大跨超浅埋轻轨车站隧道施工控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆轻轨较新线大坪车站隧道暗挖段最大开挖跨度26.3m,拱部结构扁平,最大开挖面积430m2,最大开挖高度20.6m,最小埋深4.0m,为Ⅲ类泥岩,洞跨比为0.15~0.5。本工程地处繁华市区,行经地段地表人文情况复杂,多为抗震性能差的楼房或交通干道公路路面,对爆破振动和沉降要求非常严格。本文以重庆市大坪轻轨车站隧道为依托对复杂条件下对特大断面、超浅埋大跨度城市隧道开挖方法、开挖参数、预支护方法、爆破参数的选择和优化进行了深入研究,既控制地表沉降和爆破振动速度,同时也实现了隧道快速掘进,创造了良好经济效益。从施工方法的选择到相关技术的开发运用都体现了现代隧道工程理念和创新性,丰富和完善了浅埋暗挖城市隧道施工技术,为今后复杂条件下特大断面、超浅埋大跨度城市隧道施工控制提供了一种有效途径。本文主要研究工作包括:
     ①结合浅埋大跨隧道特点,分析了大跨浅埋隧道开挖围岩应力分布基本特征。以重庆轻轨大坪车站隧道为依托工程,提出了适合本工程特点的5种开挖方式,进行了施工过程力学行为分析,在地铁和城市轻轨工程施工中提出了“上半断面侧壁导坑法,下断面先中槽后侧墙开挖、先拱后墙衬砌”的隧道施工新方法。
     ②对优选开挖方案根据工程类比,初选一些重要的施工参数,采用以数值模拟仿真为先导,进行三维模拟仿真,选择合理的分步开挖尺寸、相互错开距离、预支护方法等施工参数,将计算结果与实际量测结果进行对比分析,为目前大跨超浅埋城市隧道施工亟待解决的具体施工参数选择提供一种有效方法。
     ③运用FLAC3D模拟隧道爆破,将爆破动荷载施加在开挖边界,研究数值模拟得到的爆破地震波随距离的衰减规律与实测爆破地震波随距离的衰减规律一致性;运用FLAC3D对大坪车站隧道不同爆破开挖方法地表振动进行了数值模拟,对地表下沉位移、振动速度以及锚杆受力情况进行了数值模拟,计算得出在设计爆破药量下和采用优选开挖方案进行爆破施工对隧道围岩和结构是相对稳定的,从而从爆破角度论证在地铁和城市轻轨工程施工中采用“上半断面侧壁导坑法,下断面先中槽后侧墙开挖、先拱后墙衬砌”的隧道开挖新方法可行性;运用FLAC3D模拟大坪车站隧道左导洞爆破开挖对右导洞已有支护的影响,对振动速度及位移变化情况进行分析,得出在相同设计爆破药量下爆破开挖对左导洞的影响较小,说明采用的施工参数和爆破药量是可行的,从而为复杂条件下的大跨城市隧道施工参数和爆破参数的确定提供重要的依据。
     ④根据大跨超浅埋隧道的特点,提出了特大跨超浅埋城市地铁隧道的测点布设、量测方法,根据实测结果分析研究隧道开挖围岩动态变化规律以及开挖方法对隧道围岩和结构稳定性影响程度。
     ⑤通过现场各种量测项目实测分析,发现常规变形量测每次变形量绝对值小,很容易忽视,提出浅埋特大跨隧道施工除须进行常规项目量测外,提出必须选择一些能直观反映围岩变化情况、变形绝对值大的量测项目(如初期支护拱架应力量测)作为常规量测项目,对指导隧道施工、预防险情有着非常重要的现实意义。
The maximum excavation span of Tunnel excavation Daping of Chongqing Light Rail Da-ping Station is 26.3m, with flat arch structure, the maximum excavation of an area of 430m2, the largest excavation height of 20.6m and the minimum depth of 4.0m. It is the classⅢmudstone and the hole-span ratio is 0.15 ~ 0.5. The most important thing is that this project is located in a downtown area, passing through sections of the surface humanities complex, mostly poor seismic performance of buildings or traffic trunk road surface.So it needs very strict requirements for blasting vibration. The study of large section under complicated conditions and ultra-shallow large-span multi-city tunnel construction focuses on tunnel construction safety, but how to ensure the security and economic aspects of the unity is rarely considered. In this paper, we study the largest segment excavation span of tunnel excavation Daping of Chongqing Light Rail Da-ping Station under complicated conditions and the excavation methods, excavation parameters, blasting program and parameter selection and optimization of blasting conducted. Considering both of the control surface settlement and blasting vibration velocity to ensure the safety of tunnel construction, we also achieve rapid tunnel excavation and creat a good economic benefit. From the choice of construction methods to the development and application of related technologies embody the modern tunnel vision and innovation, enrich and improve the shallow urban tunnel construction technology. It provides an effective way to construction control of large section under complicated conditions and ultra-shallow large-span city tunnel:
     ①Combined with shallow tunnel arch characteristics of long-span flat, we focused on the tunnel surrounding rock stress distribution basic characteristics. We put forward five kinds of excavation methods according to the Chongqing Light Rail Station Daping tunnel engineering to analsied various excavating conditions of the construction process. A new method of tunnel construction is propsed in the subway and urban light rail construction which is the half-section side wall pit method, the next section in the groove after the first side wall excavation, the first arch the back wall lining.
