格上粗糙集研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Z.Pawlak于1982年提出的粗糙集理论,是一种新的处理不确定知识的数学工具.本文主要利用格、Quantale上的同余关系和集值同态,分别建立格和Quantale上的粗糙集和广义粗糙集,通过对其性质讨论,进一步刻画格、Quantale的代数结构.
     同余关系是代数结构中与其相容的等价关系.文中利用格上同余关系建立上、下逼近算子,对粗子集的性质进行了研究,并定义了粗理想、粗素理想等,得到了粗理想、粗素理想分别是理想、素理想的延伸概念,并讨论了上、下逼近算子之间的包含关系.对这些上、下逼近算子的格结构进行了研究,得到格中所有可定义集的集合是一个有顶交结构和完备集域,有最小元的格中所有可定义理想的集合是有顶的代数交结构.讨论了格中上、下逼近算子的乘积、商与集合乘积、商的上、下逼近算子之间的关系.并考虑了上、下逼近算子的格同态问题.
     格中有一类特殊的并同余关系,是由理想所确定的,当格满足分配时是同余关系.在格中利用这类特殊同余关系建立上、下逼近算子,对其具有特殊的性质进行讨论.利用理想的相关性质,对上、下逼近算子的包含关系进行了讨论.并对这类特殊同余关系的可定义集进行了讨论,得到格中的理想关于它本身所确定的并同余是可定义的,同时格中包含某个理想的所有理想的集合等于这个理想所确定的并同余关系的可定义理想的集合,且这个集合是代数格.同时对一些特殊的理想,如下集、核理想等的上、下逼近算子进行了讨论.
     在代数系统上将粗糙集推广到两个论域的情形,需要把同余关系进行推广.文中的第三章和第四章,分别在格、Quantale中提出了集值同态的定义,并分别利用集值同态概念给出了广义上、下逼近算子,讨论了广义的粗子集、粗理想等性质.在格中还定义了关于理想的特殊集值同态,得到特殊的广义粗糙集,对其性质进行讨论,并举例说明在形式概念分析方面的应用.
     导子的定义来自解析理论,导子是定义在代数系统上的函数,对导子的研究有助于进一步研究该代数系统的代数性质和结构.在第五章中给出了Quantale上导子的定义,并定义了简单导子,恒等导子,零导子等,并探讨了它们的性质.研究了Quantale中(严格)左、右、双侧元关于导子的像及Quantale上一个导子的所有不动点集合的具体结构.证明了满足一定条件的Quantale其上导子的集合构成一个Quantale.核映射在Quantale理论中很重要,通过预核映射与核映射之间的关系,进一步研究了Quantale上导子与核映射之间的关系.
Rough set theory was introduced by Z.Pawlak (1982), which is a new math-ematical approach to deal with uncertain information. In this paper, the authordiscusses the properties of rough sets and generalized rough sets which are con-structed by congruences and set-valued homomorphisms respectively in latticesand quantales, then the algebraic structure of lattices and quantales is explored indetail.
     A congruence relation is an equivalence relation consistent with the algebraicstructure. In the paper, the upper and lower approximations are constructed bycongruence relations. The concepts of rough ideal and rough prime ideal are de-fined which are the extended notion of ideal and prime ideal respectively, and theinclusion relations of the upper and lower approximations are discussed. The lat-tice structures of the lower and upper approximations are studied. We obtain theresults that the collection of all definable sets in a lattice is a topped intersectionstructure and also a complete field of sets. And the collection of all definable idealsin a lattice with a bottom element is a topped algebraic intersection structure. Wealso discuss the relations among products、quotients of the lower、upper approx-imations and the lower、upper approximations of products、quotients. And theproblems of homomorphism of the lower and upper approximations are studied.
     There is a special class of join congruence relations determined by ideals oflattice, it is a congruence relation if the lattice is distributive. We study thespecial properties of the upper and lower approximations constructed by means ofthese special congruence relations on a lattice. By using the properties of ideals,we analyze the inclusion relation of the lower and upper approximations. Thedefinable sets with respect to the special congruences are studied. We obtain thatthe collection of definable ideals with respect to the special congruence determinedby an ideal is that of all ideals which contained this ideal, and the set is an algebraiclattice. The lower and upper approximations of some particular ideals are discussedsuch as lower set and kernel ideal, etc.
