical Review D,1998,59(022001):1-5.
    [75] Smith P F, Smith N J T, Lewin J D, et al. Dark matter experiments at the UK Boulby Mine UKDark Matter Collaboration. Physics Reports,1998,307:275-282.
    [76] Klapdor-Kleingrothaus H V, Dietz A, Heusser G, et al. First results from the HDMS experimentin the final setup. Astroparticle Physics,2003,18:525-530.
    [77] Irastorza I G, Morales A, Aalseth C E, et al. Present status of IGEX dark matter search at CanfrancUnderground Laboratory. Nuclear Physics B-Proceedings Supplements,2002,110:55-57.
    [78] Morales A, Avignone III F T, Brodzinski R L, et al. Particle dark matter and solar axionsearches with a small germanium detector at the Canfranc Underground Laboratory.Astroparticle Physics,2002,16:325-332.
    [79] Miuchi K, Minowa M, Takeda A, et al. First results from dark matter search experiment withLiF bolometer at Kamioka Underground Laboratory. ArXiv,2003(0204411):1-15.
    [80] Borer K, Czapek G, Hasenbalg F, et al. Recent results from the ORPHEUS dark matterexperiment. Nuclear Physics B-Proceedings Supplements,2005,138:163-165.
    [81] Nakamura K, Miuchi K, Iwaki S, et al. NEWAGE. Journal of Physics: Conference Series,2012,375(012013):1-4.
    [82] Monroe J. Status and prospects of the DMTPC directional dark matter experiment. AIPConference Proceedings,2012,1441:515-517.
    [83] Akimov D Y. The ZEPLIN-III dark matter detector. Nuclear Instruments and Methods inPhysics Research Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment,2010,623:451-453.
    [84] Fiorucci S. The LUX Dark Matter Search-Status Update. ArXiv,2013(1301.6942):1-4.
    [85] Akimov D, Alexander T, Alton D, et al. Light Yield in DarkSide-10: a Prototype Two-phaseLiquid Argon TPC for Dark Matter Searches. ArXiv,2012(1204.6218):1-10.
    [86] White J T, Gao J, Maxin J, et al. SIGN, a WIMP Detector Based on High Pressure GaseousNeon//Klapdor-Kleingrothaus H V. Dark Matter in Astro-and Particle Physics. Berlin,Heidelberg: Springer-Verlag Berlin Heidelberg,2006:276-284.
    [87] Winkelmann C B, Elbs J, Collin E, et al. ULTIMA: A bolometric detector for dark mattersearch using superfluid3He. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2006,559:384-386.
    [88] Alner G J, Araújo H M, Arnison G J, et al. Limits on WIMP cross-sections from the NAIADexperiment at the Boulby Underground Laboratory. Physics Letters B,2005,616:17-24.
    [89] Figueroa-Feliciano E.Towards Direct Detection of WIMPs with the Cryogenic Dark MatterSearch. AIP Conference Proceedings,2010,1200:959-962.
    [90] Kim S C, Bhang H, Choi J H, et al. New Limits on Interactions between Weakly InteractingMassive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors. Physical ReviewLetters,2012,108(181301):1-5.
    [91] Giuliani F. Hunting the Dark Matter with DEAP/CLEAN. AIP Conference Proceedings,2010,1200:985-988.
    [92] Baudis L. DARWIN dark matter WIMP search with noble liquids. Journal of Physics:Conference Series,2012,375(012028):1-4.
    [93] Amaré J, Cebrián S, Cuesta C, et al. Update on the ANAIS experiment. ANAIS-0prototyperesults at the new Canfranc Underground Laboratory. Journal of Physics: Conference Series,2012,375(012026):1-4.
    [94] Bernabei R, Belli P, Cappella F, et al. New results from DAMA/LIBRA. European PhysicalJournal C,2010,67:39-49.
