基于凝胶蛋白质组学技术在前列腺癌研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于凝胶蛋白质组学技术提供了蛋白质的定量和定性信息,在蛋白质组学研究中,尤其是在临床穿刺样品的分析中起着核心作用。本文针对基于凝胶蛋白质组学中技术性强、手工依赖性大、对分析质量产生重要影响的3个环节,即双向电泳(2DE)、蛋白质显色及蛋白质胶内酶解,进行方法学研究;同时应用基于凝胶蛋白质组学技术对前列腺穿刺样品(PNBX)进行前列腺癌的蛋白质组学研究。不仅建立了适用于不同生物样品的高重复性、高分辩率的基于凝胶蛋白质组学分析平台,而且首次揭示了蕴含在PNBX中的蛋白质组信息,发现了一些潜在的前列腺癌分子标记物。
     在方法学研究部分,本文首先建立并且比较分析两种双向电泳体系ISO-DALT和IPG-DALT。结果表明IPG-DALT具有更高的分辨率和重复性,但是,碱性条纹是IPG-DALT中的一个顽疾。围绕碱性条纹产生的原因,本文进行了一系列的优化,包括提高DTT的使用量、缩短等电聚焦时间、用还原剂TCEP代替DTT并用4-VP烷基化蛋白质以及碱性端杯上样,从而建立了高重复性、高分辨率、适用于体液(血清和尿液)、细胞及组织蛋白质样品的双向电泳分离方法。其次,为了更好地衔接2DE和质谱分析,本文以BSA和293T细胞蛋白质样品作为生物模型,比较分析了目前被广泛使用的7种可见蛋白质显色方法(Neuhoff CCB、Blue silver、LKB SN、He SN、Yan SN、Vorum SN及Blum SN)的灵敏度、背景、线性关系以及MALDI-TOF质谱兼容性。从而对各种显色方法的染色效率及质谱兼容性有了全面的了解,对蛋白质显色的化学原理有了较为深刻的认识。其中Yan SN染色效率高、质谱兼容性良好;Neuhoff CCB质谱兼容性好且与Yan SN匹配性好。这两种显色方法被分别选用于后续前列腺穿刺样品蛋白质组研究的分析胶和半制备胶的蛋白质显色。最后,为了提高蛋白质质谱鉴定的成功率和准确性,本文在质谱样品制备程序上进行摸索,包括探究脱色与否的质谱兼容性,分析还原和烷基化处理对蛋白质质谱鉴定的影响,及检测不同酶解时间的酶解效果,从而建立适用于基于凝胶蛋白质组学研究的蛋白质高效胶内胰酶酶解程序。
     前列腺癌(PCa)是世界范围的男性高发疾病,生物学特性复杂,是肿瘤研究的热点之一。PNBX是PCa诊断阶段获得的临床样品,其蕴涵的蛋白质信息,对我们了解PCa极为重要。运用所建立的基于凝胶蛋白质组学分析平台,本文选萈NBX样品,进行PCa的蛋白质组学研究。首先,本文收集26支来自PCa和前列腺增生(BPH)病人的PNBX样品。其次,因为前列腺穿刺存在约30%的假阴性,本文通过免疫印迹测定样品中肿瘤标记物AMACR的表达情况,筛选用于蛋白质组学分析的PNBX样品。继而,对9支PCa PNBX样品和14支BPH PNBX样品进行差异蛋白质组学分析。2DE结果显示52个蛋白质点在PCa与BPH之间具有显著差异。包括这些点在内的总共228个蛋白质点被进一步用MALDI-TOF/TOF质谱分析鉴定。其中最值得关注的两组蛋白质是潜在的雄激素受体调控蛋白[FLNA(7-15)和FKBP4]和参与线粒体脂肪酸β氧化的酶(DCI和ECHS1)。此外,FLNA(7-15)、FKBP4、ECHS1、DCI、CCT6A、和MFAP4在所有PNBX样品中表现出一致的表达趋势,具有一定的作为诊断标记物的应用价值。实验还观察到:在PCa中抗氧蛋白PRDX各亚型呈现出不均衡表达;PCa中存在不同修饰状态下的HSP27及HSP70.1,而且各种修饰状态呈现不同的表达模式;一些之前被认为是PCa分子标记物的蛋白质如PSA和ACPP在PCa与BPH的PNBX间没有显著差异。通过免疫印迹实验,本文进一步验证了FLNA(7-15)、FKBP4及PRDX4的差异表达。本部分的结果表明:基于凝胶蛋白质组学方法适用于PNBX样品的蛋白质组分析;通过该方法发现的蛋白质具有潜在的作为前列腺癌诊断、预后标记物或治疗靶点的意义。
Gel-based proteomics generates qualitative and quantitative protein behavioral data, and as such it plays a central role in proteomic studies, particularly in the analysis of clinical biopsy specimens. In this study, efforts focused on 2DE, protein visualization, and protein in-gel digestion were made to ensure success of gel-based proteomics. With the optimized techniques, I conducted the proteomic analysis of prostate cancer using prostate needle biopsy (PNBX) specimens. This study not only establishd reliable gel-based proteomic approaches for various biological samples, but also defined the proteomic features implicated in PNBX specimens, and profiled the candidate biomarkers of prostate cancer.
     In the part of methodology development, first, comparisons referring to resolution and reproduction were made between two 2DE techniques, ISO-DALT and IPG-DALT, and the later was selected for its better results. To address the horizontal streaks in the alkaline region, four strategies were introduced and compared including elevating the concentration of DTT, shortening IEF duration, using the reducing agent TCEP and alkylating agent 4-VP in sample preparation, and anodic cup-loading. Thereafter an IPG-DALT separation system suiting to analyze the protein composition of biofluids (serum and urine), cells, or tissue was established. Second, using BSA and 293T cell proteins as biological models, I compared seven widely used protein visualization methods: Neuhoff CCB, Blue silver and five popular silver stains (LKB SN, He SN, Yan SN, Vorum SN, and Blum SN) with respect to sensitivity, background, dynamic range, and MALDI-TOF MS compatibility. With the rusults, I not only obtained the full-scale information about the stain efficiency and MS compatibility of these seven methods, but also got insight into the mechanism of the protein staining. Yan SN was selected in analytical gels for its good stain efficiency and acceptable MALDI-TOF MS compatibility, and Neuhoff CCB was selected in semi-preparative gels for its excellent MS compatibility and good conformability with Yan SN. Last, to improve the MS identification, studies were performed to determine the compatibility of in-gel trypsin digestion of stained protein spots with MS, to analyze the effects of reduction and alkylation on 2DE spot identification, and to evaluate time necessary for in-gel trypsin digestion for protein characterization with MS.