     ②Attempts in the complex conditions of the tunnel construction process of adopting a numerical simulation as the leading role and optimize the program to simulate the construction process simulation, choose a reasonable step size of excavation, and mutual staggered distance, advance support excavation methods, and to determine the optimal parameters, calculation results and the actual measurements close to each other and the realizing the effective control of the surface subsidence.
     ③Used FLAC3D to simulate tunnel blasting, the blasting excavation dynamic load applied to the boundary, result show that attenuation law of numerical explosion seismic waves better agree with measured seismic wave attenuation, studies have shown that the greatest surface particle velocity is feasible; used FLAC3D to simulate the ground vibrations of Daping station tunnel blasting excavation of different methods, from the surface settlement displacement, vibration speed and force of bolt to carrie out numerical simulation of calculated show that the design of blasting under an relatively stable state, the proof of adoption of the blasting program is reasonable, and thus prove that from the perspective of blasting in the subway and urban light rail construction in a "lead on the half-section side wall pit method, the next section in the groove after the first side wall excavation, first arch lining the back wall, "new methods of tunnel excavation is feasible; the use of FLAC3D simulation Daping station tunnel blasting excavation of the left guide-hole lead on the right holes have been lining the impact of changes from the vibration velocity and displacement analysis of the circumstances come design of blasting in the same dose of blasting excavation right to do under the guide hole has little effect a description of the construction parameters and blasting dose is feasible, thereby complex under the conditions of a large cross-city tunnel construction parameters and blasting parameters for determination of an important basis.
     ④According to span the characteristics of ultra-shallow tunnel, propose a complete layout of the measurement points and measurement methods in ultra-large shallow cross-city subway tunnel, and the analysis of measuring results show that the large cross-shallow tunnel construction need not only to carry out regular projects measurements but also for the early strength of bracing measurements. So it can bring us an accurate, intuitive understanding of rock stress changes and have a very important practical significance for guiding tunnel construction and preventing dangerous situations.
     ⑤Used A variety of field measurements showed that routine measurement have small absolute value of each deformation, it is easy to overlook that the large cross shallow tunnel in addition to routine items to be measured, the importance of selecting can reflect surrounding changes, the absolute value of large deformation measurement project (such as the initial support I-beam to Measure), to guide the tunnel construction, to prevent dangerous situations have very important practical significance.
引文
[1]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(4):112-113.
    [2]郭侠云,万姜林.我国地铁建设概况及修建技术[J].现代隧道技术,2004,41(4):1-6.
    [3]施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社,1997.
    [4]谭烈飞.新中国成立以来的首都地铁建设[J].当代中国史研究,2006,13(4):95-103.
    [5]施仲衡.科学制定城市轨道交通建设规划[J].都市快轨交通,2004.17(2):12-15.