     In an algebraic system, we consider the rough set in the case of two universes,the congruence relation needs to be generalized. Chapter3and chapter4intro-duce the notion of set-valued homomorphism of lattices and quantales respectively.We probe into the properties of generalized rough subsets and generalized roughideals. We also propose the special set-valued homomorphisms with respect to ideals of lattice, the properties of the generalized rough sets constructed by themare discussed. And the example in the application of formal concept analysis isgiven.
     The notion of derivation is a function on an algebraic system introduced fromthe analytic theory, is helpful to the research of structure and property in al-gebraic systems. Chapter5, the concept of derivation on quantales is defined,simple derivation、identity derivation and zero derivation are proposed, the prop-erties of derivations are discussed in detail. The image of derivation of (strict)left、right、two sided elements of quantales are studied. The structure of the col-lection of all fixed points of a derivation is explored. The collection of all derivationson a quantale which satisfies some conditions is a quantale. The quantic nuclei playan important role in quantale theory, by using the relation between pre-quanticnuclei and quantic nuclei, the relations between derivation and quantic nuclei arestudied.
     This dissertation is typeset by software LATEX2ε.
引文
[1] Birkhof G. lattice theory. Providence: American Mathematical Society Collo-quium Publications,1940
    [2] Dilworth. R P. Non-commutative residuated lattices. Transactions of the AmericanMathematical Society,1939,46:426-444
    [3] Ward M. Structure residuation. Annals of Mathematics,1938,39:558-569
    [4] Ward M, Dilworth R P. Residuated lattice. Transactions of the American Mathe-matical Society,1939,45:335-354
    [5] Molinaro I. Demi-groups residutifs. Journal de Maththe′matiques Pures etApplique′es,1960,39:319-356
    [6] Mulvey C J.&. Supplemento ai Rendiconti del Circolo Matematico di Palermo,1986,12:99-104
    [7] Nawaz M. Quantales: quantale sets:[dissertation]. Sussex: University of Sussex,1985
    [8] Borceux F, Bossche G. Quantales and their sheaves. Order,1986,3:61-87
    [9] Rosicky J. Characterizing spatial quantales. Algebra Universalis,1995,34:175-178
    [10] Berni-Canani U, Borceux F, Succi-Cruciani R. A theory of quantale sets, J. PureAppl. Algebra,1989,62:123-136
    [11] Girard J Y. Linear logic. Theoretical Computer Science,1987,50:1-102
    [12] Girard J Y. Toward a geometry of interaction. Categories in Computer Scienceand Logic, Cont. Math,1989,92:9-108
    [13] Yetter D N. Quantales and noncommutative linear logic. The Journal of SymbolicLogic,1990,55(1):41-64
    [14] Rosenthal K I. Quantales and their applications. New York: Longman Scientificand Technical,1990
    [15] Niefield S, Rosenthal K. A note on the algebraic de Morgan’s law. Cah. de Top.et Geom. Dif. Cat.,1985, XXVI:115-120
    [16] Niefield S, Rosenthal K. Strong de Morgan’s law and the spectrum of a commu-tative ring. Journal of Algebra,1985,93:169-181
    [17] Niefield S, Rosenthal K. Componental nuclei, Categorical Algebra and its Appli-cations,1998,1348:299-306
    [18]李永明,李志慧. Quantale与互模拟的进程语义.数学学报,1990,42(2):313-320
    [19] Abramsky S, Vickers S. Quantales, observational logic and process semantics.Math. Struct. Comut. Sci,1993,3:161-227
    [20] Resende P. Quantales, finite observation and strong bismulation. Acta Mathemat-ics Sinica,1999,42(3):313-320
    [21]李永明.非可换线性逻辑及其Quantale语义.陕西师范大学学报(自然科学版),2001,29(2):1-5
    [22] Milewski R. Algebraic lattices. J. Formalized Math,2004,8:1-5