     Furthermore, the optimized gel-based proteomic approaches were used to analyze the PNBX specimens. Prostate cancer (PCa) is a significant cause of the morbidity and mortality worldwide. PNBX is a specficial clinical material obtained in the diagnose stage. Proteomic analysis of PNBX specimens is critical to our understanding of human prostate cancer. Twenty-six PNBX specimens from patients with PCa or benign prostatic hyperplasia (BPH) were collected. It is well-known that PNBX have false-negative rates approaching 30%, depending on the technique used. So protein samples were then subjected to immunoblot analysis for the malignant marker, AMACR, to test the tissue homogeneity. 14 BPH specimens and 9 AMACR-positive PCa specimens were further subjected to comparative proteomic analysis. 2DE revealed that 52 protein spots exhibited statistically significantly changes among PCa and BPH groups. Total 228 spots were analyzed further by MALDI-TOF/TOF MS. The two most notable groups of proteins identified included latent androgen receptor co-regulators [FLNA(7-15) and FKBP4] and enzymes involved in mitochondrial fatty acidβ-oxidation (ECHS1 and DCI). FLNA(7-15), FKBP4, ECHS1, DCI, CCT6A, and MFAP4 exhibited consistent expression patterns and may be useful for the development of diagnostic markers. An imbalance in the expression of peroxiredoxin subtypes was noted in PCa specimens. Different post-translationally modified isoforms of HSP27 and HSP70.1 were identified, and certain modifications to them were specifically linded to PCa. Furthermore, PSA and ACPP, which were previous defined as PCa markers, lacked significant change between PCa and BPH PNBX specimens. Importantly, changes in FLNA(7-15), FKBP4, and PRDX4 expression were confirmed by immunoblot analysis. The results suggest that the gel-based proteomic approach is useful for developing a more complete picture of the protein profile of PNBX specimen. The proteins identified by this approach may be useful molecular targets for PCa diagnostics and therapeutics.
引文
[1]Swinbanks D.Government backs proteome proposal[J].Nature,1995,378(6558):653.
    [2]Wilkins MR,Pasqauli C,Appel RD,et al.From proteins to proteomes:large scale protein identification by two-dimensional electrophoresis and amino acid analysis[J].Biotechnology,1996,14(1):61-65.
    [3]Fields S.Proteomics.Proteomics in genomeland[J].Science,2001,291(5507):1221-1224.
    [4]Banks RE,Duma MJ,Hochstrasser DF,et al.Proteomics:new perspectives,new biomedical opportunities[J].Lancet,2000,356(9243):1749-1756.
    [5]Nagaike K.Proteomics and diagnostic application[J].Rinsho Byori,2005,53(3):239-245.
    [6]Beranova-Giorgianni S.Proteome analysis by two dimensional gel electrophoresis and mass spectrometry:strengths and limitations[J].Trends Analyt Chem,2003,22:273-281.
    [7]Roe MR,Griffin TJ.Gel-free mass spectrometry-based high throughput proteomics:tools for studying biological response of proteins and proteomes[J].Proteomics,2006,6(17):4678-4687.
    [8]Celis JE,Gromov P.2D protein electrophoresis:cam it be perfected?[J].Curr Opin Biotechnol,1999,10(1):16-21.
    [9]Fey S J,Larsen PM.2D or not 2D.Two-dimensional gel electrophoresis[J].Curr Opin Chem Biol,2001,5(1):26-33.
    [10]Herbert B.Advances in protein solubilisation for two-dimensional electrophoresis[J].Electrophoresis,1999,20(4-5):660-663.
    [11]Shaw MM,Riederer BM.Sample preparation for two-dimensional gel electrophoresis[J].Proteomics,2003,3(8):1408-1417.
    [12]Bodzon-Kulakowska A,Bierezynska-Krzysik A,Dylag T,et al.Methods for samples preparation in proteomic research[J].J Chromatogr B,2007,849(1-2):1-31.
    [13]Canas B,Pineiro C,Calvo E,et al.Trends in sample preparation for classical and second generation proteomics[J].J Chromatogr A,2007,1153(1-2):235-258.
    [14]Ramagli LS.Quantifying protein in 2-D PAGE solubilization buffers[J].Methods Mol Biol,1999,112:99-103.
    [15]G(o|¨)rg A,Weiss W,Dunn MJ.Current two-dimensional electrophoresis technology for proteomics[J].Proteomics,2004,4(12):3665-3685.
    [16]Smithies O,Poulik MD.Two-dimensional electrophoresis of serum proteins[J].Nature,1956,177(4518):1033.
    [17]O'Farrel PH.High resolution two dimensional electrophoresis of proteins[J].J Biol Chem,1975,250(10):4007-4021.
    [18]Bjellqvist B,Ek K,Righetti PG.,et al.Isoelectric focusing in immobilized pH gradients:principle,methodology and some applications[J].J Biochem Biophys Methods,1982,6(4):317-339.
    [19]Unlü M,Morgan ME,Minden JS.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts[J].Electrophoresis,1997,18(18):2071-2077.
    [20]Steinberg TH,Pretty On Top K,Berggren KN,et al.Rapid and simple single nanogram detection of glycoproteins in polyacryIamide gels and on electroblots[J].Proteomics,2001,1(7):841-855.
    [21]Wu J,Lenchik NJ,Pabst MJ,et al.Functional characterization of two-dimensional gel-separated proteins using sequential staining[J].Electrophoresis,2005,26(1):225-237.