    [6]施仲衡.玛爱军.城市轨道交通技术发展战略探讨[J].都市快轨交通,2004.17(4):4-8.
    [7]刘宝深.急待深入研究的地铁建设中的岩土力学课题[J].铁道建筑技术,2000,(3):1-3.
    [8]刘天泉,钱七虎.城市地下岩土工程技术发展动向[J].煤炭科学技术,1999,27(1):1-5.
    [9]吴波.复杂条件下城市地铁隧道施工地表沉降研[D].西南交通大学博士学位论文.2003.
    [10]刘洪洲.大跨度扁坦隧道施工的力学响应及施工方法的研究[D].重庆大学博士学位论文, 1999.
    [11]《特长、特殊结构形式隧道一览表》,载中国公路学会隧道工程分会网站:http://www.highwaytunnel.cn/.
    [12]胡学兵.大断面公路隧道力学响应及围岩稳定性评价研究[D].重庆交通学院硕士论文, 2003.
    [13]盖勇.大阁山隧道贯通[J].中国交通报,2003.11.21.
    [14]李通林,谭学术,刘传伟等.岩石力学[M].重庆大学出版社,1984.9.
    [15]陈了荫.围岩力学分析中的解析方法[M].煤炭工业出版社,1994.4.
    [16]朱合华.隧洞掘进面时空效应的研究一边界元法的若干进展及其工程应用[D].博士学位论文上海:同济大学1989.8.
    [17]孙均,朱合华.软弱围岩隧洞施工性态的模拟与分析[J].岩土力学,1994,15(4).
    [18]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M].同济大学出版社, 1997.5
    [19]孙均.地下工程设计理论与实践[M].上海科学技术出版社,1996.12.
    [20]朱维申,何满潮著.复杂条件下围岩稳定性与岩体动态施工力学[M].科学技术出版社,1995.7
    [21]张有天.隧洞施工期变形过程分析[J].岩石力学与工程学报,1992,11(1):63-71.
    [22]金丰年,钱七虎.隧洞开挖的二维有限元计算[J].岩石力学与工程学报,1996,15(3):193-200.
    [23] Liu Xinyu, Wang Bin,Zhang Shanggen,The computer simulation analysis of surrounding rockstability of an underground super-shallow-seated gallery constrnction[J].Proceedings of International Symposium on Rock Mechanics and Environmental Geotechnology, Chongqing,China, 1997: 239-242.
    [24]李造鼎,宋纳新,贾立宏.岩土动态开挖的灰色建模[J].岩石力学与工程学报,1997,16(3).
    [25]邬爱清,任放,董学展. DDA数值模拟及其在岩体工程上的初步应用研究[J].岩石力学与工程学报,1997,16(5):411-417.
    [26]周维坦,寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202.
    [27]刘怀恒.岩石力学平面非线性有限元法及程序[J].地下工程,1979.8
    [28] T. Kimura, R. J. Mair, Centrifugal testing of model tunnels in soft clay[A], Proc. of 10th Int. Conf. Soil Mechanics&Foundation Engineering[C]. Stockholm, Balkema, 1981.
    [29] Dhar B B, Ratan S, Sharma D K, et al. Model study of fracture around underground excavations[J]. Proceedings of the International Symposium on Weak Rock,1981:267-274.
    [30] Atkinson J H, Potts D M. Subsidence above shallow tunnels in soft Ground[J]. J. Geotech. Engrg., ASCE, 1977,103:307-325.
    [31] Cording E J, Hansmire W H, Macpherson H H, et al. Displacement around tunnels in Soils[R]. Report prepared for department of transportation, Urbana: University of Illinois, 1976.
    [32] Potts D M. Behaviours of lined and unlined tunnels in sands[D]. England: Aambridge University, 1976.
    [33] Gutter U, Stoffers U. Investigation of the deformation and collapse behaviour of circular lined tunnels in centrifuge model tests[A]. Centrifuge in Soil Mechanics[C]. Rotterdam: Balkema, 1988:183-186.
