高速铁路水下盾构隧道结构力学特征及掘进与对接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:从环保要求与可持续发展战略考虑,水下隧道必将是我国跨江越海交通工程的主要选择方式。广深港高速铁路狮子洋隧道作为我国首座特长水下铁路隧道,设计速度达350km/h,也是我国首次采用盾构对接方法施工的水下隧道,其建设理念与方法对今后我国跨江越海工程的建设具有很大的借鉴作用,因此研究狮子洋水下盾构隧道的修建技术,不仅具有重要理论意义,而且具有重要的社会经济意义。
     本论文以广深港高速铁路狮子洋隧道工程为依托,对高速铁路水下盾构隧道结构力学特征及掘进与对接技术进行了深入的研究。主要研究内容和成果如下:
     (1)对盾构管片结构设计方法进行了较系统的研究。首先总结了传统管片设计结构模型对各项设计参数的取值,分析其不足之处;之后,确定采用修正后的梁-接头模型作为管片结构设计方法,进行了数值模拟计算,并通过大量的原位测试,验证了管片结构接缝和管片均处于受压状态,提出了管片结构的荷载折减与提高隧道经济性的设计措施等观念。
     (2)由于管片隧道为拼装式结构,拼装式管片在其周边介质的发生变化时会成为外扩式不稳定结构,极易导致隧道的失稳。通过采用修正的梁-接头模型方法,分析了拼装式管片衬砌的可能破坏特征,论证了水下盾构隧道增加二次衬砌确保隧道结构稳定,提出了设置二次衬砌的必要性。
     (3)在狮子洋隧道施工中,通过大量监测数据,并对由隧道施工引起的地表沉降进行分析,得出隧道纵向、横向地表沉降规律;分析了隧道施工各种地层土体的水平位移,总结了其相应的水平位移规律。同时得出了盾构隧道本体除了出现整体上浮外,几乎没有相对位移、地表隆沉与隧道本体结构变形无直接关系的结论,因此建议今后对盾构隧道可不必进行隧道本体变形监控量测。
     (4)针对狮子洋隧道横向与纵向均存在软硬不均问题所带来的盾构掘进与控制的技术难度,通过对岩土层磨蚀性与岩土成份试验,对刀具的金相和磨损规律进行了研究,提出了有效的刀具磨损规律方程。通过对0.67MPa高水压下刀具更换技术的研究,提出了减压限排换刀技术,并根据不同地段盾构刀具的掘进效果评价,对狮子洋隧道盾构刀具进行设计与改进。
     (5)根据现场不断变化进度情况,详细研究了多处狮子洋隧道对接点的工程地质及水文地质,并相应对接点的贯通精度进行了估算,确定了合理的隧道洞内控制测量精度;利用离心试验和数值模拟分析,确定满足对接处的隧道稳定的预留对接宽度不应小于2.5m,但在保压状态下对接宽度在0.5m是也是安全的。实际施工时,采用了在两台盾构相距20~30m时,一台盾构停止掘进并保压,另一台盾构向前掘进无限对接,然后在盾壳的保护下,拆除盾壳内部构件,并将两刀盘外圈梁焊接联通隧道,再施工钢筋混凝土衬砌的施工方法,达到了安全、精确、高效的对接目标(平面误差小于30mm、水平误差小于20mm),为水下盾构隧道相向掘进对接提供了宝贵经验。
     本文就广深港高速铁路狮子洋隧道的主要修建技术进行研究与分析,期望其成果对我国将来的跨海隧道建设提供参考与借鉴。
Abstract:For the sake of environment protection and sustainable development, underwater tunnels must be the favorable solution for transportation corridors to cross seas and rivers in China. Shiziyang tunnel on Guangzhou-Shenzhen-Hong Kong high speed railway is the first underwater super-long railway tunnel in China. The designed train-running speed of the tunnel is 350km/h. Shiziyang tunnel is also the first underwater tunnel in China that has been constructed by shield-docking method. The construction concept and methods of Shiziyang have great reference significance for the construction of future tunnels crossing seas and rivers in China. Therefore, the study on Shiziyang tunnel does not only have great theory significance, but also have great social and economic significance.
     In this dissertation, the structural and mechanical performance of underwater shield-bored high speed railway tunnels and the boring and docking technologies are studied in detail, with Shiziyang tunnel on Guangzhou-Shenzhen-Hong Kong railway as an example. The major contents and achievements of the study are as follows:
     (1) The methods for the design of the segment structures are studied systematically. First, the values of the design parameters in the conventional segment structure design models are summarized and the disadvantages are analyzed; secondly, modified beam-joint models are determined to be adopted as the segment structure design method, numerical simulation calculations are made, the structural joints of the segments and the segments themselves are verified, by means of numerous in-situ tests, to be under compressing state, and concepts such as the reduction of the loads on the segment structures and the design countermeasures to improve the economical efficiency of the tunnel are proposed.