    [22]Hart C,Schulenberg B,Patton WF.Selective proteome-wide detection of hydrophobic integral membrane proteins using a novel fluorescence-based staining technology[J].Electrophoresis,2004,25(15):2486-2493.
    [23]López JL.Two-dimensional electrophoresis in proteome expression analysis[J].J Chromatogr B,2007,849(1-2):190-202.
    [24]Eravci M,Fuxius S,Broedel O,et al.Improved comparative proteome analysis based on two-dimensional gel electrophoresis[J].Proteomics,2007,7(4):513-523.
    [25]Oguri T,Takahata I,Katsuta K,et al.Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis[J].Proteomics,2002,2(6):666-672.
    [26]G(o|¨)rg A,Obermaier C,Boguth G,et al.Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins[J].Electrophoresis,1997,18(3-4):328-337.
    [27]Patton WF.Detection technologies in proteome analysis[J].J Chromatogr B,2002,7710-2):3-31.
    [28]Bai F,Liu S,Witzmann FA.A "de-straking" method for two-dimensional electrophoresis using the reducing agent tris(2-carboxyethyl)-phosphine hydrochloride and alkylating agent vinylpyridine[J]. Proteomics, 2005,5: 2043-2047.
    [29] Molloy MR Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients[J]. Anal Biochem, 2000,280(1): 1-10.
    [30] Oh-Ishi M, Maeda T. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE) [J]. J Chromatogr B, 2007,849(1-2): 211-222.
    [31] Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa[J]. Anal Biochem, 1987,166(2): 368-379.
    [32] Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients[J]. Electrophoresis, 2000,21: 1037-1053.
    [33] Gorg A, Boguth G, Obermaier C, et al. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems[J]. Electrophoresis, 1995,16(7): 1079-1086.
    [34] Herbert B, Galvani M, Hamdan M, et al. Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how[J]? Electrophoresis, 2001, 22(10): 2046-2057.
    [35] Olsson I, Larsson K, Palmgren R, et al. Organic disulfides as a means to generate streak-free two-dimensional maps with narrow range basic immobilized pH gradient strips as first dimension[J]. Proteomics, 2002,2(11): 1630-1632.
    [36] Luche S, Diemer H, Tastet C, et al. About thiol derivatization and resolution of basic proteins in two-dimensional electrophoresis[J]. Proteomics, 2004,4(3): 551-561.
    [37] Hoving S, Gerrits B, Voshol H, et al. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients[J]. Proteomics, 2002, 2(2): 127-134.
    [38] Miller I, Crawford J, Gianazza E. Protein stains for proteomic applications: Which, when, why?[J]. Proteomics, 2006,6: 5385-5408.
    [39] Neuhoff V, Arold N, Taube D, et al. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250[J].Eleetrophoresis,1988,9:255-262.
    [40]Candiano G,Brusehi M,Musante L,et al.Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J].Eleetrophoresis,2004,25:1327-1333.
    [4I]Merril CR,Switzer RC,Van Keuren ML.Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain[J].Proc Natl Aead Sci USA,1979,76:4335-4339.
    [42]Garfin DE.Two-dimensional gel eleetrophoresis:an overview[J].Trends Analyt Chem,2003,22:263-272.
    [43]He QY,Lau Gk,Zhou Y,et al.Serum biomarkers of hepatitis B virus infected liver inflammation:a proteomie study[J].Proteomies,2003,3:666-674.
    [44]Yan JX,Wait R,Berkelman T,et al.A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry[J].Electrophoresis,2000,21:3666-3672.
    [45]Vorum H,Ostergaard M,Hensechke P,et al.Proteomic analysis of hyperoxia-induced responses in the human choriocarcinoma cell line JEG-3[J].Proteomics,2004,4:861-867.
    [46]Blum H,Beier H,Gross HJ.Improved silver staining of plant proteins,RNA and DNA in polyacrylamide gels[J].Electrophoresis,1987,8:93-99.
    [47]Nishihara JC,Champion KM.Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain[J].Electrophoresis,2002,23:2203-2215.
    [48]Chevallet M,Diemer H,Luche S,et al.Improved mass spectrometry compatibility is afforded by ammoniacal silver staining[J].Proteomics,2006,6(8):2350-2354.
    [49]Castellanos-Serra LR,Fernandez-Patron C,Hardy E,et al.A procedure for protein elution from reverse-stained polyarcylamide gels applicable at the low picomole level:An alternative route to the preparation of low abundance proteins for microanalysis[J].Electrophoresis,1996,17(10):1564-1572.
    [50]Mackintosh JA,Choi HY,Bae SH,et al.A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis[J].Proteomics,2003,3(12):2273-2288.
    [51]Cánovas FM,Dumas-Gaudot E,Recorbet G,et al.Plant proteome analysis[J].Proteomics, 2004,4(2):285-298.
    [52]Chen S,Harmon AC.Advances in plant proteomics[J].Proteomics,2006,6(20):5504-5516.
    [53]Rosenfeld J,Capdevielle J,Guillemot JC,et al.In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis[J].Anal Biochem,1992,203(1):173-179.
    [54]Hellman U,Wernstedt C,Gónez J,et al.Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing[J].Anal Biochem,1995,224(1):451-455.
    [55]Shevchenko A,Wilm M,Vorm O,et al.Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels[J].Anal Chem,1996,68(5):850-858.
    [56]Gharahdaghi F,Weinberg CR,Meagher DA,et al.Mass spectrometric identification of proteins from silver-stained polyacrylamide gel:a method for the removal of silver ions to enhance sensitivity[J].Electrophoresis,1999,20(3):601-605.
    [57]Egelhofer V,Büssow K,Luebbert C,et al.Improvements in protein identification by MALDI-TOF-MS peptide mapping[J].Anal Chem,2000,72(13):2741-2750.
    [58]Soskic V,Godovac-Zimmermann J.Improvement of an in-gel tryptic digestion method for matrix-assisted laser desorption/ionization-time of flight mass spectrometry peptide mapping by use of volatile solubilizing agents[J].Proteomics,2001,1(11):1364-1367.