    [23] Banaschewski B, Mulvey C J. A globalization of the Gelfand duality theorem.Annals of Pure and Applied Logic,2006,1:62-103
    [24] Resende P. Sup-lattice2-forms and quantales. Journal of Algebra,2004,276:143-167
    [25] Paseka J. Simple quantales. Proceedings of the Eighth Prague Topological Sym-posium,1996:314-328
    [26] Pelletier J W. Von Neumann algebras and Hilbert quantales. Applied categoricalStructures,1997,5:249-264
    [27] Kruml D. Spatial quantales. Applied Categorical Structures,2002,10:49-62
    [28] Kruml D. Distributive quantales. Applied Categorical Structures,2003,11:561-566
    [29] Giles R, Kummer H. A non-commutative generalization of topology. Indiana Univ.Math. J,1971,21:91-102
    [30] Borceux F, Bosche G. An essay on non commutative topology. Topology and itsApplication,1989,31:203-223
    [31] Zhang D. An enriched category approach to many valued topology. Fuzzy Sets andSystems,2007,158:349-366
    [32] Han S, Zhao B. Nuclei and conuclei on residuated lattices. Fuzzy Sets and Systems,2001,172:51-70
    [33]王顺钦,赵彬. Quantales中的理想.陕西师范大学学报(自然科学版),2003,31(4):7-10
    [34]王顺钦,赵彬. Prequantale同余及其性质.数学进展,2005,6:746-752
    [35]龙飞,李庆国.右稳定的子Quantale.湖南大学学报(自然科学版),2006,1:134-136
    [36]刘智斌,赵彬. Quantale范畴的代数性.数学学报,2006,49(6):1253-1258
    [37]韩胜伟,赵彬.序半群的Quantale完备化.数学学报,2008,51(6):1081-10
    [38] Han S, Zhao B. The quantic conuclei on quantales. Algebra Universalis,2009,61:97-114
    [39]汪开云,赵彬. Z-Quantale及其范畴性质,数学学报,2010,53(5):998-1006
    [40]汪开云. Quantale中的素根定理.模糊系统与数学,2011,25(2):60-65
    [41]梁少辉. L-fuzzy quantale若干性质的研究.山东大学学报(理学版),2012,47(4):104-109
    [42] Han S, Zhao B. Q-fuzzy subsets on ordered semigroup. Fuzzy sets and systems,2013,210:102-116
    [43] Pawlak Z. Rough Sets. International Journal of Computing Information Sciences11982,11:341-356
    [44] Pawlak Z. Rough Sets: Theoretical aspects of reasoning about data. Boston:Kluwer Acedemic Publishers,1991
    [45] Dubois D, H. Prade. Rough fuzzy sets and fuzzy rough sets. Int. J. General Sys-tems,1990,17:191-208
    [46] Banerjee M, Pal S K. Roughness of fuzzy set. Information Sciences,1996,93:191-208
    [47] Morsi N N, Yakout M M. Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems,1998,100(1-2):327-342
    [48] Yao Y Y. A comparative study of fuzzy sets and rough sets. Information Sciences,1998,109:227-242
    [49] Chakrabarty K, Biswas R, Nanda S. Fuzziness in rough sets. Fuzzy sets and Sys-tems,2000,110:247-251
    [50] Wu W Z, Mi J S, Zhang W.X. Generalized fuzzy rough sets. Information Sciences,2003,151:263–282
    [51] Wu W Z, Zhang W X. Constructive and axiomatic approaches of fuzzy approxi-mation operators. Information Sciences,2004,159:233–254
    [52] Wu W.Z, Leung Y, Mi J S. On characterizations of (I,T)-fuzzy rough approxima-tion operators. Fuzzy Sets and Systems,2005,154:76–102
    [53] Wong S K M, Ziarko W. Comparison of the probabilistic approximation classifi-cation and the fuzzy model. Fuzzy sets and Systems,1987,21:357-362
    [54] Pawlak Z. Rough sets, decision algorithms and Bayes’ theorem. European Journalof Operational Research,2002,136:181-189
    [55] Pawlak Z. A rough set view on Bayes’ theorem. International Journal of IntelligentSystems,2003,18:487-498
    [56] Pawlak Z. Rough logic. Bull. Polish Acad. Aci. Tech,1987,35(5-6):253-258
    [57] Lin T Y, Liu Q. First-order rough logic I. Approximate reasoning via rough sets.Fundamenta Informaticae,1996,27(2-3):137-144
    [58] Skowron A, Polkowski L. Rough mereological foundations for design, analysis,synthesis, and control in distributed systems. Information Sciences,1998,104:129–156
    [59] Banerjee M, Chakraborty M. Rough Sets through algebraic logic. FundamentaInformaticae,1996,28(3-4):211-221.