     (2)Tunnels with segment lining have an assembled structure. In case any changes occur to the resistance of the media surrounding the assembled segments, the assembled structure is liable to become an instable outward-expanding structure, which may cause the tunnel to lose its stability. By means of modified beam-joint model method, the potential failure properties of the assembled segment lining are analyzed, the solution to install the secondary lining for underwater shield-bored tunnels so as to ensure the stability of the tunnel structures are expounded and the necessity to install the secondary lining is presented.
     (3) The ground surface settlement induced in the construction of Shiziyang tunnel is analyzed and the rules of the ground surface settlement in the longitudinal and transverse directions are obtained as a result of numerous monitoring data; the horizontal displacement of various strata in the course of the tunnel construction is analyzed and the corresponding horizontal displacement rules are summarized. Furthermore, conclusion is drawn that except for the overall lifting of the shield-bored tunnel, almost no relative displacement occurs to the tunnel and that there are no direct relations between the ground surface heaving/settlement and the tunnel structure deformation. Therefore, it is recommended that it is unnecessary to monitor the deformation of the shield-bored tunnel structure itself in the future.
     (4) The geological conditions of Shiziyang tunnel are heterogeneous both in transverse direction and in longitudinal direction, which imposes great technological difficulty for the boring and control of the shield. The metal phase and wearing rules of the cutting tools are studied by means of tests on the strata abrasiveness and strata compositions and effective cutting tool wearing rule equations are proposed. The technology to replace the cutting tools under 0.67MPa water pressure is studied, the cutting tool replacement technology under reduced pressure and limited slurry releasing is proposed, and design optimizations are made to the cutting tools of the shield for Shiziyang tunnel on basis of the assessment on the boring effect of the shield in different tunnel sections.
     (5) The engineering geological conditions and hydro-geological conditions of the potential shield docking positions of Shiziyang tunnel are studied in detail. Appropriate inside-tunnel control survey accuracy is determined by estimating the influence of the docking position on the break-through accuracy. It is determined, by means of centrifugal tests and numerical simulation analysis, that the preserved docking width that can ensure the stability of the tunnel at the docking position shall not be less than 2.5m, however, under the pressure-maintaining condition,0.5m docking width can also ensure the safety. In the tunneling, the docking is made as follows:When the distance between the two shields is 20-30m, one of the shield stops its boring while maintaining the pressure in its excavation chamber, the other shield continues its boring to dock with the shield that has stopped its boring. Under the protection of the shield shell, the components within the scope of the shield shell are dismantled, the outer rings of the cutter heads of the two shields are welded together to form the tunnel structure, which is followed by the installation of the reinforced concrete lining. In this way, safe, accurate and efficient docking has been accomplished, with the plan error being less than 30mm and the horizontal error being less than 20mm. The successful docking of the shields in Shiziyang tunnel provides valuable experience for the docking of shields in boring of other underwater tunnels in the future.
     The major construction technologies adopted for Shiziyang tunnel on Guangzhou-Shenzhen-Hong Kong high speed railway are studied and analyzed in the dissertation, with the hope that the study results can provide reference for the construction of sea-crossing tunnels to be built in China in the future.