    [59]Kumarathasan P,Mohottalage S,Goegan P,et al.An optimized protein in-gel digest method for reliable proteome characterization by MALDI-TOF-MS analysis[J].Anal Biochem,2005,346(1):85-89.
    [60]Granvogl B,Pl(o|¨)scher M,Eichacker LA.Sample preparation by in-gel digestion for mass spectrometry-based proteomics[J].Anal Bioanal Chem,2007,389(4):991-1002.
    [61]Wu W,Hu W,Kavanagh JJ.Proteomics in cancer research[J].Int J Gynecol Cancer,2002,12(5):409-423.
    [62]Gharahdaghi F,Weinberg CR,Meagher DA,et al.Mass spectrometric identification of proteins from silver-stained polyacrylamide gel:a method for the removal of silver ions to enhance sensitivity[J].Electrophoresis,1999,20(3):601-605.
    [63]Terry DE,Umstot E,Desiderio DM.Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests[J].J Am Soc Mass Spectrom,2004, 15(6):784-794.
    [64]Shevchenko A,Tomas H,Havlis J,et al.In-gel digestion for mass spectrometric characterization of proteins and proteomes[J].Nat Protoc,2006,1(6):2856-2860.
    [65]Karas M,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons[J].Anal Chem,1988,60(20):2299-2301.
    [66]Fenn JB,Mann M,Meng CK,et al.Electrospray ionization for mass spectrometry of large biomolecules[J].Science,1989,246(4926):64-71.
    [67]Schuerenberg M,Luebbert C,EickhoffH,et al.Prestructured MALDI-MS sample supports[J].Anal Chem,2000,72(15):3436-3442.
    [68]Canas B,López-Ferrer D,Ramos-Fernandez A,et al.Mass spectrometry technologies for proteomics[J].Brief Funct Genomic Proteomic,2006,4(4):295-320.
    [69]Matsudaira P.Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes[J].J Biol Chem,1987,262(21):10035-10038.
    [70]Kristensen DB,Imamura K,Miyamoto Y,et al.Mass spectrometric approaches for the characterization of proteins on a hybrid quadrupole time-of-flight(Q-TOF) mass spectrometer[J].Electrophoresis,2000,21(2):430-439.
    [71]Li J,Wang C,Kelly JF,et al.Rapid and sensitive separation of trace level protein digests using microfabricated devices coupled to a quadrupole-time-of-flight mass spectrometer[J].Electrophoresis,2000,21(1):198-210.
    [72]Henzel WJ,Billeci TM,Stults JT,et al.Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases[J].Proc Natl Acad Sci USA,1993,90(11):5011-5015.
    [73]Yates JR 3rd,Speicher S,Griffin PR,et al.Peptide mass maps:a highly informative approach to protein identification[J].Anal Biochem,1993,214(2):397-408.
    [74]Pappin DJ,Hojrup P,Bleasby AJ.Rapid identification of proteins by peptide-mass fingerprinting[J].Curt Biol,1993,3(6):327-332.
    [75]James P,Quadroni M,Carafoli E,et al.Protein identification by mass profile fingerprinting[J].Biochem Biophys Res Commun,1993,195(1):58-64.
    [76]Perkins DN,Pappin D J,Creasy DM,et al.Probability-based protein identification by searching sequence databases using mass spectrometry data[J].Electrophoresis,1999,20(18): 3551-3567.
    [77]Sadygov RG,Cociorva D,Yates JR 3rd.Large-scale database searching using tandem mass spectra:looking up the answer in the back of the book[J].Nat Methods,2004,1(3):195-202.
    [78]Ong SE,Blagoev B,Kratchmarova I,et al.Stable isotope labeling by amino acids in cell culture,SILAC,as a simple and accurate approach to expression proteomics[J].Mol Cell Proteomics,2002,1(5):376-378.
    [79]Gygi SP,Rist B,Gerber SA,et al.Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J].Nat Biotechnol,1999,17(10):994-999.
    [80]Ross PL,Huang YN,Marchese JN,et al.Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J].Mol Cell Proteomics,2004,3(12):1154-1169.
    [81]Turkina MV,Vener AV.Identification of phosphorylated proteins[J].Methods Mol Biol,2007,355:305-316.
    [82]Odhiambo A,Perlman DH,Huang H,et al.Identification of oxidative post-translational modification of serum albumin in patients with idiopathic pulmonary arterial hypertension and pulmonary hypertension of sickle cell anemia[J].Rapid Commun Mass Spectrom,2007,21(14):2195-2203.
    [83]Zaia J.Mass spectrometry of oligosaccharides[J].Mass Spectrom Rev,2004,23(3):161-227.
    [84]Zhang L,Freitas MA.Comparison of peptide mass mapping and electron capture dissociation as assays for histone posttranslational modifications[J].Int J Mass Spectrom,2004,234:213-225.
    [85]Annan RS,Carr SA.The essential role of mass spectrometry in characterizing protein structure:mapping posttranslational modifications[J].J Prot Chem,1997,16:391-402.
    [86]Peng J,Schwartz D,Elias JE,et al.A proteomics approach to understanding protein ubiquitination[J].Nat Biotechnol,2003,21(8):921-926.
    [87]Blagoev B,Kratchmarova I,Ong SE,et al.A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling[J].Nat Biotechnol,2003,21(3):315-318.
    [88]Gavin AC,B(o|¨)sche M,Krause R,et al.Functional organization of the yeast proteome by systematic analysis of protein complexes[J].Nature,2002,415(6868):141-147.
    [89]Spengler SJ.Techview:computers and biology.Bioinformatics in the Information Age[J].Science,2000,287(5456):1221-1223.
    [90]Bognski MS,McIntosh MW.Biomedical informatics for proteomics[J].Nature,2003,422(6928):233-237.
    [91]Topaloglou T.Informatics solutions for high-throughput proteomics[J].Drug Discov Today,2006,11(11-12):509-516.
