耐盐硝基苯降解菌特性分析及其部分基因克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基苯废水成分复杂,常含有大量对微生物有抑制作用的盐。基于此,本论文驯化、筛选耐盐硝基苯降解菌,对其进行生理生化鉴定,研究其耐盐和降解硝基苯特性。在此基础上,对其降解硝基苯代谢基因进行定位,并进一步利用现代分子生物学技术克隆到部分基因并对其进行了生物信息学分析。
     从活性污泥中驯化分离到2株耐盐硝基苯降解菌,通过形态观察、生理生化分析、G+C含量分析和16S rDNA分析分别鉴定为Streptomyces sp.DUT_AHX和Micrococcussp.DUT_AHX,其16S rDNA序列的GenBank登录序列号分别为DQ409080和DQ409081。
     Streptomyces sp.DUT_AHX的最适生长与降解条件为:温度30℃,pH 7.0,转速150r/min,菌株在唯一碳源培养基中可耐受的最大硝基苯浓度为900 mg/L。Micrococcus sp.DUT_AHX的最适生长与降解条件为:温度37℃,pH 7.0,转速150 r/min,菌株在唯一碳源培养基中可耐受的最大硝基苯浓度为600 mg/L。2株菌在以硝基苯为唯一碳、氮和能源的无机盐培养基中生长和降解硝基苯过程中均释放出NH_4~+,但未检测到NO_2~-。在80 h内2株菌株对硝基苯的降解率分别为98.8%和97.6%,TOC去除率为99.2%和98.1%,表明硝基苯最终被矿化为二氧化碳和水。2株菌的粗酶主要以2-氨基酚1,6-双加氧酶活性为主。这2株菌降解硝基苯的途径可能都是好氧部分还原途径。
     Streptomyces sp.DUT_AHX是一株中度耐盐细菌。在盐胁迫下某些相容性溶质如甘氨酸、脯氨酸、谷氨酸、甜菜碱、四氢嘧啶都能更好的促进其生长,其中甘氨酸的效果最明显,四氢嘧啶的效果最差。利用SDS-PAGE和非变性梯度PAGE电泳分析了盐胁迫或硝基苯诱导下Streptomyces sp.DUT_AHX蛋白质的合成变化,其中一些蛋白质的合成被抑制;一些蛋白质的合成被增强:一些起主要调节作用的盐或硝基苯诱导蛋白被重新合成。将非变性梯度PAGE凝胶上的大小为141 kDa的硝基苯诱导蛋白条带切胶电洗脱回收,其具有2-氨基酚1,6-双加氧酶活性,其活性大小为5.825μmol/min/mg protein,该蛋白是Streptomyces sp.DUT_AHX降解硝基苯代谢途径中的2-氨基酚1,6-双加氧酶。
     从Streptomyces sp.DUT_AHX提取到一大小约为17 kb的质粒pSNB1。采用提高生长温度和SDS法相结合消除质粒,筛选到一质粒消除菌株AHX-4,失去了氨苄青霉素抗性和降解硝基苯的能力。将质粒pSNB1经CaCl_2热激转化法进入大肠杆菌JM109感受态细胞,筛选到一个可在以硝基苯为唯一碳源的无机盐平板上生长的转化大肠杆菌阳性子AHX-JM109,其降解硝基苯的能力大大降低。质粒pSNB1与Streptomyces sp.DUT_AHX的抗性基因和降解硝基苯的基因有关,而与耐盐基因无关。
     以质粒pSNB1为模板和RedF、RedR为引物的简并降落PCR扩增到一大小为465 bp的基因片段,氨基酸序列检索表明,其与Marine actinobacterium PHSC20C1的YHS域蛋白的同源性较高;设计特异性引物进行盒式连接介导PCR,拼接得到大小为2026 bp的序列,开放阅读框分析发现一个编码126个氨基酸的ORF,属于YHS域蛋白,其代表的基因可能是Streptomyces sp.DUT_AHX的硝基苯硝基还原酶基因PPH_AHX,其GenBank中登录的序列号为EF998874。生物信息学分析表明,pPH_AHX基因编码的蛋白理论等电点为4.8,理论分子量为13.49089 kDa,为一位于细胞质的弱酸性、水溶性球状蛋白。通过不同程序预测其二级结构和三级结构,并构建了该蛋白部分三维结构模型。
The purpose of this dissertation is to investigate the characteristics and the partial gene of novel salt-tolerant bacteria capable of utilizing nitrobenzene (NB) as the sole carbon, nitrogen and energy sources. The exploitation of salt-tolerant bacteria would be a remarkable improvement in NB bioremediation and wastewater treatment in high salinity. The physiological and biochemical tests and 16S ribosomal DNA (rDNA) sequence analysis were carried out. The characteristics of tolerating salt and degrading NB of Streptomyces sp. DUT_AHX and Micrococcus sp. DUT_AHX were also investigated. Meanwhile, catabolic genes of degrading NB were localized. The partial gene was cloned by modern molecular biological techniques and then was analyzed by bioinformatics techniques.
