土压平衡盾构推进系统特性及布局优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推进系统承担着整个盾构的顶进任务,需完成盾构掘进机的转弯、曲线行进、姿态控制以及纠偏。因此,对盾构推进系统的性能分析和设计是实现整个盾构系统正常工作的关键。本文针对土压平衡盾构推进系统关键特性理论,重点在力传递特性、基于变刚度的变形特性和固有频率特性等方面进行了系统的研究,并应用研究理论对工程中使用的盾构推进系统进行了布局优化设计。最后完成了一套缩尺直径628mm盾构切削推进实验平台的尺寸综合与设计。
     研究了盾构推进系统力传递特性。以推进液压缸作用在管片上的顶推力均匀为原则,构建出推进系统力学模型,得到基于拉格朗日函数的力传递方程。通过对拉格朗日函数求解分析,分别构建了均匀系统、四分区系统以及非均匀系统力传递椭圆模型。以力传递椭圆偏心率做为系统力传递性能指标,分别分析了各类推进系统的力传递特性,寻求出适应不同地质条件的推进系统液压缸布局类型。
     在分析盾构推进系统刚度特性的基础上,研究了推进系统的变形特性。基于超静定变形理论,应用变形协调方程,构建了推进系统的变形椭圆模型。以推进系统变形椭圆模型为基础,将系统液压缸中最大变形量和变形差作为系统变形指标,分析了均匀布局推进系统和非均匀布局推进系统的变形特性。给出了多套推进系统在掘进过程中,变形对系统姿态控制精度的影响情况。
     提出采用推进系统固有频率线的方法研究系统振动性能。首先构建了推进系统振动模型,并以该模型为基础,推导出系统固有频率方程,利用固有频率特征方程解的特性,导出推进系统的固有频率线。最后将频率线,应用到实际的盾构推进系统中,分析了均匀系统与多套非均匀系统固有频率特性,获得各套系统防止共振现象的固有频率段,为在盾构设计中避开共振频率提供了理论基础。
     根据力传递及变形特性等方面的研究基础,进行了直径6.34m盾构推进系统二十二台液压缸的布局优化设计。该设计以力传递最优为基本原则,兼顾考虑推进系统变形最小和避开系统共振现象。最后以相似理论为基础,按照四液压缸推进系统的优化布局结果,设计和搭建了对应的四液压缸缩尺盾构切削推进实验平台。
The shield thrust system in machines, driven by hydraulic systems providing large forces, is a key part of the shield machine. It does not only perform the task of driving shield ahead in the process of tunneling, but also control the attitude of the machine to ensure that the machine can advance along the expected path consequently for constructing the planned tunnel line. Therefore the rational analysis and design for thrust system plays an important role in the whole machine which can work well. In this paper, the key characteristics theories for driving system in Earth Pressure Balance (EPB) shield machines emphasizing on the characteristics of force transmission, deformation and natural frequency under variable stiffness were investigated. According to the characteristics above, the layout for thrust system applying in engineering was optimized. Finally, the dimensional design for reduced-scale model with diameterΦ628mm was given.
     The characteristics for force transmission were researched. Based on the mechanical model for driving system, the optimization function was introduced for the uniform force on segments which will be cracked by large thrust. Through analysis of the Lagrange function, the even, the four-group and the uneven systems force spatial ellipses were constructed. After eccentricity for force spatial ellipse being regarded as force performance index, the force transmission characteristics for three kinds of systems were intensively studied to seek the kind of thrust system which is suitable for the given geological condition.
     On the ground of the analysis for properties on stiffness for thrust system, the characteristics for deformation were studied. Base on hyperstatic compatibility, the spatial deforming ellipse for the driving system has been discovered. Applying the model to the thrust systems, the characteristics for the deforming ellipse of even and non-uniform arrangement systems have been analyzed in detail under variable stiffness caused by the compressibility of oil in hydraulic cylinders. The deformation for several kinds of thrust systems which has the effect on the control precision was given.