    [34] ,Shinichiro Imamura, Toshiyuki Hagiwara, Kenji Mito, et al. Settlement through above a model shield observed in a centrifuge[A]. Centrifuge 98[C].Tokyo, 1998:71-719.
    [35] Wu B R, Chiou S Y, Lee C J, et al. Soil movements around parallel tunnels in soft ground[A]. Centrifuge 98[C].Tokyo, 1988:739-744.
    [36] Toshi Nomoto, Shinichiro Imamura, et al, Shield tunnel construction in centrifuge[J].J.of Geotechnical and Geoenvironmental Engineering, 125(4), 1999:289-299.
    [37] Takao Shimada et al,隧道开挖中的地表下沉模型试验[J].隧道译从,1983(1).
    [38] Kimura T, Takemura J, Hiro-oka A, et al. Stability of unsupported and supported vertical cuts in soft caly[A].Proc 11 th Southwest Asian Geo Cont[C],Singapore,1993:61-70.
    [39] Loh C K, Tan T S, Lee F H. Three-dimensional excavation test[A]. Centrifuge 98.85-90.
    [40]蒋树解,刘洪洲,鲜学福.大跨度扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报, 2000. 19(5):567-572.
    [41]蒋树屏,黄伦海,宋从军.利用相似模拟方法研究公路隧道施工力学形态[J].岩石力学与工程学报, 2oo2. 21(5)662-666.
    [42]黄伦海,刘伟,吴梦军.单洞4车道公路隧道开挖模型试验研究[J].公路隧道, 2007.4:10-15.
    [43]黄伦海,蒋树屏.相似模拟研究在环境复杂公路隧道结构施工的应用[J].公路隧道, 2007,4:6-9.
    [44]黄伦海,刘伟,蒋树屏.小净距公路隧道模型试验研究[J].公路隧道, 2007,4:21-2s.
    [45]周生国,黄伦海,蒋树屏,刘新荣.黄土连拱隧道施工方法模型试验研究[J].地下空间与工程学报, 2005.1(2):188-191.
    [46]刘春,深埋大断面隧道施工力学性态研究[D].重庆大学博士学位论文, 2007.1.
    [47]王戍平.破碎围岩隧道的模拟试验研究[D].浙江大学博士学位论文, 2004.1.
    [48]谢连城,大瑶山隧道复合式衬砌模型试验研究[J].长沙铁道学院学报, 1987,5(2).
    [49]朱敬民,王立维.层状岩体中地下工程复合衬砌模型试验研究[J].重庆建筑工程学院学报, 1991. 13 (1):1-14.
    [50]程桦,孙钧,昌渊.软弱围岩复合式隧道衬砌模型试验研究[J].岩石力学与工程学报,1997. VoL 16(2):162-170.
    [51]高波,郭建国.北京地铁暗挖区间隧道标准断面复合衬砌承载能力的试验研究[J].铁道建筑,1997.2: 18-21.
    [52]余永强,熊芳斌,李华茂.厦门翔安海底隧道开挖围岩应力与位移监测分析[J].施工技术,2010,(39)1:36-37.
    [53]谢强等.特大断面隧道长期运营预警值的研究[J].地下空间与工程学报,2009(5)1:3186—3192.
    [54]沈良帅,贺少辉.复杂环境条件上跨下穿同一既有地铁隧道的变形控制分析及施工方案优化[J].岩石力学与工程学报,2008,27(增1):2893–2900.
    [55]璩继立,许英姿.盾构施工引起的地表横向沉降槽分析[J].岩土力学,2006,27(2):313–316,322.
    [56]黄腾,孙景领,陶建岳,等.地铁隧道结构沉降监测及分析[J].东南大学学报(自然科学版),2006,36(2):262–266.
    [57]戴宏伟,陈仁鹏,陈云敏.地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J].岩土工程学报,2006,28(3):312–316.
    [58]张成平,张顶立,吴介普,骆建军.暗挖地铁车站下穿既有地铁隧道施工控制[J].中国铁道科学, 2009,(30)1:69-73.