    [60] Chen X, Li Q. Construction of rough approximations in fuzzy setting. Fuzzy Setsand Systems,2007,158:2641-2653
    [61]张文修,吴伟志.基于随机集的粗糙集模型(I).西安交通大学学报,2001,34(12):75-79
    [62]张文修,吴伟志.基于随机集的粗糙集模型(II).西安交通大学学报,2002,35(4):425-429
    [63] Comer S D. On connections between information systems, rough sets and alge-braic logic. Algebraic Methods in Logic and Computer Science, Banach CenterPublications,1993,28:117-124.
    [64] Mani A. Choice inclusive general rough semantics. Information Sciences,2011,181:1097-1115.
    [65] Hassan Y, Tazaki E. Rough set and genetic programming. Kybernetes,2004,33(1):98-117
    [66] Lei Y, Luo M. Rough concept lattices and Domains. Annals of Pure and AppliedLogic,2009,159:333-340
    [67] Pomykala J, Pomykala J A. The stone algebra of rough sets. Bulletin of the PolishAcademy of Sciences Mathematics,1998,36:495-508
    [68] Iwinski T. Algebraic approach to rough sets. Bulletin of the Polish Academy ofSciences Mathematics,1987,35:673-683
    [69] Liu G, Zhu W. The algebraic structures of generalized rough set theory. Informa-tion Sciences,2008,178:4105-4113
    [70] Ja¨rvinen J. On the Structure of Rough Approximations. Fundamenta Informaticae,2002,53:135-153
    [71] Liu G. Generalized rough sets over fuzzy lattices. Information Sciences,2008,178:1651-1662
    [72] Chen D, Zhang W, Yeung D, et al. Rough approximations on a complete com-pletely distributive lattice with applications to generalized rough sets. InformationSciences,2006,176:1829-1848
    [73] Biswas R, Nanda S. Rough Groups and Rough Subgroups. Bulletin of the PolishAcademy of Sciences Mathematics,1994,42:251-254
    [74] Kuroki N. Rough Ideals in Semigroups. Information Sciences,1997,100:139-63
    [75] Xiao Q, Zhang Z. Rough prime ideals and rough fuzzy prime ideals in semigroups.Information Sciences,2006,176:725-733
    [76] Davvaz B. Roughness in rings. Information Sciences,2004,164:147-163.
    [77] Davvaz B, Mahdavipour M. Roughness in modules. Information Sciences,2006,176:3658-3674.