     Two novel salt-tolerant bacteria Streptomyces sp. DUT_AHX and Micrococcus sp. DUT_AHX, which were isolated from the sludge and could utilize NB as the sole carbon, nitrogen and energy sources, were identified on the basis of physiological and biochemical tests and 16S rDNA sequence analysis. The 16S rDNA sequences of Streptomyces sp. DUT_AHX and Micrococcus sp. DUT_AHX were submitted to GenBank with the accession number DQ409080 and DQ409081, respectively.
     The optimal degradation and growth conditions of Streptomyces sp. DUT_AHX are as follows: temperature 30℃, pH 7.0 and shaking speed 150 r/min. It can grow in the presence of NB up to 900 mg/L in mineral salts basal (MSB) medium. The optimal degradation and growth conditions of Micrococcus sp. DUT_AHX are as follows: temperature 37℃, pH 7.0 and shaking speed 150 r/min. It can grow in the presence of NB up to 600 mg/L in MSB medium. Besides, NB-grown cells in MSB medium can degrade NB with the concomitant release of ammonia. The NB degradation rate of strain 1# and strain 2# were 98.8% and 97.6% in 80 h and TOC removing rate were 99.2% and 98.1%. Thus, NB is mineralized to CO_2 and H_2O. The enzyme activity tests show that crude extracts mainly contain 2-aminophenol 1,6-dioxygenase activity. Thus, they may involve a partial reductive pathway of degrading nitrobenzene.
     Streptomyces sp. DUT_AHX can tolerate moderately NaCl but does not require NaCl for growth. Hence, it is not halophilic but halotolerant. The exogenously added osmoprotectants such as glycin, glutamic acid, proline, betaine and ectoine can improve growth of Streptomyces sp. DUT_AHX in the presence of 10% (w/v) NaCl. The proteins induced by salinity stress or NB were analyzed by native-gradient polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. There were three prominent types of modifications, which several proteins were declined, certain proteins were enhanced and some proteins were induced de novo. In NB-induced proteins de novo, 141 kDa protein on the native-gradient PAGE gel was excised and electroeluted. Furthermore, enzyme tests exhibit the 2-aminophenol 1,6-dioxygenase activity of purified 141 kDa protein is 5.825μmol/min/mg protein, which is 11-fold that of the cell-free extracts. Thus, 141 kDa protein is the 2-aminophenol 1,6-dioxygenase of Streptomyces sp. DUT_AHX.
     A 17-kb plasmid was detected in Streptomyces sp. DUT_AHX and designated pSNB1. The use of elevating growth temperature together with SDS was effective in curing the plasmid pSNB1. A cured derivative designated AHX-4 lost NB degradability and ampicillin resistance. Moreover, pSNB1 was successfully transformed into E. coli JM109 competent cells by calcium chloride method and one transformant AHX-JM109 capable of degrading NB was obtained. As a result, some NB catabolic genes and antibiotic resistance genes are plasmid-mediated in Streptomyces sp. DUT_AHX.
     Moreover, the plasmid DNA was amplified with degenerate primers by touchdown polymerase chain reaction (PCR) and an expected size fragment (465 bp) was generated. The Blast results reveal that the gene encoding a 155 amino acid polypeptide is 33% to 76% identical to YHS domain protein. The sequences amplified by cassette-ligation-mediated PCR were spliced and the sequence is 2026 bp. The open reading frames (ORFs) in the sequence were analyzed by ORF Finder program. The ORF encoding 126 amino acid polypeptide is identical to YHS domain protein. The ORF designated pPH_AHX may be the gene encoding NB nitroreductase of Streptomyces sp. DUT_AHX. The sequence of pPH_AHX gene was submitted to GenBank with the accession number EF998874. The pPH_AHX gene was analyzed by bioinformatics techniques. It shows that the isoelectric point of the protein encoded by pPH_AHX gene is 4.8 and the theoretic molecular weight is 13.49089 kDa. The protein is acidic, soluble and spherical in cytoplasm. Furthermore, the partial second and tertiary structure of the protein were predicated and three-dimensional structure homologous model was constructed.
引文
[1]Spain J C.Biodegradation of nitroaromatic compounds.Annu Rev Toxicol,1995,49:523-555.
    [2]李海燕,黄延,安立超.含硝基苯类化合物废水处理技术研究.工业水处理,2006,26(7):40-43.
    [3]姚方,徐天有,吕延文等.含硝基苯及其衍生物染料废水的处理.工业水处理,2003,23(6):18-20.
    [4]杨健,郭长虹.废水中高浓度钠盐对活性污泥法系统的影响.污染防治技术,1998,11(4):199-204.
    [5]Keith L H,Telliard W A.Priority pollutants:I.A perspective view.Environ Sci Technol,1979,13(4):416-423
    [6]王连生.环境健康化学.北京:科学出版社,1994.
    [7]徐中其,陆晓华.活性炭纤维在硝基苯水溶液中的吸附和再生.华中理工大学学报,2000,28(7):102-104.
    [8]毛连山,赵泉珍,林中祥.硝基苯废水的治理.环境污染与防治,2000,22(6):22-25.