    [59]李东海等.盾构隧道斜交下穿地铁车站的影响与监测研究[J].岩石力学与工程学报, 2009,28(增1):3187–3192.
    [60] Soliman E, Duddeck H, Ahrens H 2 and 3-D analysis of closely spaced double tunnel[J].Tunneling and underground space technology, 1993, 8(1): 13-l8.
    [61] Renato E.B.&Kael R.Tunnel design and construction in extremely difficult ground conditions [J]. Tunne1,1998(8):23-31.
    [62] N. Loganathan, H.G. Poulos, Analytical prediction for tunnel induced ground movementsin clays[J]. J. of Geotechnical and Geoenviro- nmental Enginnering, 1998,124(9):846-856.
    [63] Mair R J. Ground movement around shallow tunnels in soft clay[J]. Tunnels and Tunneling, 1982(6):33-38.
    [64]陈先国,高波.地铁近距离平行隧道有限元数值模拟[J].岩石力学与工程学报, 2002, 21(9): 1330-1334.
    [65]胡剑兵等.分岔隧道施工三维数值仿真模拟研究[J].公路, 2009,3:193-199.
    [66]刘洪洲.交叠隧道盾构施工引起地面沉降的三维有限元分析[J].岩土工程师, 2002, 14(1): 1-7.
    [67]张会刚,姜志玲,章玉伟.深圳地铁隧道邻接施工沉降数值模拟研究[J].中国铁道科学, 2009,(133)10:55-63.
    [68]吴波,刘维宁,索晓明,等.地铁施工近邻桥基加固效果三维数值分析[J].铁道工程程学报,2005( 5): 48- 52.
    [69]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999.
    [70]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社, 1996.
    [71]孙辉,刘新荣,陈晓江等.黄土连拱隧道施工过程的数值模拟和方案优化[J].地下空间与工程学报,2005, 1(5):737-781.
    [72]邓少军,阳军生,张学民,钟放平.浅埋偏压连拱隧道施工数值模拟及方案比选[J].地下空间与工程学报,2005,1l(6):941-944.
    [73] Panet X D. Plane strain analysis in modeling three-dimensional tunnel excavation [J]. Rock Mech. Min. Sci&Gemech. Abstr, 1988, Vo1.25 (5):331-337.
    [74] Galli Cz Grimaldi A, Leonardi A. Three-dimensional modeling of tunnel excavation and lining[J], Computers and Geotechnics,2004, Vo1.31:171-183.
    [75] Soliman E, Duddeck H, Ahrens H. Two and three-dimensional analysis of closely spaced double-tube tunnel[J]. Tunneling and Underground Space Technology 1993, 8(1):13-18.
    [76]吴崔鹏.大断面隧道施工过程数值分析[D].长安大学硕士学位论文,2009.
    [77]孟伶俐等.地铁大断面隧道开挖方法选取三维模拟计算分析[J].西部探矿工程,2006(1):152-153
    [78] Eberhard E. Numerical modeling of three-dimension stress rotation ahead of advancing tunnel face[J]. International Journal of Rock mechanics& Mining Sciences,2001, 1(38):499-518.
    [79] Karakus M. Appraising the method accounting for 3D tunneling effects in 2D plane strain FE analysis [J]. Tunneling and Underground Space Technology, 2007,1(22):47-56.
    [80] Duddeck H. Application of numerical analysis for tunneling [J], international Journal for Numerical and Analytical Methods in Geotechniscs,1991,1(15):223-229.
    [81] H. Mroueh,&I. Shahrour, A full 3-D finite element analysis of tunneling adjacent structures interaction[J]. Computers and Geotechnics, 2003,30:245-253.
    [82] K. M. Lee, H.W. Ji, C.K.Shen, J. H. Liu, T. H. Bai. Ground response to the construction of Shanghai metro tunnel-line2[J].Soils and Foundations, 1999,39 (3):113-134.
    [83] Lee, K.M., and Rowe, R.K. 1990b. Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils[J]. Part II. Results. Computers and Geotechnics 1990,2(2): 111-138.
    [84]王帽成,肋敏.有限元法基本理论和数值方法[M].北京.清华大学出版社,1997.