    [95] Aalseth C E, Barbeau P S, Colaresi J, et al. Search for an Annual Modulation in a p-Type PointContact Germanium Dark Matter Detector. Physical Review Letters,2011,107(141301):1-4.
    [96] Ahmed Z, Akerib D S, Anderson A J, et al. Search for annual modulation in low-energyCDMS-II data. ArXiv,2012(1203.1309v2):1-13
    [97] Fox P J, Kopp J, Lisanti M, et al. A CoGeNT modulation analysis. Physical Review D,2012,85(036008):1-17.
    [98] Chalmers M. Truant particles turn the screw on supersymmetry. Nature,2012,491:505-506.
    [99] Plehn T, Polesello G. SUSY searches at the LHC//Bertone G. Particle Dark Matter:Observations, Models and Searches. New York: Cambridge University Press,2010:251-275.
    [100] Battaglia M, Peskin M E. Supersymmetric dark matter at colliders//Bertone G. Particle Dark Matter:Observations, Models and Searches. New York: Cambridge University Press,2010:276-305.
    [101] Kong K, Matchev K. Extra dimensions at the LHC//Bertone G. Particle Dark Matter:Observations, Models and Searches. New York: Cambridge University Press,2010:306-324.
    [102] Bertone G. Themomentof truthforWIMPdarkmatter. Nature,2010,468:389-393.
    [103] Spooner N. Directional detectors//Bertone G. Particle Dark Matter: Observations, Modelsand Searches. New York: Cambridge University Press,2010:437-466.
    [104]毕效军,秦波.暗物质及暗物质粒子探测.物理,2011,40(1):13-17.
    [105] Chang Jin. Status and Perspectives of Dark Matter Searches in China. Chinese Journal ofSpace Science,2010,30(5):422-423.
    [106] Hao Xin. Chinese Academy Takes Space Under Its Wing. Science,2011,332:904.
    [107] Yue Qian, Cheng Jianping, Li Yuanjing, et al. Detection of WIMPs using low threshold HPGedetector. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS,2004,28(8):877-880.
    [108] He Dao, Li Yulan, Yue Qian, et al. Experimental Study on the CsI(Tl) Crystal Anti-ComptonDetector for Dark Matter Search. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS,2006,30(6):548-553.
    [109] Li Xin, Yue Qian, Li Yuanjing, et al. Status of ULE-HPGe detector experiment for dark mattersearch. High Energy Physics and Nuclear Physics,2007,31(6):564-569.
    [110]朱敬军. KIMS暗物质寻找实验中μ子和中子本底的研究[博士学位论文].北京:清华大学工程物理系,2005.
    [111]何道.暗物质实验中探测器性能实验研究和模拟分析[硕士学位论文].北京:清华大学工程物理系,2006.
    [112]李昕.低质量暗物质粒子WIMP探测系统性能的实验研究[硕士学位论文].北京:清华大学工程物理系,2007.
    [113] Kang Kejun, Cheng Jianping, Li Jin, et al. Introduction of the CDEX experiment. ArXiv,2013(1303.0601):1-36.
    [114] Reich E S. Dark-matter hunt gets deep. Nature,2013,494:291-292.
    [115]杨先武,李胜蓝.世界第二深埋隧道——锦屏山隧道贯通[N/OL].天府早报,2008-08-10[2013-03-27]. http://sichuan.scol.cn/dwzw/20080810/200881074951.htm.
    [116] Dennis N. Chinese Scientists Hope to Make Deepest, Darkest Dreams Come True. Science,2009,324(5932):1246-1247.
    [117] Toni F. China, others dig more and deeper underground labs. Physics Today,2010,63(9):25-27.
    [118] Kang Kejun, Cheng Jianping, Chen Yunhua, et al. Status and prospects of a deep undergroundlaboratory in China. Journal of Physics: Conference Series,2010,203(012028):1-3
    [119]程建平,吴世勇,岳骞,等.国际地下实验室发展综述.物理,2011,40(3):149-154.