    [9]顾曼华,沈小强.有机膨润土吸附硝基苯的性能及其在废水处理中的应用.水处理技术,1994,20(4):236-240.
    [10]林中祥,程康华.萃取法去除硝基苯生产废水中的硝基酚.环境导报,2000,(2):18-20.
    [11]沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理的研究.精细化工,1996,13(5):57-58.
    [12]Nakai T,Sato Y,Takahashi N et al.Supercritical CO_2 extraction treatment of organic compound in aqueous solution by countercurrent extraction.Journal of Japan Society on Water Environment,1999,22(10):854-858.
    [13]熊宜栋.硝基苯制药废水的超声处理研究.工业水处理,2003,23(1):44-46.
    [14]Hung H M,Ling F H,Hoffmann M R.Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound.Environmental Science and Technology,2000,34(9):1758-1763.
    [15]赵军.O_3氧化处理苯胺、硝基苯废水的实验研究.环境保护科学,1997,23(3):12-14.
    [16]Latifoglu A,Gurol M D.The effect of humic acids on nitrobenzene oxidation by ozonation and O_3/UV process.Water Research,2003,37(8):1879-1889.
    [17]石枫华,马军.O_3/H_2O_2与O_3/Mn氧化工艺去除水中难降解有机污染物的对比研究.环境科学,2004,25(1):72-77.
    [18]黄晓东,徐寿昌.用芬顿试剂预氧化提高硝基苯废水的可生化性.江汉石油学院学报,1994,16(3):74-78.
    [19]田依林,李明玉,马同森等.Fenton试剂氧化水中芳香族化合物的机理.污染防治技术,2003,16(1):12-15.
    [20]Chamarro E,Marco A,Esplugas S.Use of Fenton reagent to improve organic chemical biodegradability.Water Research,2001,35(4):1047-1051.
    [21]傅厚暾,赵俐敏,冯娟等.Fenton试剂-超声波降解硝基苯产物的分析.四川环境,2005,24(3):12-14.
    [22]Chen B,Yang C,Goh N K.Photodegradation of nitroaromatic compound in aqueous solutions in the UV/H_2O_2 process.J Environ Sci(China),2005,17(6):886-893.
    [23]Rodriguez M,Kirchner A,Contreras S et al.Influence of H_2O_2 and Fe(Ⅲ) in the photodegradation.Journal of Photochemistry and Photobiology A:Chemistry,2000,133(1-2):123-127.
    [24]胡德文,程沧沧.紫外/双氧水和亚铁离子体系对硝基苯光降解的研究.重庆环境科学,1999,21(3):34-36.
    [25]程沧沧,肖忠海,胡德文等.玻璃负载TiO_2薄膜光降解制药废水的研究.环境科学与技术,2000,92(4):5-7.
    [26]Tada H,Ishida T,Takao Aet al.Kinetic and DFT studies on the Ag/TiO_2 photocatalyzed selective reduction of nitrobenzene to aniline.Chem Phys Chem,2005,6(8):1537-1543.
    [27]赵东风,赵朝成.超临界水氧化技术处理硝基苯废水的研究.重庆环境科学,2001,23(3):45-48.
    [28]郭香会,李劲.脉冲放电等离子体处理硝基苯废水的实验研究.电力环境保护,2001,17(2):37-38.
    [29]齐军.电流体直流放电降解水中硝基苯的研究.环境科学,2001,22(5):99-101.
    [30]朱先军,吴仲达,王红森.酸性溶液中离子注入钯的玻璃电极上硝基苯的电化学还原.应用化学,1996,13(4):30-33.
    [31]李玉平,曹宏斌,张懿.硝基苯在碳纳米管修饰电极上的电化学行为及其分析与应用.环境化学,2005,24(3):315-317.
    [32]宋卫锋,谢光炎,林美强.DSA类电极催化降解硝基苯及其动力学研究.上海环境科学,2002,21(6):353-357.
    [33]傅敏,丁培道,蒋永生等.超声波与电化学协同作用降解硝基苯溶液的实验研究.应用声学,2004,23(5):36-39.
    [34]Orshansky F,Narkis N.Evaluation of toxic organics removal by simultaneous adsorption and biodegradation.Proceedings of the Industrial Waste Conference,1997,159-171.
    [35]任源,李湛江,吴超飞等.硝基苯废水的厌氧-好氧基本实验与工艺理论分析.应用与环境生物学报,1999,5(z1):14-17.
    [36]蔡天明.微电解-生化工艺在硝基苯废水处理中的协同作用.环境工程,2001,(6):28-30.
    [37]张键,于林堂,朱宜平等.高浓度硝基苯类废水的处理.工业用水与废水,2006,37(4):74-79.
    [38]Woolard C R,Irvine R L.Response of a periodically operated halophilic biofilm reactor to changes in salt concentration.Water Science and Technology,1995,31(1):41-50.
    [39]Zobell C E,Anderson D Q,Smith W W.The bacteriostatic and bactericidal action of great salt lake water.J Bacteriol,1937,33(3):253-262.