    [78] Rasouli S, Davvaz B. Roughness in MV-algebra. Information Sciences,2010,180:737-747
    [79] Davvaz B. A new view of approximations in Hv-groups. Soft Computing,2006,10(11):1043-1046
    [80] Kazanc O, Yamak S, Davvaz B. The lower and upper approximations in a quotienthypermodule with respect to fuzzy sets. Information Sciences,2008,178:2349-2359
    [81] Leoreanu-Fotea V, Davvaz B. Roughness in n-ary hypergroups. Information Sci-ences,2008,178:4114-4124
    [82] Davvaz B. Approximations in hyperrings. Journal of Multiple-Valued Logic andSoft Computing,2009,15:471-488
    [83] Davvaz B. Approximations in n-ary algebraic systems. Soft Computing,2008,12:409-418
    [84] Kuroki N, Wang P P. The lower and upper approximations in a fuzzy group.Information Sciences,1996,90:203-220
    [85] Davvaz B. Roughness based on fuzzy ideals. Information Sciences,2006,176:2417-2437
    [86] Kazanc O, Davvaz B. On the structure of rough prime (primary) ideals and roughfuzzy prime (primary) ideals in commutative rings. Information Sciences,2008,178:1343-1354
    [87] Davvaz B. A short note on algebraic T-rough sets. Information Sciences,2008,178(16):3247-3252
    [88] Yamak S, Kazanc, Davvaz B. Generalized lower and upper approximations in aring. Information Sciences,2010,180(9):1759-1768
    [89] Yamak S, O.Kazanc, Davvaz B. Approximations in a module by using set-valuedhomomorphism. International Journal of Computer Mathematics,2011,88:2901-2914
    [90] Mordeson N. Rough set theory applied to (fuzzy) ideal theory. Fuzzy Sets andSystems,2001,121:315-324
    [91] Yin Y, Zhan J, Corsini P. L-fuzzy Roughness of n-ary Polygroups. Acta Mathe-matica Sinica, English Series,2011,27:97-118
    [92] Yin Y, Zhan J, Corsini P. Fuzzy roughness of n-ary hypergroups based on a com-plete residuated lattice. Neural Computing and Application,2011,20:41-57
    [93] Bonikodwaski Z. Algebraic structures of rough sets. In: W.P. Ziarko (Ed.), RoughSets, Fuzzy Sets and Knowledge Discovery, Springer-Verlag, Berlin,1994,242-247
    [94] Cattaneo G, Ciucci D. Algebraic structures for rough sets. In: LNCS,2004,3135:208-252
    [95] Dai J H. Rough3-valued algebras. Information Sciences,2008,178:1986-1996
    [96] Davey B A, Priestley H A. Introduction to Lattices and Order. Cambridge: Cam-bridge university press,2002
    [97] Gra¨tzer G. Gerneral lattice theory. Birkha¨user Basel,1996
    [98]胡长流,宋振明.格论基础.开封市:河南大学出版社,1990
    [99]张文修,吴伟志,梁吉业等.粗糙集理论与方法.北京:科学出版社,2000
    [100] Stepaniuk J. Approximation spaces in extensions of rough set theory. In: L.Polkowski, A. Skowron (Eds.), RSCTC98, LNAI,1998,1424:290–297
    [101] Yang L. Roughness in quantales. Information Sciences,2013,220:568-579
    [102] Cusack J M. Jordan derivations on rings. Proceedings of the American Mathemat-ical Society,1975,53(2):321-324
    [103] Posner E. Derivations in prime rings. Proceedings of the American MathematicalSociety,1957,8:1093-1100
    [104] Bell H E, Mason G. On derivations in near-rings. North-Holland Mathematic Stud-ies,1987,137:31-35
    [105] Ferrari L. On derivation of lattices. PU. M. A.,2001,12(4):1-17
    [106] Xin X L, Li T, Lu J. On derivations of lattices. Information Sciences,2008,178:307-316
    [107] Jun Y B, Xin X L. On derivations of BCI-algebras. Information Sciences,2004,159:167-176
    [108] Yon Y H, Kim K H. On derivations of subtraction algebras. Hacettepe Journal ofMathematics and Statistics,2012,41(2):157-168
    [109] Alshehri N O. Derivations of MV-algebras. International Journal of Mathematicsand Mathematics Sciences,2010, doi:10.1155/2010/312027
    [110] Zhan J, Liu Y. On f-derivations on BCI-algebras. Int. J. Math. Math. Sci.,2005,11:1675-1684
    [111] Ozbal S A, Firat A. Symmetric f-derivations of lattices. Ars Combinatoria,2010,97:471-477
    [112] Krishnaswamy D. On the generalised derivation in regular ring. International Jour-nal of Algebra,2010,4(19):913-918
    [113] Picado J. The quantale of Galois connections. Algebra Universalis,2004,52:527-540
    [114] Banaschewski B. Another look at the localic Tychonof Theorem. CommentationesMathematicae Universitatis Carolinae,1998,29:647-656
    [115] Banaschewski B. On certain localic nuclei. Cahiers de Topologie et Ge′ome′trieDife′rentielle Cate′goriques,1994,35:227-237
    [116] Paseka J, Kruml D. Embeddings of quantales into simple quantales. Journal ofPure and Applied Algebra,2000,148:209-216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700