向量优化中的若干对偶和稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了向量集值优化问题的导数型高阶Fritz John型及Kuhn-Tucker型最优性条件、高阶Mond-Weir型及Wolfe型对偶问题、共轭对偶问题,若干向量变分不等式及向量平衡问题的解集映射的上、下半连续性和连续性。全文共分九章,具体内容如下:
     在第一章里,我们介绍了向量优化的高阶导数型最优性条件和对偶、共轭对偶理论和向量变分不等式及向量平衡问题的解集映射的半连续性等方面的研究概况,并且阐述了本文的选题动机和主要工作。
     在第二章里,我们引入集值映射的高阶广义相依上图导数和邻接上图导数概念。基于高阶广义上图导数,研究了约束集值优化问题在Henig真有效解意义下的高阶Fritz John型必要和充分最优性条件。
     在第三章里,我们引入集值映射的高阶弱相依上图导数和邻接上图导数概念。基于高阶弱上图导数和Henig有效性,针对约束集值优化问题提出了一个高阶Mond-Weir型对偶问题和一个高阶Wolfe型对偶问题,分别讨论了其弱对偶、强对偶和逆对偶性质。同时建立了原问题的高阶Kuhn-Tucker型必要和充分最优性条件。
     在第四章里,我们基于Tanino的共轭对偶理论,针对约束集值优化问题构造得到三个共轭对偶问题:Lagrange、Fenchel、Fenchel-Lagrange对偶问题。引入了若干新的概念——正双共轭映射、正次梯度和正次微分,并讨论了相应的性质。研究了原问题与Lagrange和Fenchel-Lagrange对偶问题间的弱对偶、强对偶和稳定性准则。同时讨论了三个对偶问题的像集间的包含关系,并给出了它们在向量平衡问题的变分原理方面的应用。
     在第五章里,我们提出了参数(集值)弱向量变分不等式的参数间隙函数概念,借助参数间隙函数引入一个关键假设,从而在Banach空间中在没有单调性和凸性的假设下讨论了参数(集值)弱向量变分不等式的解集映射的Hausdorff下半连续性和连续性。
     在第六章里,我们利用非线性标量化函数构造了参数广义向量拟变分不等式的一个参数间隙函数,借助参数间隙函数也引入一个重要假设,进而在局部凸Hausdorff拓扑向量空间中讨论了参数广义向量拟变分不等式的解集映射的下半连续性。同时用例子说明了在拟变分情形下,保证解集映射的Hausdorff下半连续性成立的条件未必是解集映射连续的充分条件,但进一步在紧空间假设下解集映射是连续的。
     在第七章里,我们指出文献[X.H. Gong and J.C. Yao, Lower semicontinuity ofthe set of efficient solutions for generalized systems, Journal of Optimization Theory and Applications, 138 (2008) 197-205]和文献[X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, Journal of Optimization Theory and Applications, 139 (2008) 35-46]在证明一个参数广义系统(或称参数向量平衡问题)的有效解集映射和弱有效解集映射(或参数弱向量平衡问题的解集映射)的下半连续性时,对可行映射A的一致紧性的假定是多余的。同时基于标量化方法证明了在保证下半连续的假设下,解集映射是连续的。并且讨论了参数广义系统的若干真有效解集映射的连续性。
     在第八章里,我们基于解集映射的一个标量刻画和有关下半连续的集值映射族的并性质,建立了一类带集值映射的参数广义向量平衡问题的解映射的下半连续性和连续性结果,改进和推广了文献[Y.H. Cheng and D.L. Zhu, Global stability results for the weak vector variational inequality, Journal of Global Optimization, 32 (2005) 543-550]和文献[X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, Journal of Optimization Theory and Applications, 139 (2008) 35-46]的对应结论。
     在第九章里,我们作了一个简要的总结和讨论。
In this thesis, we study higher order Fritz John and Kuhn-Tucker type optimality conditions, higher order Mond-Weir and Wolfe type dual problems, and conjugate dual problems for constrained set-valued optimization problems, and we also study the upper, lower semicontinuity and continuity results on the solution mappings to parametric vector variational inequalities and vector equilibrium problems. This thesis is divided into nine chapters. It is organized as follows:
     In Chapter 1, we describe the development and current researches on the topic of vector optimization, including higher order optimality conditions and duality, conjugate duality and the semicontinuity of the solution mappings to parametric vector variational inequalities and vector equilibrium problems. We also give the motivation and the main research work.