    [120] SCIONIX [EB/OL].[2013-03-27] http://www.scionix.nl/.
    [121]陈伯显,张智.核辐射物理及探测学.哈尔滨:哈尔滨工程大学出版社,2011.
    [122] Knoll G F. Radiation Detection and Measurement.3rd ed. New York: John Wiley&Sons,2000.
    [123] Goulding F S. Semiconductor detectors for nuclear spectrometry. Nuclear Instruments andMethods,1966,43:1-54.
    [124]王锋.硅微条探测器//谢一冈,陈昌,王曼,等.粒子探测器与数据获取.北京:科学出版社,2004:220-258.
    [125]李金.现代辐射与粒子探测学讲义.3版.北京:清华大学工程物理系,2012:42-53.
    [126] Eberth J, Simpson J. From Ge(Li) detectors to gamma-ray tracking arrays–50years of gammaspectroscopy with germanium detectors. Progress in Particle and Nuclear Physics,2008,60:283-337.
    [127] Hull E L, Pehl R H, Madden N W, et al. Temperature sensitivity of surface channel effects on high-purity germanium detectors. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1995,364(3):488-495.
    [128] Luke P N, Goulding F S, Madden N W, et al. LOW CAPACITANCE LARGE VOLUMESHAPED-FIELD GERMANIUM DETECTOR. Ieee Transactions on Nuclear Science,1989,36:926-930.
    [129]核电子学讲义.北京:清华大学工程物理系,2007.
    [130] Strauss M G, Larsen R N. PULSE HEIGHT DEFECT DUE TO ELECTRON INTERACTIONIN DEAD LAYERS OF Ge(Li) γ-RAY DETECTORS. Nuclear Instruments&Methods,1967,56:80-92.
    [131] Aguayo E, Amman M, Avigone III F T, et al. Characteristics of signals originating near thelithium-diffused N+contact of high purity germanium p-type point contact detectors. NuclearInstruments and Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment,2013,701:176-185.
    [132] X-Ray Mass Attenuation Coefficients [DB/OL].(2011-12-09)[2013-03-29].http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html.
    [133] Ottaviani G, Canali C, Quaranta A A. Charge Carrier Transport Properties of SemiconductorMaterials Suitable for Nuclear Radiation Detectors. IEEE Transactions on Nuclear Science,1975,22:192-204.
    [134] Barbeau P S, Collar J I, Tench O. Large-mass ultralow noise germanium detectors:performance and applications in neutrino and astroparticle physics. Journal of Cosmology andAstroparticle Physics,2007,09(009):1-19.
    [135] Budjá D, Heider M B, Chkvorets O, et al. Pulse shape discrimination studies with aBroad-Energy Germanium detector for signal identification and background suppression inthe GERDA double beta decay experiment. Journal of Instrumentation,2009,4(P10007):1-23.
    [136] Cooper R J, Radford D C, Lagergren, et al. A Pulse Shape Analysis technique for theMAJORANA experiment. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2011,629:303-310.
    [137] Drukier A K, Freese K, Spergel D N. DETECTING COLD DARK-MATTER CANDIDATES.Physical Review D,1986,33(12):3495-3508.
    [138] Reusser D, Treichel M, Boehm F, et al. LIMITS ON COLD DARK MATTER FROM THEGOTTHARD GE EXPERIMENT. Physics Letters B,1991,255:143-145.
    [139] Garcia E, Avignone III F T, Brodzinski R L, et al. Dark matter searches with a germaniumdetector at the Canfranc Tunnel. Nuclear Physics B, Proceedings Supplements|NuclearPhysics B, Proceedings Supplements,1992,28A:286-292.
    [140] CANBERRA France [EB/OL].[2013-04-01]. http://www.canberra.com/fr/.
    [141] Wong Henry Tsz-king, Li H B, Lin Shin Ted, et al. Search of neutrino magnetic moments witha high-purity germanium detector at the Kuo-Sheng nuclear power station. Physical Review D,2007,75(012001):1-16.