     The mothed of adopting frequency line to study the vibrational characteristics in driving systems was proposed in paper. In the light of changing rate in thrust system with the extension of hydraulic cylinders, the model of vibration was built. Through the model, the frequency line for thrust system was discovered in the progress of solving eigenvalues for feature matrix. Applying the frequency line to the thrust system in engineering application, the natural frequencies in three directions for the even system and uneven system were analyzed. The ranges of natural frequency in thrust systems have been obtained to provide the theoretical foundation for avoiding the resonance
     On the basis of the characteristics above, the optimization layout for the thrust sytem with diameter 6.34m was given. Consdering the minimum deformation and avoiding the resonance, the basic principle for the design is good force transmission performce. Finally, in line with the similarity theories, the reduced-scale shield cutting and thrust system in which the layout for jacks was optimized were designed and put up. Keywords: EPB Shield Machines; Thrust System; Spatial Force Ellipse; Variable Stiffness; Natural Frequency
引文
[1]熊艳.地铁内部环境控制与系统安全的基本分析.安全, 2005,26(2):30-31.
    [2]沈景炎.发展多层次的城市轨道交通.城市轨道交通研究, 2000(1):11-13.
    [3]刘建航,侯学渊.盾构法隧道.北京:中国铁道出版社, 1991.
    [4]张凤祥,傅德明,杨国祥,等.盾构隧道施工手册.北京:人民交通出版社, 2005.
    [5]中国铁道学会隧道代表团编.日本隧道概况.北京:人民交通出版社, 1980.
    [6]刘仁鹏.盾构掘进机的发展及应用.工程机械, 1985(10):33-35.
    [7]张海.盾构掘进机的现状与发展.工程机械与维修, 1998(1):12-13.
    [8]刘鹏亮.盾构掘进机推进系统的关键技术研究[硕士学位论文].上海:上海交通大学, 2008.
    [9]朱伟,陈仁俊.盾构隧道施工技术现状及展望(第3讲)—盾构隧道应用前景及发展方向.岩土工程界, 2002,5(1):18-21.
    [10]张凤祥,朱合华,傅德明.盾构隧道.北京:人民交通出版社, 2004.
    [11]牟少文.长江隧道挑战世界难题.建筑机械化, 2009(2):27-29.
    [12]陈丹,袁大军,张弥.盾构技术的发展与应用.现代城市轨道交通, 2005(5):25-29.
    [13]崔国华,王国强,何恩光,等.盾构机的研究现状及发展前景.矿山机械, 2006,34(6):24-27.
    [14]胡兴军,子荫.我国隧道盾构掘进机的发展和应用.内蒙古煤炭经济, 2004(04):26-29.
    [15]王洪新,傅德明.土压平衡盾构平衡控制理论及试验研究.土木工程学报, 2007,40(5):61-68.
    [16] Maidl B, Herrenknecht M, Anheuser L. Mechanised Shield Tunnelling. Berlin: Ernst & Sohn, 1996.
    [17] Koyama Y. Present status and technology of shield tunneling method in Japan. Tunnelling and Underground Space Technology, 2003,18(2):233-241.
    [18]张照煌,李福田.全断面隧道掘进机施工技术.北京:中国水利水电出版社, 2006.
    [19] Flanagan R F. Ground vibration from TBMs and shields. Tunnels & Tunnelling, 1993(10):30-33.
    [20] Temporal J, Snowdon R A. The effect of hydraulic stiffness on tunnel machine performance. Tunnels & Tunnelling, 1982(10):11-13.
    [21] Snowdon R A, Ryley M D, Temporal J, et al. The effect of hydraulic stiffness on tunnel boring machine performance. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983,21(1):203-214.
    [22] Pellet-Beaucour A L, Kastner R. Experimental and analytical study of friction forces during microtunneling operations. Tunnelling and Underground Space Technology, 2002,17(1):83-93.
    [23] Yeh I. Application of neural networks to automatic soil pressure balance control for shield tunneling. Automation in Construction, 1997,23(3):308-317.
    [24] Suwansawat S, Einstein H H. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunnelling and Underground Space Technology, 2006,28(6):517-547.
    [25] Vinai R, Oggeri C, Peila D. Soil conditioning of sand for EPB applications: A laboratory research. Tunnelling and Underground Space Technology, 2008,20(2):139-148.
    [26]宋克志.泥岩砂岩交互地层越江隧道盾构掘进效能研究[博士学位论文].北京:北京交通大学, 2005.