    [40]Wong J M.Biotreatment of contaminated groundwater with high organics and salinity contents.Proc 46~(th) Annual Purdue Industrial Waste Conf.Lewis,Chelsea,Mich,1992:75-87.
    [41]Woolard C R,Irvine R L.Treatment of hypersaline wastewater in the sequencing batch reactor.Water Research,1995,29(4):1159-1168.
    [42]Burett W E.The effect of salinity variations on the activated sludge process.Water Sewage Works,1974,(121):37-55.
    [43]雷中方.高浓度钠盐对废水生物处理系统的失稳影响综述.工业水处理,2000,20(4):6-9.
    [44]Hamoda M F,Attar I M S.Effects of high sodium chloride concentrations on activated sludge treatment.Water Science and Technology,1995,31(9):61-72.
    [45]Dalmacija B,Karlovic E,Tamas Z et al.Purification of high-salinity wastewater by activated sludge process.Water Research,1996,30(2):295-298.
    [46]Ludzack F J,Noran D K.Tolerance of high salinities by conventional wastewater treatment processes.J Water Pollut Control Fed,1965,37(10):1404-1416.
    [47]邱文芳.环境微生物学技术手册.北京:中国建筑工业出版社,1990.
    [48]申屠青春,吕爱良.盐度,碱度对浮游生物和水化因子的影响.应用生态学报,2000,11(3):449-454.
    [49]Belkin S,Brenner A,Abeliovich A.Biological treatment of a high salinity chemical industrial wastewater.Water Science and Technology,1993,27(7-8):105-112.
    [50]Woolard C R,Irvine R L.Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria.Water Environment Research,1994,66(3):230-235.
    [51]Ventosa A,Nieto J J.Biotechnological applications and potentialities of halophilic microorganisms.World Journal of Microbiology and Biotechnology,1995,11(1):85-94.
    [52]Kushner D J.Life in high salt and solute concentrations:halophilic bacteria.In:Kushner D J,ed.Microbial life in extreme environments.London:Academic Press,1978:317-368.
    [53]Larsen P I,Sydnes L K,Landfald B et al.Osmoregulation in Escherichia coli by accumulation of organic osmolytes:betaines,glutamic acid and trehalose.Arch Microbiol,1987,147(1):1-7.
    [54]Vreeland R H.Mechanisms of halotolerance in microorganisms.Crit Rev Microbiol,1987,14(4):311-356.
    [55]刘铁汉,周培瑾.嗜盐微生物.微生物学通报,1999,26(3):232.
    [56]阮继生,刘志恒,梁丽糯等.放线菌研究及应用.北京:科学出版社,1990.
    [57]Le Rudulier D,Strom A R,Dandekar A M et al.Molecular biology of osmoregulation.Science,1984,224(4653):1064-1068.
    [58]Csonka L N.Physiological and genetic responses of bacteria to osmotic stress.Microbiol Rev,1989,53(1):121-147.
    [59]陶卫平.嗜盐菌的嗜盐机制.生物学通报,1996,36(1):23-24.
    [60]刘爱民.嗜盐菌的研究进展.安徽师范大学学报,2002,25(2):181-184.
    [61]McLaggan D,Naprstek J,Buurman E T et al.Interdependence of K~+ and glutamate accumulation during osmotic adaptation of Escherichia coli.J Biol Chem,1994,269(3):1911-1917.
    [62]王颖群,陶涛.微生物渗透压调节过程中的相容性溶质.微生物学通报,1994,21(5):293-296.
    [63]Gouffi K,Pichereau V,Rolland J P et al.Sucrose is a nonaccumulated osmoprotectant in Sinorhizobium meliloti.J Bacteriol,1998,180(19):5044-5051.
    [64]Measures J C.Role of amino acids in osmoregulation of non-halophilic bacteria.Nature,1975,257(5525):398-400.
    [65]Koujima I,Hayashi H,Tomochika K et al.Adaptational change in proline and water content of Staphylococcus aureus after alteration of environmental salt concentration.Appl Environ Microbiol,1978,35(3):467-470.
    [66]Hua S S,Tsai V Y,Lichens G M et al.Accumulation of amino acids in Rhizobium sp.strain WR1001in response to sodium chloride salinity.Appl Environ Microbiol,1982,44(1):135-140.
    [67]Csonka L N,Hanson A D.Prokaryotic osmoregulation:genetics and physiology.Annu Rev Microbiol,1991,45:569-606.
    [68]黄红英,刘爱民.真细菌的渗透调节机制.微生物学通报,1999,26(3):218-220.
    [69]Fernandez-Castillo R,Vargas C,Nieto J J et al.Characterization of a plasmid from moderately halophilic eubacteria.J Gen Microbiol,1992,138(6):1133-1137.
    [70]Vargas C,Fernandez-Castillo R,Canovas D et al.Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas.Characterization of a small plasmids from H.elongata and its use for shuttle vector construction.Mol Gen Genet,1995,246(4):411-418.