    [142] Lin Shin Ted, Li H B, Li Xin, et al. New limits on spin-independent and spin-dependentcouplings of low-mass WIMP dark matter with a germanium detector at a threshold of220eV.Physical Review D,2009,79(061101):1-6.[2013-04-10]. http://arxiv.org/pdf/0712.1645v4.pdf.
    [143] CAEN [EB/OL].[2013-04-03]. http:/www.caen.it/.
    [144]顾树棣.粒子物理实验在线数据获取的电子学仪器总线系统//谢一冈,陈昌,王曼,等.粒子探测器与数据获取.北京:科学出版社,2004:366-461.
    [145] Tektronix [EB/OL].[2013-06-07]. http://www.tektronix.com/.
    [146] National Instruments: LabVIEW [EB/OL].[2013-04-03]. http://www.ni.com/labview/zhs/.
    [147]吴昱城,李元景,岳骞,等.用于暗物质研究的超低能量阈锗探测器的性能研究.清华大学学报:自然科学版,2013,接收待出版.
    [148] Kang Kejun, Yue Qian, Wu Yucheng, et al. The CDEX-11kg point-contact germaniumdetector for low mass dark matter searches. China Physics C,2013, in press.
    [149] Amptek [EB/OL].[2013-01-01]. http://www.amptek.com.
    [150]汲长松.核辐射探测器及其实验技术手册.北京:原子能出版社,1990:70.
    [151] ROOT [EB/OL].[2013-04-04]. http://root.cern.ch/root/html526/ClassIndex.html.
    [152] Lwein J D, Smith P F. Review of mathematics, numerical factors, and corrections for darkmatter experiments based on elastic nuclear recoil. Astroparticle Physics,1996,6:87-112.
    [153] Ressell M T, Aufderheide M B, Bloom S D, et al. NUCLEAR SHELL-MODELCALCULATIONS OF NEUTRALINO-NUCLEUS CROSS-SECTIONS FOR SI-29ANDGE-73. Physical Review D,1993,48(12):5519-5535.
    [154] Bottino A, Donato F, Mignola G, et al. Exploring the supersymmetric parameter space bydirect search for WIMPs. Physics Letters B,1997,402:113-121.
    [155] Tovey D R, Gaitskell R J, Gondolo P, et al. A new model-independent method for extractingspin-dependent cross section limits from dark matter searches. Physics Letters B,2000,488(1):17-26.
    [156] Benoit A, Bergé L, Blümer J, et al. Measurement of the response of heat-and-ionizationgermanium detectors to nuclear recoils. Nuclear Instruments and Methods in PhysicsResearch Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2007,577(3):558-568.
    [157] Lindhard J, Nielsen V, Scharff M, et al. INTEGRAL EQUATIONS GOVERNINGRADIATION EFFECTS.(NOTES ON ATOMIC COLLISIONS, III). Metematisk-fysiskeMeddelelser udgivet af Det Kongelige Danske Videnskabernes Selskab,1963,33(10):1-42.
    [158] Technical data for Germanium. Isotope Abundances of the elements [DB/OL].[2013-04-11].http://periodictable.com/Elements/032/data.html.
    [159] Sattler A R, Vook F L, Palms J M. Ionization Produced by Energetic Germanium Atomswithin a Germanium Lattice. Physical Review,1966,143(2):588-594.
    [160] Chasman C, Jones K W, Ristinen R A, et al. Measurement of the Energy Loss of GermaniumAtoms to Electrons in Germanium at Energies below100keV II. Physical Review,1967,154(2):239-244.
    [161] Chasman C, Jones K W, Kraner H W, et al. Band-Gap Effects in the Stopping of Ge72*Atomsin Germanium. Physical Review Letters,1968,21(20):1430-1433.