    [27] Huayong Y, Hu S, Guofang G, et al. Electro-hydraulic proportional control of thrust system for shield tunneling machine. Automation in Construction, 2009,9(4):367-373.
    [28]胡国良,龚国芳,杨华勇,等.盾构模拟试验平台液压推进系统设计.机床与液压, 2005(2):92-94.
    [29]胡国良,刘乐平,龚国芳,等.盾构推进系统同步控制仿真与试验研究.中国机械工程, 2008,19(10):1197-1201.
    [30]施虎,龚国芳,杨华勇,等.隧道盾构掘进机推进系统设计.工程机械, 2008,39(7):44-48.
    [31]庄欠伟,龚国芳,杨华勇,等.盾构液压推进系统结构设计.工程机械, 2005(3):47-50.
    [32]郑志敏.盾构推进系统设计.隧道建设, 2006,26(4):84-87.
    [33]贾连辉,陈馈.盾构推进系统的设计与控制分析.建筑机械化, 2009(2):63-65.
    [34] Mo H H, Chen J S. Study on inner force and dislocation of segments caused by shield machine attitude. Tunnelling and Underground Space Technology, 2008,18(2):253-262.
    [35]谭忠盛,洪开荣,万姜林,等.软硬不均地层盾构姿态控制及管片防裂损技术.中国工程科学, 2006,8(12):92-96.
    [36]徐前卫.盾构施工参数的地层适应性模型试验及其理论研究[博士学位论文].上海:同济大学, 2006.
    [37]周奇才,陈俊儒,何自强,等.盾构智能化姿态控制器的设计.同济大学学报(自然科学版), 2008,36(1):76-80.
    [38]王洪新,傅德明.土压平衡盾构掘进的数学物理模型及各参数间关系研究.土木工程学报, 2006,39(9):86-90.
    [39]丁凯.盾构机的技术特点分析.筑路机械与施工机械化, 2006(5):8-10.
    [40]吴克利.国内外隧道掘进机械发展概述.重工与起重技术, 2005(1):29-32.
    [41]王立平,唐晓强,冯平法,等.一种用于土压平衡式盾构的全时推进系统结构:中国, CN101713292A.(公开号)
    [42]徐俊.盾构法施工最小曲线半径取值的研究[硕士学位论文].北京:北京交通大学, 2008.
    [43]潘国荣,黄加惠.地铁隧道盾构掘进的定向与贯通.铁路航测, 1997(2):36-38.
    [44]欧阳平,吴北平.盾构隧道贯通误差分析.湖南工程学院学报:自然科学版, 2006,16(2):75-79.
    [45]胡辉,洪赓武,杜胤平.试用QC控制小曲率半径盾构推进.城市道桥与防洪, 2005(4):77-80.
    [46]黄福贵.隧道贯通误差分配及控制方法.交通科技, 2008(3):23-26.
    [47]谢宇尚.隧道横向贯通误差精度影响分析.测绘信息与工程, 2008,33(4):20-21.
    [48] Sugimoto Mitsutaka, Sramoon Aphichat. Theoretical model of shield behavior during excavation. I: theory. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(2):138-155.
    [49] Sramoon Aphichat, Sugimoto Mitsutaka, Kayukawa Kouji. Theoretical model of shield behavior during excavation. II: application. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(2):156-165.
    [50]谈小龙,朱伟,秦建设,等.盾构法隧道施工中盾构控制滞后效应的研究.地下空间, 2004,24(1):36-40.
    [51]赵强,李洪人,韩俊伟. Stewart平台的振动研究.机械科学与技术, 2004,23(5):594-597.
    [52]赵玉成,华军.振动冲击夯非线性模型建立及振动特性分析.工程机械, 2000,31(3):15-16.
    [53]薛建阳,赵洪铁,张鹏程.中国古建筑木结构模型的振动台试验研究.土木工程学报, 2004,37(6):6-11.
    [54]彭利坤,邢继峰,朱石坚,等.液压6-DOF并联机器人的振动特性研究.机械设计与研究, 2005,21(5):37-40.
    [55]土木学会日.隧道标准规范(盾构篇)及解说.北京:中国建筑工业出版社, 2001.
    [56]凌京蕾,樊丽珍.盾构技术及其在广州地铁的应用.广重科技, 2000(3):25-32.