    [85]薛守义,刘汉东.岩体工程学科性质透视[M].郑州:黄河水力出版社, 2002.
    [86]李玉民.水压与钻孔联合爆破拆除大型地面煤仓[J].探矿工程, 1996, 6: 2225.
    [87]王民寿.运行电站爆破震动控制研究[J].云南水力发电, 2003,4:23-28.
    [88]朱瑞赓.控制爆破的断裂控制与参数确定[J].爆炸与冲击,1993, 4:15-19.
    [89]边克信.邻近隧道爆破振动对既有隧道影响的研究[J].工程爆破,2004, 10 (4):69-73.
    [90]杨异田.隧道工程监测和信息化设计原理[M].中国铁道出版社,1990.
    [91]楼伟寿.核爆震动作用下的支承式隔震基础设计[J].空军工程大学学报,2006, 9(3):60-63.
    [92]易长平.深埋对圆形洞室爆破临界破坏振速的影响研究[J].武汉理工大学报,2006, 12:5~11.
    [93]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993.
    [94]张志呈.爆破对岩石的损伤影响及损伤控制研究[J].中国钨业,2006,6(5):15-26.
    [95] Muir Wood.The circular tunnel in elastic ground. Geotechnique[J].1975,25(1):115-127.
    [96] Schmid H. Statische Problem des Tunnel and Druckstollenbuse. Berlin:1926.
    [97]杨年华.硬岩隧道快速掘进的钻爆技术[J].工程爆破, 2003,1(2):14-19.
    [98]钟放庆.应用地运动数据反演地下爆炸震源函数[J].爆破与冲击, 2005,2(4):85-90.
    [99]卢少波.地下爆炸地震强度与当量的比例关系[J].爆炸与冲击, 2005,2(3):77-82.
    [100]贾光辉.超高速撞击数值模拟仿真结果分析[J].爆炸与冲击, 2005,1(10):66-78.
    [101]杨升田.考虑结构效应时水中结构的振动[J].应用力学学报, 1993,3(7):4-10.
    [102] Ugai K. A method of calculation of total factor of safety of slopes by elastic-plastic FEM. Soil and Foundations JGS,1989, 29 (2):190-195.
    [103]蒋键,高必华.地下洞室开挖爆破综述[J].长江科学院院报, 2003, 20,增刊:32-37.
    [104]王新建.爆破振动公害及其控制研究[J].公安大学学报.北京, 2002(3):76-79.
    [105]史雅语,金骥良,顾毅成.工程爆破实践[M].中国科学技术大学出版社,合肥, 2002,349-352.
    [106]李海波,蒋会军,赵坚.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报, 2003, 22 (11):1887-1891
    [107] Huang W L. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chiearthquake [J]. Tunne-ling and Underground Space Technology, 2001,16(2):133-150.
    [108]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报,2002 (1): 71-75.
    [109]许增会,宋宏伟,赵坚.地震对隧道围岩稳定性影响的数值模拟分析[J].中国矿业大学学报, 2004,33(1):40-43.
    [110] Chern J C, Chang Y L, Lee H C.Seismic safety analy-sis of Kukuan underground power cavern[J].Tunneling and Underground Space Technology, 2004, (19):516-527
    [111] Singh P K. Blast vibration damage to underground coalmines from adjacent open-pit blasting[J].International Journal of Rock Mechanics& Mining Sciences, 2002, 39 (8): 959-973.
    [112] Yang R L, Rocque P, Katsabanis P, et al. Measurement and analysis of near-field blast vibration and damage[J].Geotechnical & Geotechnical Engineering, 1994, 12 (3):169-182.
    [113]朱瑞赓,李铮.爆破地震波作用下岩石隧道的临界振动速度[A].工程爆破文集(第二辑)[c],冶金工业出版社, 1983, 285-291.
    [114]陈志刚,刘殿魁. SH波冲击下浅埋任意形孔洞的动力分析[J].地震工程与工程学报, 2004, 24 (4):32-360.