    [92]Simpson RJ.Proteins and proteomics:a laboratory manual[M].NewYork:Cold Spring Harbor Laboratory Press,2003.
    [93]Gr(o|¨)nberg H.Prostate cancer epidemiology[J].Lancet,2003,361(9360):859-864.
    [94]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2007[3].CA Cancer J Clin,2007,57(1):43-66.
    [95]Yang L,Li L,Chen Y,et al.Cancer Incidence and Mortality Estimates and Prediction for year 2000 and 2005 in China[J].Chinese Journal of Health Statistics,2005,22:218-232.
    [96]Matharoo-Ball B,Ball G,Rees R.Clinical proteomics:discovery of cancer biomarkers using mass spectrometry and bioinformatics approaches—a prostate cancer perspective[J].Accine,2007,25 Suppl 2:B110-B121.
    [97]Scardino PT,Weaver R,Hudson MA.Early detection of prostate cancer[J].Hum Pathol,1992,23,211-222
    [98]McDavid K,Lee J,Fulton JP,et al.Prostate cancer incidence and mortality rates and trends in the United States and Canada[J].Public Health Rep,2004,119:174-186.
    [99]Catalona WJ,Richie JP,Ahmann FR,et al.Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer:results of a multicenter clinical trial of 6,630 men[J].J Urol,1994,151:1283-1290.
    [100]Martinez M,Espana F,Royo M,et al.Prostate-specific antigen complexed to alpha(1)-antichymotrypsin in the early detection of prostate cancer[J].Eur Urol,2000,38:85-90.
    [101]Semmes OJ,Malik G,Ward M.Application of mass spectrometry to the discovery of biomarkers for detection of prostate cancer[J].J Cell Biochem,2006,98(3):496-503.
    [102]Taylor JA 3rd,Ganearezyk KJ,Fant GV,et al.Increasing the number of core samples taken at prostate needle biopsy enhances the detection of clinically significant prostate cancer[J]. Urology,2002,60:841-845.
    [103]Carter HB,Isaacs WB.Improved biomarkers for prostate cancer:a definite need[J].J Natl Cancer Inst,2004,96:813-815.
    [104]DeMarzo AM,Nelson WG,Isaacs WB,et al.Pathological and molecular aspects of prostate cancer[J].Lancet,2003,361:955-964.
    [105]Jiang Z,Wu CL,Woda BA,et al.P504S/alpha-methylacyl-CoA rat,crease:a useful marker for diagnosis of small foci of prostatic carcinoma on needle biopsy[J].Am J Surg Pathol,2002,26:1169-1174.
    [106]Varma M,Jassani B.Diagnostic utility of immunohistochemistry in morphologically difficult prostate cancer:review of current literature[J].Histopathology,2005,47:1-16.
    [107]Vararnbally S,Yu J,Laxman B,et al.Integrative genomic and proteomie analysis of prostate cancer reveals signatures of metastatic progression[J].Cancer Cel,2005,8:393-406
    [108]Edwards JJ,Anderson NG,Tollaksen SL,et al.Proteins of human urine.Ⅱ.Identification by two-dimensional electrophoresis of a new candidate marker for prostatic cancer[J].Clin Chem,1982,28:160-163.
    [109]Guevara J Jr,Herbert BH,Lee C.Two-dimensional electrophoretic analysis of human prostatic fluid proteins[J].Cancer Res,1985,45(4):1766-1771
    [110]Grover PK,Resnick MI.High resolution two-dimensional electrophoretic analysis of urinary proteins of patients with prostatic cancer[J].Electrophoresis,1997,18(5):814-818.
    [111]Charrier JP,Toumel C,Michel S,et al.Two-dimensional electrophoresis of prostate-specific antigen in sera of men with prostate cancer or benign prostate hyperplasia[J].Electrophoresis,1999,20(4-5):1075-1081.
    [112]Qin S,Ferdinand AS,Richie JP,et al.Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins[J].Proteomics,2005,5(12):3183-3192.
    [113]Alaiya A,Roblick U,Egevad L,et al.Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma[J].Anal Cell Pathol,2000,21(1):1-9.
    [114]Alaiya AA,Franzén B,Auer G,et al.Cancer proteomics:from identification of novel markers to creation of artificial learning models for tumor classification[J].Electrophoresis,2000,21(6):1210-1217.
    [115]Alaiya AA,Oppermann M,Langridge J,et al.Identification of proteins in human prostate tumor material by two-dimensional gel electrophoresis and mass spectrometry[J].Cell Mol Life Sci,2001,58(2):307-311.
    [I 16]Meehan KL,Holland JW,Dawkins HJ.Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer[J].Prostate,2002,50(1):54-63.
    [117]Lexander H,Palmberg C,Auer G,et al.Proteomic analysis of protein expression in prostate cancer[J].Anal Quant Cytol Histol,2005,27:263-272.
    [118]Lexander H,Palmberg C,Hellman U,et al.Correlation of protein expression,Gleason score and DNA ploidy in prostate cancer[J].Proteomics,2006,6(15):4370-4380.
    [119]Ahram M,Best CJ,Flaig MJ,et al.Proteomic analysis of human prostate cancer[J].Mol Carcinog,2002,33(1):9-15.
    [120]Abram M,Flaig MJ,Gillespie JW,et al.Evaluation of ethanol-fixed,paraffin-embedded tissues for proteomic applications[J].Proteomics,2003,3(4):413-421.
    [121]Hood BL,Daffier MM,Guiel TG,et al.Proteomic analysis of formalin-fixed prostate cancer tissue[J].Mol Cell Proteomics,2005,4(11):1741-1753.
    [122]Omstein DK,Gillespie JW,Paweletz CP,et al.Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell[J].Electrophoresis,2000,21:2235-2242.
    [123]Partin AW,Getzenberg RH,CarMichael MJ,et al.Nuclear matrix protein patterns in human benign prostatic hyperplasia and prostate cancer[J].Cancer Res,1993,53(4):744-746.