    [71]Mellado E,Asturias J A,Nieto J J et al.Characterization of the basic replicon of pCM1,a narrow-host-range plasmid from the moderate halophile Chromohalobacter marismortui.J Bacteriol,1995,177(12):3443-3450.
    [72]Mellado E,Nieto J J,Ventosa A.Construction of novel shuttle vectors for use between moderately halophilic bacteria and Escherichia coli.Plasmid,1995,34(3):157-164.
    [73]Vargas C,Coronado M J,Ventosa Aet al.Host range,stability and compatibility of broad host-range-plasmids and a shuttle vector in moderately halophilic bacteria.Evidence of intrageneric and intergeneric conjugation in moderate halophiles.Syst Appl Microbiol,1997,20(2):173-181.
    [74]Datta A R,Ostroff R,MacQuillan A M.Genetic and physical characterization of proBA genes of the marine bacterium Vibrio parahaemolyticus.Appl Environ Microbiol,1987,53(12):2733-2738.
    [75]Manna D,Gowrishankar J.Evidence for involvement of proteins HU and RpoS in transcription of the osmoresponsive ProU operon in Escherichia coli.J Bacteriol,1994,176(17):5378-5384.
    [76]Louis P,Galinski E A.Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli.Microbiology,1997,143(4):1141-1149.
    [77]Canovas D,Vargas C,Iglesias-Guerra F et al.Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes.J Biol Chem,1997,272(41):25794-25801.
    [78]Canovas D,Vargas C,Kneip S et al.Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043.Microbiology,2000,146(2):455-463.
    [79]Storck W J,Layman P L,Reisch M S et al.Facts and figures for the chemical industry.Chem Eng News,1996,24:38-79.
    [80]BruhnC,Lenke H,Knackmuss H J.Nitrosubstituted aromatic compounds as nitrogen source for bacteria.Appl Environ Microbiol,1987,53(1):208-210.
    [81]尹萍,杨彦希.微生物降解硝基芳烃及其在环境保护中的应用.环境科学,1998,19(6):79-83.
    [82]周集体,黄丽萍,王竞等.芳香族硝基化合物生物降解代谢研究现状与展望.大连理工大学学报,2000,40(z1):46-54.
    [83]Parales R E,Bruce N C,Schmid A et al.Biodegradation,biotransformation,and biocatalysis(B3).Appl Environ Microbiol.2002,68(10):4699-4709.
    [84]Johnson G R,Spain J C.Evolution of catabolic pathways for synthetic compounds:bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene.Appl Microbiol Biotechnol,2003,62(2-3):110-123.
    [85]Ye J,Singh A,Ward O P.Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics.World Journal of Microbiology and Biotechnology,2004,20(2):117-135.
    [86]Dickel O,Haug W,Knackmuss H J.Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process.Biodegradation,1993,4(3):187-194.
    [87]张学才,徐美红,李丽等.白腐真菌漆酶处理几种有毒环境污染物的研究.化学与生物工程,2006,23(9):40-42.
    [88]胡明,卢雪梅,高培基.锰过氧化物酶的结构与功能.中国生物工程杂志,2003,23(3):30-34.
    [89]Levin L,Viale A,Forchiassin A.Degradation of organic pollutants by the white rot basidiomycete Trametes trogii.Int Biodeterior Biodegrad,2003,52(1):1-5.
    [90]徐美红,张学才,李丽等.白腐真菌处理硝基苯化合物的机理初探.化学与生物工程,2006,23(8):40-42.
    [91]Nishino S F,Spain J C.Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp.strain JS765.Appl Environ Microbiol,1995,61(6):2308-2313.
    [92]Vorbeck C,Lenke H,Fisher P et al.Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene.Appl Environ Microbiol,1998,64(1):246-252.
    [93]Nishino S F,Spain J C.Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes.Appl Environ Microbiol,1993,59(8):2520-2525.
    [94]Somerville C C,Nishino S F,Spain J C.Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45.J Bacteriol,1995,177(13):3837-3842.
    [95]Lendenmann U,Spain J C.2-aminophenol 1,6-dioxygenase:a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45.J Bacteriol,1996,178(21):6227-6232.
    [96]He Z,Spain J C.Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45:removal of the amino group from 2-aminomuconic semialdehyde.Appl Environ Microbiol,1997,63(12):4839-4843.
    [97]He Z,Davis J K,Spain J C.Purification,characterization,and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45.J Bacteriol,1998,180(17):4591-4595.
    [98]He Z,Spain J C.A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45.J Bacteriol,1998,180(9):2502-2506.
    [99]Davis J K,He Z,Somerville C C.Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases:divergent evolution of 2-aminophenol meta-cleavage pathway.Arch Microbiol,1999,172(5):330-339.
    [100]Park H S,Lim S J,Chang Y K et al.Degradation of chloronitrobenzenes by a cocluture of Pseudomonas putida and a Rhodococcus sp..Appl Environ Microbiol,1999,65(3):1083-1091.
    [101]Davis J K,Paoli G C,He Z et al.Sequence analysis and initial characterization of two isozymes of hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45.Appl Environ Microbiol,2000,66(7):2965-2971.