    [57]徐前卫,朱合华,廖少明,等.均匀软质地层条件下土压平衡盾构施工的合理顶进推力分析.岩土工程学报, 2008,30(1):79-85.
    [58]朱合华,徐前卫,廖少明,等.土压平衡盾构施工的顶进推力模型试验研究.岩土力学, 2007,28(8):1587-1594.
    [59] Wood A M M, Ma F. The circular tunnel in elastic ground. Geotechnique, 1975,25(1):115-127.
    [60]朱伟,黄正荣,梁精华.盾构衬砌管片的壳_弹簧设计模型研究.岩土工程学报,2006,28(8):940-947.
    [61]黄正荣.基于壳_弹簧模型的盾构衬砌管片受力特性研究[博士学位论文].南京:河海大学, 2007.
    [62]宋克志.无水砂卵石地层盾构推力及刀盘转矩的计算.建筑机械, 2004(10):58-60.
    [63]施虎,龚国芳,杨华勇,等.盾构掘进土压平衡控制模型.煤炭学报, 2008,33(3):343-346.
    [64]苏健行,龚国芳,杨华勇.土压平衡盾构掘进总推力的计算与试验研究.工程机械, 2008,39(1):13-16.
    [65]王振信.盾构法隧道的耐久性.地下工程与隧道, 2002(2):2-6.
    [66]竺维彬,鞠世健.盾构隧道管片开裂的原因及相应对策.现代隧道技术, 2003,41(01):21-25.
    [67]秦建设,朱伟,陈剑.盾构姿态控制引起管片错台及开裂问题研究.施工技术, 2004,33(10):25-27.
    [68]梁仲元,陈俊生,莫海鸿,等.广州地铁盾构施工阶段管片开裂原因初探.广东土木与建筑, 2004(03):23-25.
    [69]陈俊生,莫海鸿,梁仲元.盾构隧道施工阶段管片局部开裂原因初探.岩石力学与工程学报, 2006,25(05):906-910.
    [70] Chen J S, Mo H H. Numerical study on crack problems in segments of shield tunnel using finite element method. Tunnelling and Underground Space Technology, 2009,40(18):4615-4635.
    [71] Deng K, Tang X, Wang L, et al. On the analysis of force transmission performance for the thrust systems of shield tunneling machines: Second International Conference on Intelligent Robotics and Applications, Singpore, 2009:268-278.
    [72]同济大学数学教研室.高等数学.北京:高等教育出版社, 2000.
    [73]郑世加,王飞,郑余朝.小半径曲线盾构地段的纵向结构分析.四川建筑, 2007,27(1):96-99.
    [74]凌宇峰,李章林.小曲线半径盾构轴线控制技术.上海建设科技, 2003(1):34-36.
    [75]地盘工学会.盾构法的调查.设计.施工.牛清山,陈凤英,徐华,译.北京:中国建筑工业出版社, 2008.
    [76]闵锐,黄健.Φ6.34m土压平衡盾构掘进机.建筑机械, 2002(12):46-49.
    [77]吴远忠.盾构中折装置在小半径转弯施工中的应用.建筑施工, 2005,27(7):34-35.
    [78]刘鸿文.材料力学.北京:高等教育出版社, 1992.
    [79]赵素兰.超静定杆系结构的变形谐调条件.内蒙古电大学刊, 2004(5):69-70.
    [80]范钦珊.工程力学教程.北京:高等教育出版社, 1998.
    [81]王林鸿,吴波,杜润生,等.液压缸运动的非线性动态特征.机械工程学报,2007,43(12):12-19.
    [82]陈奎生.液压系统的共振现象及其处理.噪声与振动控制, 1995(5):22-25.
    [83]邓孔书,唐晓强,王立平,等.土压平衡式液压盾构推进系统的非线性动力学建模及分析.高技术通讯, 2009,19(12):1305-1309.
    [84]朱石坚,何琳.船舶机械振动控制.北京:国防工业出版社, 2006.
    [85] Tse F S, Morse I E, Hinkle R T. Mechanical Vibrations Theory and Applications. Boston: Allyn and Bacon, 1978.
    [86]阎以诵,靳晓雄.工程机械动力学.上海:同济大学出版社, 1986.