    [124]Lakshmanan Y,Subong EN,Partin AW.Differential nuclear matrix protein expression in prostate cancers:correlation with pathologic stage[J].J Urol,1998,159(4):1354-1358.
    [125]Alberti I,Parodi S,Barboro P,et al.Differential nuclear matrix-intermediate filament expression in human prostate cancer in respect to benign prostatic hyperplasia[J].Cancer Lett,1996,109(1-2):193-198.
    [126]Alberti I,Barboro P,Barbesino M,et al.Changes in the expression of cytokeratins and nuclear matrix proteins are correlated with the level of differentiation in human prostate cancer[J].J Cell Biochem,2000,79(3):471-485.
    [127]Nelson PS,Han D,Rochon Y,et al.Comprehensive analyses of prostate gene expression:convergence of expressed sequence tag databases,transcript profiling and proteomics[J]. Electrophoresis,2000,21(9):1823-1831.
    [128]Gamble SC,Odontiadis M,Waxman J,et al.Androgens target prohibitin to regulate proliferation of prostate cancer colls[J].Oncogene,2004,23(17):2996-3004.
    [129]Rowland JG,Robson JL,Simon WJ,et al.Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP coils[J].Proteomics,2007,7(1):47-63.
    [130]Whitaker HC,Stanbury DP,Brinham C,et al.Labeling and identification of LNCaP coll surface proteins:a pilot study[J].Prostate,2007,67(9):943-954.
    [131]Liu X,Wu Y,Zehner ZE,et al.Proteomic analysis of the tumorigenic human prostate cell line M12 after microcoll-mediated transfer of chromosome 19 demonstrates reduction of vimentin[J].Electrophoresis,2003,24(19-20):3445-3453.
    [132]Kuruma H,Egawa S,Oh-Ishi M,et al.High molecular mass proteome of androgen-independent prostate cancer[J].Proteomics,2005,5(4):1097-1112.
    [133]Wu M,Bai X,Xu G,et al.Proteome analysis of human androgen-independent prostate cancer cell lines:variable metastatic potentials correlated with vimentin expression[J].Proteomics,2007,7(12):1973-1783.
    [134]Johansson B,Pourian MR,Chuan YC,et al.Proteomic comparison of prostate cancer cell lines LNCaP-FGC and LNCaP-r reveals heatshock protein 60 as a marker for prostate malignancy[J].Prostate,2006,66(12):1235-1244.
    [135]Dall'Era MA,Oudes A,Martin DB,et al.HSP27 and HSP70 interact with CD10 in C4-2prostate cancer cells[J].Prostate,2007,67(7):714-721.
    [136]Tu LC,Yan X,Hood L,et al.Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer colls[J].Mol Cell Proteomics,2007,6(4):575-588.
    [137]Liu Z,Bengtsson S,Krogh M,et al.Somatostatin effects on the proteome of the LNCaP coll-line[J].Int J Oncol,2007,30(5):1173-1179.
    [138]Xiao Z,Adam BL,Cazares LH,et al.Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease[J].Cancer Res,2001,61(16):6029-6033.
    [139]Adam BL,Qu Y,Davis JW,et al.Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men[J].Cancer Res,2002,62(13):3609-3614.
    [140]Ornstein DK,Rayford W,Fusaro VA,et al.Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml[J].J Urol,2004,172(4 Pt 1):1302-1305.
    [141]Qu Y,Adam BL,Yasui Y,et al.Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients[J].Clin Chem,2002,48(10):1835-1843.
    [142]Pan YZ,Xiao XY,Zhao D,et al.Application of surface-enhanced laser desorp tion/ionization time-of-flight-based serum proteomic array technique for the early diagnosis of prostate cancer[J].Asian J Androl,2006,8(1):45-51.
    [143]Sorace JM,Zhan M.A data review and re-assessment of ovarian cancer serum proteomic profiling[Y].BMC Bioinformatics,2003,4:24.
    [144]Wulfkuhle JD,Liotta LA,Petricoin EF.Proteomic applications for the early detection of cancer[J].Nat Rev Cancer,2003,3(4):267-275.
    [145]Diamandis EP,van der Merwe DE.Plasma protein profiling by mass spectrometry for cancer diagnosis:opportunities and limitations[J].Clin Cancer Res,2005,11(3):963-965.
    [146]Paweletz CP,Liotta LA,Petricoin EF 3rd.New technologies for biomarker analysis of prostate cancer progression:Laser capture microdissection and tissue proteomics[J].Urology,2001,57(4 Supp11):160-163.
    [147]Gretzer MB,Chan DW,Van Rootselaar CL,et al.Proteomic analysis of dunning prostate cancer cell lines with variable metastatic potential using SELDI-TOF[J].Prostate,2004,60(4):325-331.
    [148]Bantscheff M,Schirle M,Sweetman G,et al.Quantitative mass spectrometry in proteomics:a critical review[J].Anal Bioanal Chem,2007,389(4):1017-1031.
    [149]Nakamura T,Oda Y.Mass spectrometry-based quantitative proteomics[y].Biotechnol Genet Eng Rev,2007,24:147-163.
    [150]Martin DB,Gifford DR,Wright ME,et al.Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium[J].Cancer Res,2004,64(1):347-355.
    [151]Everley PA,Krijgsveld J,Zetter BR,et al.Quantitative cancer proteomics:stable isotope labeling with amino acids in cell culture(SILAC) as a tool for prostate cancer research[J].Mol Cell Proteomics,2004,3(7):729-735.
    [152]Everley PA,Bakalarsld CE,Elias JE,etal.Enhanced analysis of metastatic prostate cancer using stable isotopes and high mass accuracy instrumentation[J].J Proteome Res,2006,5(5):1224-1231.
    [153]M'Koma AE,Blum DL,Norris JL,et al.Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine[J].Biochem Biophys Res Commun,2007,353(3):829-834.
    [154]李占霞,张国锋.大肠癌发展与肝转移的差异蛋白质组研究进展[J].世界华人消化杂志,2006,14(5):508-512.
    [155]Pandey A,Mann M.Proteomics to study genes and genomes[J].Nature,2000,405(6788):837-846.