    [102]He Z,Nadeau L J,Spain J C.Characterization of hydroxylaminobenzene mutase from pNBZ139cloned from Pseudomonas pseudoalcaligenes JS45.A highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups.Eur J Biochem,2000,267(4):1110-1116.
    [103]He Z,Spain J C.Preparation of 2-aminomuconate from 2-aminophenol by coupled enzymatic dioxygenation and dehydrogenation reactions.J Ind Microbiol Biotechnol,1999,23(2):138-142.
    [104]He Z,Spain J C.One-step production of picolinic acids from 2-aminophenols catalyzed by 2-aminophenol 1,6-dioxygenase.J Ind Microbiol Biotechnol,2000,25(1):25-28.
    [105]Park H S,Kim H S.Identification and characterization of the nitrobenzene catabolic plasmids pNB1and pNB2 in Pseudomonas putida HS12.J Bacteriol,2000,182(3):573-580.
    [106]Park H S,Kim H S.Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process.J Bacteriol,2001,183(17):5074-5081.
    [107]Kadiyala V,Nadeau L J,Spain J C.Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols.Appl Environ Microbiol,2003,69(11):6520-6526.
    [108]吴建峰,沈锡辉,周宇光等.一株降解对氯硝基苯的Comamonas sp.CNB1的分离鉴定及其降解特性.微生物学报,2004,44(1):8-12.
    [109]Wu J F,Sun C W,Jiang C Y et al.A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1:purification,properties,genetic cloning and expression in Escherichia coli.Arch Microbiol,2005,183(1):1-8.
    [110]Wu J F,Jiang C Y,Wang B J et al.Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp.strain CNB-1.Appl Environ Microbiol,2006,72(3):1759-1765.
    [111]Zhen D,Liu H,Wang S J et al.Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73.Appl Microbiol Biotechnol,2006,72(4):797-803.
    [112]Xiao Y,Wu J F,Liu H et al.Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73.Appl Microbiol Biotechnol,2006,73(1):166-171.
    [113]Liu L,Wu J F,Ma Y F et al.A novel deaminase involved in chloronitrobenzene and nitrobenzene degradation with Comamonas sp.strain CNB-1.J Baeteriol,2007,189(7):2677-2682.
    [114]Parales R E,Ontl T A,Gibson D T.Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp.JS765.J Ind Microbiol Biotechnol,1997,19(5-6):385-391.
    [115]He Z,Spain J C.Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45(2-aminophenol pathway) and by Comamonas sp.JS765(catechol pathway).Arch Microbiol,1999,171(5):309-316.
    [116]Lessner D J,Johnson G R,Parales R E et al.Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp.strain JS765.Appl Environ Microbiol,2002,68(2):634-641.
    [117]Lessner D J,Parales R E,Narayan S et al.Expression of the nitroarene dioxygenase genes in Comamonas sp.strain JS765 and Acidovorax sp.strain JS42 is induced by multiple aromatic compounds.J Bacteriol,2003,185(13):3895-3904.
    [118]Parales R E,Huang R,Yu C L et al.Purification,characterization,and crystallization of the components of the nitrobenzene and 2-nitrotoluene dioxygenase enzyme systems.Appl Environ Microbiol,2005,71(7):3806-3814.
    [119]Friemann R,Ivkovic-Jensen M M,Lessner D J et al.Structural insight into the dioxygenation of nitroarene compounds:the crystal structure of nitrobenzene dioxygenase.J Mol Biol,2005,348(5):1139-1151.
    [120]Ju K S,Parales R E.Control of substrate specificity by active-site residues in nitrobenzene dioxygenase.Appl Environ Microbiol,2006,72(3):1817-1824.
    [121]He Z,Parales R E,Spain J C et al.Novel organization of catechol meta pathway genes in the nitrobenzene degrader Comamonas sp.JS765 and its evolutionary implication.J Ind Microbiol Biotechnol,2007,34(2):99-104.
    [122]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版).黄培堂等译.北京:科学出版社,2002.
    [123]李殷.质粒与基因工程.潍坊学院学报,2003,3(2):16-19,31.
    [124]Chakrabarty A M.Genetic basis of the biodegradation of salicylate in Pseudomonas.J Bacteriol,1972,112(2):815-823.
    [125]Hada H S,Sizemore R K.Incidence of plasmids in marine Vibrio spp.isolated from an oil field in the north-western gulf of Mexico.Appl Environ Microbiol,1981,41(1):199-202.
    [126]Ogunseitan O A,Tedford E T,Pacia D et al.Distribution of plasmids in groundwater bacteria.J Ind Microbiol Biotechnol,1987,1(5):311-317.
    [127]R.E.布坎南,N.E.吉本斯等.伯杰细菌鉴定手册(第八版).中国科学院微生物研究所译.北京:科学出版社,1984.
    [128]东秀竹,蔡妙英等.常见细菌系统鉴定手册.北京:科学出版社,2001.
    [129]F.M.奥斯伯,R.E.金斯顿,J.G.塞德曼等.精编分子生物学实验指南(第四版).马学军,舒跃龙等译.北京:科学出版社,2005.