    [115]王艳,刘殿魁.SH波入射时浅埋衬砌结构的动力分析[J].哈尔滨工程大学学报, 2002, 23 (6): 43-47.
    [116] C.A科泽列夫.地下大爆破对地面建筑物的震动影响[J].国外金属矿山,2000,7:5-9.
    [117]贾光辉,王志军等.爆破地震波对地下结构物的影响仿真研究[J].华北工学院学报,2001, 6:445-448.
    [118]朱瑞赓,李铮.爆炸地震波作用下隧道的安全距离问题.地下工程[J].1981,4:26-33.
    [119]李铮,朱瑞赓等.爆炸地震波振速的特征系数与衰减指数的研究[J].爆炸与冲击, 1986, 6(3): 221-229.
    [120]边克信.爆破地震对地下构筑物的影响[J].有色金属, 1981,6:25-36.
    [121]林学文,欧阳哉,王兰民.隧道的爆破地震效应问题[A].中国土木工程学会防护工程学会第三次年会暨抗爆结构学术交流会论文集,中国土木工程学会防护工程学会第三次年会暨抗爆结构学术交流会,山东烟台, 1992:280-283.
    [122]吴从根.地下大爆破时地震效应对地下构筑物强度的影响[J].有色金属, 1981, 30-34.
    [123]杨异田,张耀勤.爆破荷载下地下岩洞的应力状态[J].地下工程, 1982,11:1-6.
    [124]楼伪寿,田兵,辛建文.硬岩中地下爆炸的自由场位移衰减规律[J].爆炸与冲击, 1991, 11(2): 146-152.
    [125] Burland,J. B., Standing, J. R.Jardine. F. M. (2001), Building Response to Tunnelling,case studies from construction of the Jubilee Line extension, London Volume I:PROJECT ANDMETHODS[C).London. Thomas Telford Publishing, 2001:509-545.
    [126]关宝树,隧道工程施工要点集[M].人民交通出版社, 2003.
    [127]徐则民,黄润秋,王士天.隧道的埋深划分[J].中国地质灾害与防治学报2000,11(14):5-10.
    [128]李世平,吴振业等,岩石力学简明教程[M].北京:煤炭工业出版社, 1996.
    [129] Hak Joon Kim (1997). Estimation for tunnel Lining Loads. PhD Thesis, University of Alberta.
    [130]崔天麟.超浅埋暗挖隧道初期支护结构内力监测及稳定性分析[J].现代隧道技术,王思敬,杨志林,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [131]孔恒.城市地下工程浅埋暗挖地层预加固理论与实践[M].北京:中国建筑工业出版社, 2009.4
    [132]宋光明,史秀志.爆破地震危害及评价方法的探讨[J].世界采矿快报, 1999, 15(7)
    [133]爆破安全规程(GB6722-2003)[M].中国标准出版社出版, 2003
    [134] Itasca Consulting Group Inc. FLAC3D (Fast lagrangian analysis of continua manual[M]. inthreedimensions), Version2.10, Users Minnesota:Itasca Consulting Group Inc,2002
    [135]刘波韩彦辉编著.FLAC原理、实例与应用指南[M].北京:人民交通出版社, 2005. 9
    [136]哈努卡耶夫A.H,著.刘殿中译.矿岩爆破物理过程[M].北京:冶金工业出版社.
    [137]戴俊编著.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.5
    [138] Naouer J.A.L.Malan D.F A Viscoplastic Discontinuum Model of Time-Dependent Fracture and Seismicity Effects in BrittleRock[J].International Journal of Rock Mechanics &Mining Sciences,1997,34(7):1075-1090.
    [139]陈士海.爆破地震作用下结构破坏安全标准研究[D].江苏南京:中国人民解放军理工大学,2004.
    [140]李术才,朱维申,陈卫忠等.弹塑性大位移有限元方法在软岩隧道变形预估系统研究中的应用[J].煤炭学报,1996, 21(4): 393-397.
    [141]王暖堂,陈瑞阳,谢箐.城市地铁复杂洞群浅埋暗挖法施工技术[J].岩土力学, 2002, 23(2): 208-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700