引文
[1]王梦恕 水下交通隧道发展现状与技术难题[J]岩石力学与工程学报2008.1
    [2]孙谋,谭忠盛盾构法修建水下隧道的关键技术问题[J]中国工程科学2009.7
    [3]孙钧海底隧道工程设计施工若干关键技术的商椎[J]岩石力学与工程学报2006.8
    [4]何川,赵强政,谢红强岩质水下盾构隧道施工期管片开裂机理分析中国土木工程学会第十二届年会暨隧道及地下工程分会第十四届年会论文集[A]2006
    [5]何川,封坤,杨雄南京长江隧道超大断面管片衬砌结构体的相似模型试验研究[J]岩石力学与工程学报2007
    [6]封坤,何川高速铁路水下盾构隧道管片衬砌主体结构受力分析研究[J]现代隧道技术2008
    [7]许金华,何川,夏炜洋水下盾构隧道渗流场应力场祸合效应研究[J]岩石力学2009.11
    [8]赵样平;赵文成浅谈水下盾构隧道结构病害处理[J]四川建筑2010.2;
    [9]耿萍;何川;晏启祥水下盾构隧道抗震设计分析方法的适应性研究[J]岩石力学与工程学报2008;
    [10]谢录科;胡旭跃;朱光涛水下盾构隧道施工管片上浮控制[J]交通科学工程2010.2;
    [11]杨文武盾构法水下隧道工程技术的发展[J]隧道建设2009.2
    [12]张建刚何川杨征大型水下盾构隧道管片衬砌结构配筋问题研究[J]铁道学报2009.5
    [13]田华军泥水盾构水下带压进仓技术实例[J]工程机械2008.10
    [14]谭鑫考虑流固耦合影响的水下隧道施工力学效应研究[D]中南大学硕士学位论文2009.5
    [15]张小冬 凌贤长 程亚鹏王宣青张军臣水下隧道周围土体及衬砌变形力学性状研究[D]哈尔滨工业大学学报2003.7
    [16]于洪丹 陈卫忠 郭小红 厦门海底隧道岩体力学参数取值研究[J]岩石力学与工程学报2010.2
    [17]许建聪王余富水下隧道裂隙围岩渗流控制因素敏感性层次分析[J]岩土力学2009.6
    [18]魏鑫,盾构隧道施工防止管片上浮施工技术[J],隧道建设,2006,26(增刊2),50-51
    [19]肖颂鸿东京湾临海公路沉埋隧道的设计铁道标准设计[J]隧道建设2006.6
    [20]IM Lee Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face [J] Tunnelling and underground space technology 2006
    [21]K Uchida, Y Wasa Design of the shield tunnel for the trans-Tokyo bay highway[J] Tunnelling and Underground Space 1992
    [22]YJ Shin, BM Kim, JH Shin The ground reaction curve of underwater tunnels considering seepage forces [J] Tunnelling and Underground Space 2003
    [23]Soejima E K Planning and design of the Osaka Port undersea tunnel 1991
    [24]YJ Shin, BM Kim, JH Shin Quantitative risk evaluation based on event tree analysis technique:Application to the design of shield TBM [J] Tunnelling and Underground Space 2010
    [25]YJ Shin, BM Kim, JH Shin Gronhaug A Requirements of geological studies for undersea tunnels [J] Tunnelling and Underground Space 2010
    [26]BM Rame Gowda, N Ghosh, RS Ramteke Seismic survey for piercing of an underwater tunnel for Koyna Hydroelectric Project [J], India Engineering 2007
    [27]Kuesel T R Alternative concepts for undersea tunnels [J] 1986(01)
    [28]Arild P The challenge of subsea tunneling[J] 1994(02)
    [29]Eisenstein Z Large undersea tunnels and the progress of tunneling technology[J] 1994(03)
    [30]Dahlo T S.Nilsen B Stability and rock cover of hard rock subsea tunnels [J] 1994(02)
    [31]Vandebrouk P The channel tunnel:the dream becomes reality[J] 1995(01)
    [32]Tsuji H.Sawada T.Takizawa M Extraordinary inundation accidents in the Seikan undersea tunnel [J] 1996(01)
    [33]Palmstrom A.Skogheim A New Milestones in subsea blasting at water depth of 55 m [J] 2000(01)
    [34]张凤祥,朱合华,傅德明,盾构隧道,人民交通出版社[M],2004,9
    [35]沈征难,盾构掘进过程中隧道管片上浮原因分析及控制[J],现代隧道技术,
    [36]程晓,潘国庆,盾构施工技术,上海:科学技术文献出版社,199011.林志海底隧道技术特点与发展2005