    [130]林菊生,冯作化.现代细胞分子生物学技术.北京:科学出版社,2004.
    [131]Marmur J,Dory P.Determination of the base composition of deoxyribonucleic acid from thermal denaturation temperature.J Mol Biol,1962,5:109-118.
    [132]林万明,郭兆彪,高树德等.用热变性温度法测定细菌DNA中GC含量.微生物学通报,1981,8(5):245-247.
    [133]胡青海,李刚,郑明球等.鸭疫里氏杆菌江苏分离株G+C含量测定及DNA同源性研究.南京农业大学学报,1998,21(4):87-91.
    [134]李琳,李槿年,余为一.G+C mol%含量测定中细菌破壁方法的筛选与应用.安徽农业科学,2005,33(2):283-285.
    [135]Lane D J.16S/23S rRNA sequencing.In:Stackebrandt E,Goodfellow M,eds.Nucleic acid techniques in bacterial systematics.New York:John Wiley and Sons,1991:115-148.
    [136]Thompson J D,Gibson T J,Plewniak F et al.The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res,1997,25(24):4876-4882.
    [137]Kumar S,Tamura K,Nei M.MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment.Brief Bioinform,2004,5(2):150-163.
    [138]林万明.细菌分子遗传学分类鉴定法.上海:上海科学技术出版社,1990.
    [139]李琳,李槿年,余为一.细菌染色体DNA G+C mol%含量测定方法研究进展.动物医学进展,2003,24(1):50-52.
    [140]焦振泉,刘秀梅,孟昭赫.16S rRNA序列同源性分析与细菌系统分类鉴定.国外医学卫生学分册,1998,25(1):12-16.
    [141]乐毅全,顾国维.16S rRNA基因技术在环境科学领域中的应用.四川环境,2003,22(6):1-4.
    [142]王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究.微生物学报,2000,40(2):115-120.
    [143]Zhao J S,Ward O P.Microbial degradation of nitrobenzene and mono-nitrophenol by bacteria enriched from municipal activated sludge.Can J Microbiol,1999,45(5):427-432.
    [144]Li Y,Hu H Y,Wu Q Y.Isolation and characterization of psychrotrophic nitrobenzene-degrading strains from river sediments.Bull Environ Contarn Toxicol,2007,79(3):340-344.
    [145]Oh Y S,Lee Y H,Lee J H et al.Characteristics of nitrobenzene degradation by Mycobacterium chelonae strain NB01.J Microbiol Biotechnol,2003,13(2):309-312.
    [146]Antai S P,Crawford D L.Degradation of phenol by Streptomyces setonii.Can J Microbiol,1983,29(1):142-143.
    [147]Grund E,Knorr C,Eichenlaub R.Catabolism of benzoate and monohydroxylated benzoates by Amycolatpsis and Streptomyces spp.Appl Environ Microbiol,1990,56(5):1459-1464.
    [148]Golovleva L A,Zaborina O,Pertsova R et al.Degradation of polychlorinated phenols by Streptomyces rochei 303.Biodegradation,1991,2(3):201-208.
    [149]Goszczynski S,Paszczynski A,Pasti-Grigsby M Bet al.New Pathway for degradation of sulfonated azo dyes by microbial peroxidase of Phanerochaete chrysosporium and Streptomyces chromofuscus.J Bacteriol,1994,176(5):1339-1347.
    [150]Zaborina O,Baskunov M,Baryshnikova L et al.Degradation of pentachlorophenol in soil by Streptomyces rochei 303.J Envron Sci Health B,1997,32(1):55-70.
    [151]Chow K T,Pope M K,Davies J.Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp.D7.Microbiology,1999,145(9):2393-2403.
    [152]Iwagami S G,Yang K,Davies J.Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp.strain 2065.Appl Environ Microbiol,2000,66(4):1499-1508.
    [153]Ishiyama D,Vujaklija D,Davies J.Novel pathway of salicylate degradation by Streptomyces sp.strain WA46.Appl Environ Microbiol,2004,70(3):1297-1306.
    [154]Nishimura M,Ooi O,Davies J.Isolation and characterization of Streptomyces sp.NL15-2K capable of degrading lignin-related aromatic compounds.J Biosci Bioeng,2006,102(2):124-127.
    [155]Nishimura M,Ishiyama D,Davies J.Molecular cloning of Streptomyces genes encoding vanilate demethylase.Biosci Biotechnol Biochem,2006,70(9):2316-2319.
    [156]Bevinakatti B G,Ninnekar H Z.Degradation of biphenyl by a Micrococcus species.Appl Microbiol Biotechnol,1992,38(2):273-275.
    [157]Bevinakatti B G,Ninnekar H Z.Biodegradation of 4-chlorobiphenyl by Micrococcus species.World Journal of Microbiology and Biotechnology,1993,9(5):607-608.
    [158]Doddamani H P,Ninnekar H Z.Biodegradation of carbaryl by a Micrococcus species.Current Microbiology,2001,43(1):69-73.