    [87]夏季,曾国英,刘继光,等.三维振动强化抛光振动台固有振动动力学建模与分析.振动与冲击, 2004,23(4):12-17.
    [88]闻邦椿,刘树英,陈照波,等.机械振动理论及应用.北京:高等教育出版社, 2009.
    [89] Richard S., Varga. Matrix Iterative Analysis. Berlin: Springer, 2006.
    [90]同济大学数学系.线性代数.北京:清华大学出版社, 2007.
    [91] David C., Lay. Linear Algebra and Its applications. Wesley: Pearson Education Asia Limited, 2004.
    [92]郜立焕,王佃武,生凯章.液压系统振动与噪声的原因分析.液压与气动, 2005(12):73-74.
    [93]王闯,丁立民,王巍.某型飞机轴向柱塞泵性能分析.飞机设计, 2005(4):42-46.
    [94]竺维彬,鞠世健.盾构隧道管片开裂的原因及相应对策.现代隧道技术, 2003,40(1):21-25.
    [95]李海.小半径曲线地铁隧道盾构法掘进技术.铁道建筑技术, 2009(9):99-102.
    [96]李翔.小半径曲线盾构掘进时管片破损分析.现代城市轨道交通, 2006(6):47-51.
    [97]陈大囡,郑学峰.小曲率半径隧道盾构推进的轴线控制.城市道桥与防洪, 2009(5):132-134.
    [98]冯平法,唐晓强,王立平,等.一种用于土压平衡式盾构的可调推进机构:中国, CN101649743 .(公开号)
    [99]吕建中,庄欠伟.Φ14.87m盾构液压推进系统分析.筑路机械与施工机械化, 2008(7):75-77.
    [100]邓孔书,唐晓强,王立平,等.随机载荷下盾构推进系统液压缸布局优化设计.清华大学学报(自然科学版)(已录用).
    [101]白志富,梁辉,陈五一.冗余并联机构的内力及应用.机械设计与研究, 2006,22(4):13-16.
    [102]郭书祥.非随机不确定结构的可靠性方法和优化设计研究[博士学位论文].西安:西北工业大学, 2002.
    [103]张志涌.精通MATLAB6.5版.北京:北京航空航天大学出版社, 2004.
    [104]龚纯,王正林.精通MATLAB最优化计算.北京:电子工业出版社, 2009.
    [105]陆严,姚香根,曲以义.用于三峡升船机模型试验的液压均衡系统.液压气动与密封, 1995(4):26-29.
    [106]刘汉卿,杨现利.三峡升船机同步轴系统模型相似计算.矿山机械, 1996(11):21-23.
    [107]赵强政.Φ520mm土压平衡式模型盾构机研制及试验性掘进控制模拟[硕士学位论文].成都:西南交通大学, 2007.
    [108]唐晓强,王立平,邓孔书,等.一种用于盾构掘进模拟的扭矩和力加载装置:中国, 200810106139.9[P]. 2008-10-15.
    [109]徐挺.相似理论与模型试验.北京:中国农业机械出版社, 1984.
    [110]李之光.相似与模化:理论及应用.北京:国防工业出版社, 1982.
    [111]张利平.液压传动系统及设计.北京:化学工业出版社, 2005.
    [112]杨扬,龚国芳,胡国良,等.模拟盾构推进液压系统的设计和研究.机床与液压, 2006(11):90-92.
    [113]杨扬,龚国芳,胡国良,等.模拟盾构机推进液压系统泵站集成设计.机床与液压, 2006(4):118-120.
    [114]杨扬.模拟盾构推进系统的设计和研究[硕士学位论文].杭州:浙江大学, 2006.
    [115]王化更.液压缸直接驱动盾构刀盘系统结构优化及控制研究[博士学位论文].上海:同济大学, 2007.
    [116]傅德明,黄均龙,孙静毅.模拟盾构掘进机试验用的模拟土箱:中国, 200410089262.6[P]. 2005-05-25.
    [117]傅德明,李向红,吴兆宇,等.大型盾构掘进模拟试验平台:中国, 200410089260.7[P]. 2005-05-25.
    [118]周小文.盾构隧道土压力离心模型试验及理论研究[博士学位论文].北京:清华大学, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700