    [156]Celis JE.Gel-based proteomics:what does MCP expect?[J].Mol Cell Proteomics,2004,3(10):949.
    [157]Berkelman T,Stenstedt T.2-D Electrophoresis:Using Immobilized pH Gradients;Principles & Methods,Amersham Biosciences,Uppsala,Sweden 1998.
    [158]Guo YJ.The advanced progress and experimental considering on SDS-PAGE[J].Prog Biochem Biophy,1991,18:32-37.
    [159]Ernst T,Hergenhahn M,Kenzelmann M,et al.Decrease and gain of gone expression are equally discriminatory markers for prostate carcinoma:a gone expression analysis on total and microdissected prostate tissue[J].Am J Pathol 2002,160:2169-2180.
    [160]Cornford PA,Dodson AR,Parsons KF,et al.Heat shock protein expression independently predicts clinical outcome in prostate cancer[J].Cancer Res,2000,60:7099-7105.
    [161]Ruddat VC,Whitman S,Klein R.D,et al.Evidence for downregulation of calcium signaling proteins in advanced mouse adenooarcinoma[J].Prostate,2005,64:128-138.
    [162]Ciocca DR.,Calderwood SK.Heat shock proteins in cancer:diagnostic,prognostic,predictive,and treatment implications[J].Cell Stress Chaperones,2005,10:86-103.
    [163]Pennington K,McGregor E,Beasley CL,et al.Optimization of the first dimension for separation by two-dimensional gel electrophoresis of basic proteins from human brain tissue[J].Proteomics,2004 4:27-30.
    [164]Chen AM,Haffty BG.,Lee CH.Local recurrence of breast cancer after breast conservation therapy in patients examined by means of stereotactic core-needle biopsy[J].Radiology,2002,225:707-712.
    [165]Carswell BM,Woda BA,Wang X,et al.Detection of prostate cancer by alpha-methylacyl CoA racemase(P504S) in needle biopsy specimens previously reported as negative for malignancy[J].Histopathology,2006,48:668-673.
    [166]Beckingham IJ,Nicholson ML,Bell PR.Analysis of factors associated complications following renal transplant needle core biopsy[J].Br J Urol,1994,73:13-15.
    [167]Lee YC,Min D,Holcomb K,et al.Computed tomography guided core needle biopsy diagnosis of pelvic actinomycosis[J].Gynecol Oncol,2000,79:318-323.
    [168]Lopez MF,Berggren K,Chernokalskaya E,et al.A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling[J].Electrophoresis,2000,21:3673-3683.
    [169]Lanne B,Panfilov O.Protein staining influences the quality of mass spectra obtained by peptide mass fmgerprinting after separation on 2-D Gels.A comparison of staining with Coomassie Brilliant Blue and Sypro Ruby[J].J Proteome Res,2005,4:175-179.
    [170]Chevalier F,Centeno D,Rofidal V,et al.Different impact of staining procedures using visible stains and fluorescent dyes for large-scale investigation of proteomes by MALDI-TOF mass spectrometry[J].J Proteome Res,2006,5:512-520.
    [171]Heukeshoven J,Dernick R.Simplified method for silver staining of proteins in poiyacrylamide gels and the mechanism of silver staining[J].Electrophoresis,1985,6:103-112.
    [172]Chen J,He QY,Yuen AP,et al.Proteomics of buccal squamous cell carcinoma:the involvement of multiple pathways in tumorigenesis[J].Proteomics,2004,4:2465-2475.
    [173]He QY,Cheung YH,Leung SY,et al.Diverse proteomic alterations in gastric adenocarcinoma[J].Proteomics,2004,4:3276-3287.
    [174]He QY,Chen J,Kung HF,et al.Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics[J].Proteomics,2004,4:271-278.
    [175]Tal M,Silberstein A,Nusser E.Why does Coomassie Brilliant Blue R interact differently with different proteins? A partial answer[J].J Biol Chem,1985,260:9976-9980.
    [176]Compton SJ,Jones CG.Mechanism of dye response and interference in the Bradford protein assay[J].Anal Biochem,1985,151:369-374.
    [177]Neuhoff V,Stature R,Pardowitz I,et al.Essential problems in quantification of proteins following colloidal staining with coomassie brilliant blue dyes in polyacrylamide gels,and their solution[J].Electrophoresis,1990,11:101-117.
    [178]Rabilloud T.Mechanisms of protein silver staining in polyacrylamide gels:a 10-year synthesis[J].Electrophoresis,1990,11:785-794.
    [179]Shevchenko A,Wilm M,Vorm O,et al.Mass spectrometric sequencing of proteins from silver-stained polyacrylamide Gels[J].Anal Chem,1996,68:850-858.
    [180]Richert S,Luche S,Chevallet M,et al.About the mechanism of interference of silver staining with peptide mass spectrometry[J].Proteomics,2004,4:909-916.
    [181]Aebersold R,Mann M.Mass spectrometry-based proteomics[J].Nature,2003,422(6928):198-207.
    [182]Aebersold R,Goodlett DR.Mass Spectrometry in Proteomics[J].Chem Rev,2001,101,269-295.
    [183]Katayama H,Nagasu T,Oda Y.Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J].Rapid Commun Mass Spectrom,2001,15(16):1416-1421.
    [184]Mortz E,Krogh TN,Vorum H,et al.Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis[J].Proteomics,2001,1(11):1359-1363.
    [185]Hale JE,Butler JP,Gelfanova V,et al.A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis[J].Anal Biochem,2004,333(1):174-181.
    [186]Katayama H,Tabata T,Ishihama Y,et al.Efficient in-gel digestion procedure using 5-cyclohexyl-1-pentyl-beta-D-maltoside as an additive for gel-based membrane proteomics[J].Rapid Commun Mass Spectrom,2004,18(20):2388-2394.
    [187]Speicher KD,Kolbas O,Harper S,et al.Systematic Analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies[J].J Biomol Tech,2000,11:74-86.