    [37]李世煇 隧道支护设计新论--典型类比分析法应用和理论[J]1999
    [38]李术才.徐帮树.李树忱海底隧道衬砌结构选型及参数优化研究[J]-岩石力学与工程学报2005(21)
    [39]杨家岭.邱祥波.陈卫忠海峡海底隧道及其最小岩石覆盖层厚度问题[J]岩石力学与工程学报2003(z1)
    [40]王梦恕.皇甫明海底隧道修建中的关键问题[J]-建筑科学与工程学报2005(04)
    [41]王梦恕蓬勃发展的中国水下隧道[J]2005
    [42]唐益群.宋永辉.周念清土压平衡盾构在砂性十中施工问题的试验研究[J]-岩石力学与工程学报2005(01)
    [43]黄学军.马小汀高水压下泥水盾构掘进技术[J]-隧道建设2004(06)
    [44]谭忠盛.洪开荣.万姜林软硬不均地层盾构姿态控制及管片防裂损技术[J]-中国工程科学2006(12)
    [45]张凤祥.朱合华.傅德明盾构隧道[M]2004
    [46]尹旅超.朱振宏.李玉珍日本盾构隧道新技术[M]1999
    [47]朱伟.胡如军.钟小春几种盾构隧道管片设计方法的比较[J]-地下空间2003(04)
    [48]朱世友 国内地铁盾构区间隧道管片结构设计的现状与发展[J]-现代隧道技术2002(06)
    [49]KOYAMA Y. Present status and technology of shield tunneling method in Japan [J] 2003(2-3)
    [50]钟小春盾构隧道管片土压力的研究[D]2005
    [51]KOSHIMA Y.KONDO N.INOUE M, Result of experiments using shield and segment models and application of the method in tunnel construction [D] 1996(01)
    [52]唐志成.何川.林刚 地铁盾构隧道管片结构力学行为模型试验研究[J]-岩土工程学报2005(01)
    [53]余占奎.黄宏伟.娄宇软土盾构隧道结构理论与模型试验研究[J]-特种结构2006(02)
    [54]何川.林刚.佘才高 地铁盾构隧道管片衬砌结构受力特征研究[J]-现代隧道技术2004(06)
    [55]杨林德.丁文其 渗水高压引水隧道衬砌的设计研究[D]1997(02)
    [56]张玉卓.张金才 裂隙岩体渗流与应力耦合的试验研究[D]1997(04)
    [57]陈晓平.茜平一.梁志松非均质土坝稳定性的渗流场和应力场耦合分析[J]2004(06)
    [58]王媛.速宝玉.徐志英 等效连续裂隙岩体渗流与应力全耦合分析[J]1998(02)
    [59]柴军瑞.仵彦卿 考虑动水压力裂隙网络岩体渗流应力耦合分析[J]2001(04)
    [60]口本地铁区间盾构隧道管片衬砌的统计分析[A]中国士木工程学会隧道及地下工程分会第十二届年会2002
    [61]双圆盾构隧道管片衬砌的拼装内力分析[J]-力学季刊2005,26(3)
    [62]盾构隧道管片衬砌结构力学特性研究[J]2009
    [63]日本土木协会.朱伟盾构标准规范(盾构篇)及解说[S]2001
    [64]刘仁鹏土压平衡盾构技术综述[M]2000(1)
    [65]张庆贺.王慎堂.严长征.张伟盾构隧道穿越水底浅覆土施工技术对策[J]2004(
    [66]黄威然.竺维彬施工阶段盾构隧道漂移控制的研究[J]2005(1)
    [67]黄学军.马小汀高水压下泥水盾构掘进技术[D]2004(6)
    [68]叶飞软土盾构隧道施工期上浮机理分析及控制研究[J]2007
    [69]施仲衡,地下铁道设计与施工[D],西安:陕西科学技术出版社,1997
    [70]刘建航,侯学渊,盾构法隧道[D],北京:中国铁道出版社,1991
    [71]侯学渊,软土工程施工新技术[D],安徽:科学技术出版社,1999
    [72]朱世友,国内地铁盾构区问隧道管片结构设计的现状与发展[J],现代隧道技术,2002,39(6):23-28
    [73]汤漩,黄宏伟,盾构隧道衬砌设计中几个问题的研究[J],地下空间,2003,23(2);210-215
    [74]黄威然,竺维彬,施工阶段盾构隧道漂移控制的研究[J],现代隧道技术,2005,42(1);71-76
    [75]秦建设等,盾构姿态控制引起管片错台及开裂问题研究[J],施工技术,2004,33(10);25-27
    [76]钟志全,盾构管片错台分析及措施[J],建筑机械化,2006(09),43-45
    [77]张则忠,盾构施工中管片错台的成因分析以及防治措施[J],2007,4(1),52-53
    [78]谭忠盛,洪开荣,万姜林,王梦恕,软硬不均匀地层盾构姿态控制及管片防裂损技术[J],中国工程科学,2006,8(12);92-96
    [79]赵运臣,盾构隧道曲线段管片破损原因分析[J],西部探矿工程,2002,76,53-54
    [80]朱世友,国内地铁盾构区间隧道管片结构设计的现状与发展[J],现代隧道技术,2002,39(6):23-28
    [81]孔玉清,地铁盾构隧道施工中经常出现的问题与防治[J],工程建设与管理,146-149
    [82]北京市城乡建设委员会,GB50299—1999地下铁道工程施工验收规范[S],中国计划出版社,1999
    [83]张云,殷宗泽,软土隧道土压力问题的研究综述[S],水利水电科技进展,1999,19(5):23-26
    [84]鞠杨,徐广泉,毛灵涛,段庆全,赵同顺,盾构隧道衬砌结构应力与变形的三维数值模拟与模型试验研究[S],工程力学,2005,22(3);157-165
    [85]李围,孙继东,李成,盾构隧道管片衬砌受力分析力学模式探讨[J],隧道建设,2005,25(增刊),17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700