    [159]Tallur P N,Megadi V B,Ninnekar H Z.Biodegradation of cypermethrin by Micrococcus sp.strain CPN 1.Biodegradation,2008,19(1):77-82.
    [160]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [161]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,1976,72(1-2):248-254.
    [162]Schraa G,Boone M L,Jetten M S et al.Degradation of 1,4-dichlorobenzene by Alcaligenes sp.strain A175.Appl Environ Microbiol,1986,52(6):1374-1381.
    [163]王红旗,姚治华,刘敬奇等.苯在一株黄杆菌细胞内外的分布与降解率的关系.中国环境科学,2006,26(5):583-586.
    [164]Patil S S,Shinde V M.Gas chromatographic studies on the biodegradation of nitrobenzene and 2,4-dinitrophenol in the nitrobenzene plant wastewater.Environ Pollut,1989,57(3):235-250.
    [165]张永光,李文均,姜成林等.嗜盐放线菌的研究进展.微生物学杂志,2002,22(4):45-48.
    [166]周培瑾,王大珍.亚嗜盐链霉菌新种的鉴定.微生物学报,1983,23(3):216-219.
    [167]郭尧君.蛋白质电泳实验技术(第二版).北京:科学出版社,2005.
    [168]Apte S K,Bhagwat A A.Salinity-stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt.J Bacteriol,1989,171(2):909-915.
    [169]Bhagwat A A,Apte S K.Comparative analysis of proteins induced by heat shock,salinity,and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp.strain L-31.J Bacteriol,1989,171(9):5187-5189.
    [170]Fernandes T A,Iyer V,Apte S K.Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses.Appl Environ Microbiol,1993,59(3):899-904.
    [171]Iyer V,Fernandes T,Apte S K.A role for osmotic stress-induced proteins in the osmotolerance of a nitrogen-fixing cyanobacterium,Anabaena sp.strain L-31.J Bacteriol,1994,176(18):5868-5870.
    [172]Mojica F J,Cisneros E,Ferrer C et al.Osmotically induced response in representatives of halophilic prokaryotes:the bacterium Halomonas elongate and the archaeon Haloferax volcanii.J Bacteriol,1997,179(17):5471-5481.
    [173]Duche O,Tremoulet F,Glaser P et al.Salt stress proteins induced in Listeria monocytogenes.Appl Environ Microbiol,2002,68(4):1491-1498.
    [174]Takenaka S,Murakami S,Shinke R et al.Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme.J Biol Chem,1997,272(23):14727-14732.
    [175]吴乃虎.基因工程原理(第二版).北京:科学出版社,1998.
    [176]娄恺,班睿,赵学明.细菌质粒的消除.微生物学通报,2002,29(5):99-103.
    [177]EI-Mansi M,Anderson K J,Inche C A et al.Isolation and curing of the Klebsiella pneumoniae large indigenous plasmid using sodium dodecyl sulphate.Res Microbiol,2000,151(3):201-208.
    [178]Chin C S,Norhani A,Siang T Wet a.Plasmid profiling and curing of Lactobacillus strains isolated from the gastrointestinal tract of chicken.J Microbiol,2005,43(3):251-256.
    [179]Keyhani J,Keyhani E,Attar F et al.Sensitivity to detergents and plasmid curing in Enterococcus faecalis.J Ind Microbiol Biotechnol,2006,33(3):238-242.
    [180]李钧敏,金则新.两株有机物降解菌株质粒特性的研究.中国环境科学,2005,25(4):403-407.
    [181]王晓,楚小强,虞云龙等.毒死蜱降解菌株Bacillus latersprorus DSP的降解特性及其功能定位.土壤学报,2006,43(4):648-654.
    [182]Voskuil M I,Chambliss G H.Rapid isolation and sequencing of purified plasmid DNA from Bacillus subtilis.Appl Environ Microbiol,1993,59(4):1138-1142.
    [183]Don R H,Cox P T,Wainwright B J et al."Touchdown" PCR to circumvent spurious priming during gene amplification.Nucleic Acids Res,1991,19(14):4008.
    [184]Levano-Garcia J,Verjovski-Almeida S,da Silva A C.Mapping transposon insertion sites by touchdown PCR and hybrid degenerate primers.Biotechniques,2005,38(2):225-229.
    [185]Saito R,Nakayama A.Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacterium Moritella sp.strain 2D2 and the psychrophilic bacterium Moritella sp.strain 5710.FEMS Microbiol Lett,2004,233(1):165-172.
    [186]C.W.迪芬巴赫,G.S.德维克斯勒.PCR技术实验指南(第一版).黄培堂等译.北京:科学出版社,1998.
    [187]Ochman H,Gerber A S,Hartl D L.Genetic applications of an inverse polymerase chain reaction.Genetics,1988,120(3):621-623.
    [188]Isegawa Y,Sheng J,Sokawa Y et al.Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction(PCR):application to sequencing 6.5 kb genome segment of hantavirus strain B-1.Mol Cell Probes,1992,6(6):467-475.
    [189]向述荣,林敏.苯酚的生物降解基因组成及其调控机制.微生物学杂志,2001,21(3):48-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700