    [162] Jones K W, Kraner H W. Stopping of1-to1.8-keV73Ge Atoms in Germanium. PhysicalReview C,1971,4(1):125-129.
    [163] Jones K W, Kraner H W. Energy lost to ionization by254-eV73Ge atoms stopping in Ge.Physical Review A,1975,11(4):1347-1353.
    [164] Shutt T, Ellman B, Barnes P D Jr, et al. Measurement of ionization and phonon production bynuclear recoils in a60g crystal of germanium at25mK. Physical Review Letters,1992,69(24):3425-3427.
    [165] Messous Y, Chambon B, Chazal V, et al. Calibration of a Ge crystal with nuclear recoils forthe development of a dark matter detector. Astroparticle Physics,1995,3(4):361-366.
    [166] Baudis L, Hellmig J, Klapdor-Kleingrothaus H V, et al. High-purity germanium detectorionization pulse shapes of nuclear recoils, γ-interactions and microphonism. NuclearInstruments and Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment,1998,418:348-354.
    [167] Simon E, Bergé L, Broniatowski A, et al. SICANE: a detector array for the measurement ofnuclear recoil quenching factors using a monoenergetic neutron beam. Nuclear Instrumentsand Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors andAssociated Equipment,2003,507(3):643-656.
    [168] SRIM [EB/OL].[2013-04-10]. http://www.srim.org.
    [169] Smith M C, Ruchti G R, Helmi A, et al. The RAVE survey: constraining the local Galacticescape speed. Monthly Notices of the Royal Astronomical Society,2007,379(2):755-772.
    [170] Cowan G. Statistical Data Analysis. New York: Oxford University Press,1998.
    [171] Cowan G. STATISTICS//Particle Data Group. REVIEW OF PARTICLE PHYSICS. PhysicsReview D,2012,86(010001):390-401.
    [172] Savage C, Gelmini G, Gondolo P, et al. Compatibility of DAMA/LIBRA dark matter detectionwith other searches. Journal of Cosmology and Astroparticle Physics,2009,04(010):1-44.
    [173] Feldman G J, Cousins R D. Unified approach to the classical statistical analysis of smallsignals. Physical Review D,1998,57(7):3873-3889.
    [174] Conrad J, Botner O, Hallgren A, et al. Including systematic uncertainties in confidenceinterval construction for Poisson statistics. Physical Review D,2003,67(012002):1-11.
    [175] Yellin S. Finding an upper limit in the presence of an unknown background. Physical ReviewD,2002,66(032005):1-7.
    [176] Marino M. Dark Matter Physics with P-type Point-contact Germanium Detectors: Extendingthe Physics Reach of the Majorana Experiment [Dissertation]. Washington: University ofWashington,2010.
    [177] Zhao Wei, Yue Qian, Kang Kejun, et al. First results on low-mass WIMP from the CDEX-1experiment at the China Jinping underground Laboratory. In press.
    [178] Bambynek W, Behrens H, Chen M H, et al. Orbital electron capture by the nucleus. Reviewsof Modern Physics,1977,49(1):77-221.
    [179] National Nuclear Data Center [DB/OL].[2013-04-14]. http://www.nndc.bnl.gov/.
    [180] Laboratoire National Henri Becquerel Atomic&Nuclear Data [DB/OL].[2013-04-14].http://www.nucleide.org/DDEP_WG/DDEPdata.htm.
    [181] Meyer R A, Tirsell K G, Armantrout G A. Current Reasearch Relevant to the Improvement ofγ-Ray Spectroscopy as an Analytical Tool. Proceedings of ERDA Symposium on X-andGamma-Ray Sources and Applications held at the University of Michigan, Ann Arbor,Michigan,1976:40-50.
    [182] Jaklevic J M. Excitation Methods for Energy Dispersive Analysis. Proceedings of ERDASymposium on X-and Gamma-Ray Sources and Applications held at the University ofMichigan, Ann Arbor, Michigan,1976:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700