    [188]Granvogl B,Gruber P,Eichacker LA.Standardisation of rapid in-gel digestion by mass spectrometry[J].Proteomics,2007,7(5):642-654.
    [189]Botchers C,Peter JF,Hall MC,et al.Identification of in-gel digested proteins by complementary peptide mass fingerprinting and tandem mass spectrometry data obtained on an electrospray ionization quadrupole time-of-flight mass spectrometer[J].Anal Chem,2000,72(6):1163-1168.
    [190]Shevchenko A,Shevchenko A.Evaluation of the efficiency of in-gel digestion of proteins by peptide isotopic labeling and MALDI mass spectrometry[J].Anal Biochem,2001,296(2):279-283.
    [191]Havlis J,Thomas H,Sebela M,et al.Fast-response proteomics by accelerated in-gel digestion of proteins[J].Anal Chem,2003,75(6):1300-1306.
    [192]Suekau D,Resemarm A,Schuerenberg M,et al.A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomies[J].Anal Bioanal Chem,2003,376(7):952-965.
    [193]Kussmann M,Nordho E,Nielsen H,et al.Matrix assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes[J].J Mass Speetrom,1997,32(6):593-60I.
    [194]Gobom J,Sehuerenberg M,Mueller M,et al.Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation.A protocol for MALDI-MS peptide analysis in proteomics[J].Anal Chem,2001,73(3):434-438.
    [195]Feng Y,Walsh CA.The many faces of filarnin:a versatile molecular scaffold for cell motility and signaling[J].Nat Cell Biol,2004,6:1034-1038.
    [196]Robertson SP.Filamin A:phenotypie diversity[l].Curr Opin Genet Dev,2005,15:301-307.
    [197]Anilkumar G,Rajasekaran SA,Wang S,et al.Prostate-specific membrane antigen association with filamin A modulates its internalization and NAALADase activity[J].Cancer Res,2003,63:2645-2648.
    [198]Loy C J,Sire KS,Yong EL.Filamin-A fragment localizes to the nuelens to regulate androgen receptor and coactivator functions[J].Proc Natl Acad Sci USA,2003,100:4562-4567.
    [199]Hjalm G,Macleod RJ,Kifor O,et al.Filamin-A binds to the carboxyl-terminal tail of the calcium-sensing receptor,an interaction that participates in CaR-mediated activation of mitogen-activated protein kinase[J].J Biol Chem,2001,276:34880-34887.
    [200]Liu G,Thomas L,Warren RA,et al.Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway[J].J Cell Biol,1997,139:1719-1733.
    [201]Davies TH,Sanchez ER.FKBP52[J].Int J Biochem Cell Biol,2005,37:42-47.
    [202]Galigniana MD,Harrell JM,O'Hagen HM,et al.Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus[J].J Biol Chem,2004,279:22483-22489.
    [203]Cheung-Flynn J,Prapapanich V,Cox MB,et al.Physiological role for the cochaperone FKBP52 in androgen receptor signaling[J].Mol Endocrinol,2005,19:1654-1666.
    [204]Rahman M,Miyamoto H,Chang C.Androgen receptor coregnlators in prostate cancer:mechanisms and clinical implications[J].Clin Cancer Res,2004,10:2208-2219.
    [205]Ferdinandusse S,Denis S,IJlst L,et al.Subcellular localization and physiological role of alpha-methylacyl-CoA racemase[J].J Lipid Res,2000,41:1890-1896.
    [206]Kilponen JM,Hiltunen JK.Beta-oxidation of unsaturated fatty acids in humans.Isoforms of delta 3,delta 2-enoyl-CoA isomerase[J].FEBS Lett,1993,322:299-303.
    [207]Janssen U,Davis EM,Le Beau MM,et al.Human mitochondrial enoyl-CoA hydratase gnne (ECHS1):structural organization and assignment to chromosome 10q26.2-q26.3[J].Genomics,1997,40:470-475.
    [208]Hwa JS,Park H J,Jung JH,et al.Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis[J].J Korean Med Sci,2005,20:450-455.
    [209]Yokoyarna Y,Kuramitsu Y,Takashima M,et al Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus[J].Proteomics,2004,4:2111-2116.
    [210]Zha S,Ferdinandusse S,Hicks JL,et al.Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer[J].Prostate,2005,63:316-323.
    [211]Wood ZA,Schroder E,Robin Harris J,et al.Structure,mechanism and regulation of peroxiredoxins[J].Trends Biochem Sci,2003,28:32-40.
    [212]Butterfield LH,Merino A,Golub SH,et al.From cytoprotection to tumor suppression:the multifactorial role of peroxiredoxins[J].Antioxid Redox Signal,1999,1:385-402.
    [213]Kim H,Lee TH,Park ES,et al.Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells[J].J Biol Chem,2000,275: 18266-18270.
    [214]Kinnula VL,Lehtonen S,Sormunen R,et al.Overexpression of peroxiredoxins Ⅰ,Ⅱ,Ⅲ,Ⅴ,and Ⅵ in malignant mesothelioma[J].J Pathol,2002,196:316-323.
    [215]Quan C,Cha EJ,Lee HL,et al.Enhanced expression of peroxiredoxin Ⅰ and Ⅳ correlates with development,recurrence and progression of human bladder cancer[J].J Urol,2006,175:1512-1516.
    [216]Karihtala P,Mantyniemi A,Kang SW,et al.Peroxiredoxins in breast carcinoma[J].Clin Cancer Res,2003,9:3418-3424.
    [217]Jang JS,Cho HY,Lee YJ,et al.The differential proteome profile of stomach cancer:identification of the biomarker candidates[l].Oncol Res,2004,14:491-499.
    [218]Sarto C,Binz PA,Mocarelli P.Heat shock proteins in human cancer[J].Electrophoresis,2000,21:1218-1226.
    [219]Gibbons NB,Watson RW,Coffey RN,et al.Heat-shock proteins inhibit induction of prostate cancer cell apoptosis[J].Prostate,2000,45:58-65.
    [220]Rocchi P,So A,Kojima S,et al.Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer[J].Cancer Res,2004,64:6595-6602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700