     In Chapter 2, higher order generalized contingent epiderivative and higher order generalized adjacent epiderivative of set-valued mappings are introduced. Necessary and sufficient Fritz John type optimality conditions for Henig efficient solutions to a constrained set-valued optimization problem are given by employing the higher order generalized epiderivatives.
     In Chapter 3, the notions of higher order weak contingent epiderivative and higher order weak adjacent epiderivative for set-valued mappings are defined. By virtue of higher order weak epiderivatives and Henig efficiency, we introduce a higher order Mond-Weir type dual problem and a higher order Wolfe type dual problem for a constrained set-valued optimization problem (SOP) and discuss the corresponding weak duality, strong duality and converse duality properties. We also establish higher order Kuhn-Tucker type necessary and sufficient optimality conditions for (SOP).
     In Chapter 4, three conjugate dual problems are proposed by considering the different perturbations to a set-valued vector optimization problem with explicit constraints. Some concepts are introduced, such as the positive biconjugate mapping, positive subgradient and positive subdifferential. The weak duality, inclusion relations between the image sets of dual problems, strong duality and stability criteria are investigated. Some applications to so-called variational principles for a generalized vector equilibrium problem are shown.
     In Chapter 5, the concept of the parametric gap function is proposed and a key assumption is introduced by virtue of the parametric gap function. Then, by using the key assumption, sufficient conditions of the Hausdorff lower semicontinuity and continuity of the solution set map for a parametric (set-valued) weak vector variational inequality are obtained in Banach spaces.
     In Chapter 6, the parametric gap function for a parametric generalized vector quasivariational inequality is proposed by using a nonlinear scalarization function. By virtue of the parametric gap function and a key assumption, the Hausdorff lower semicontinuity of the solution set map is established in locally convex Hausdorff topological vector spaces. Simultaneously, we use an example to explain that the theorem concerning Hausdorff lower semicontinuity may not be a sufficient condition for the upper semicontinuity of the solution set map.
     In Chapter 7, we show that the uniform compactness assumptions used in proving the lower semicontinuity of the efficient solution set in [X.H. Gong and J.C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl. 138 (2008) 197-205] and the weak efficient solution set in [X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl. 139 (2008) 35-46] are superfluous. Furthermore, we point out that under the assumptions of lower semicontinuity theorems, the solution set mappings are continuous actually. The upper semicontinuity of the solution set mappings are derived by scalarization methods. In addition, we also give some continuity results of various proper efficient solution sets to parametric generalized systems.
     In Chapter 8, based on a scalarization representation of the solution mapping and a property involving the union of a family of lower semicontinuous set-valued mappings, we establish the lower semicontinuity and continuity of the solution mapping to a parametric generalized vector equilibrium problem with set-valued mappings. Our consequences are new and include the corresponding results in [Y.H. Cheng and D.L. Zhu, Global stability results for the weak vector variational inequality, J. Global Optim. 32 (2005) 543-550] and [X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl. 139 (2008) 35-46] as special cases.
     In Chapter 9, we summarize the results of this thesis and make some discussions.
引文
[1] Y. Sawaragi, H. Nakayama, T. Tanino. Theory of Multiobjective Optimization[M]. Academic Press, New York, 1985.
    [2]林锉云,董加礼.多目标优化的方法与理论[M].长春:吉林教育出版社, 1992.
    [3] F. Giannessi (ed.). Vector Variational Inequalities and Vector Equilibria: Mathematical Theories[C]. Kluwer Academic Publishers, Dordrecht, Holland, 2000.
    [4] J. Jahn. Vector Optimization-Theory, Applications and Extensions[M]. Springer, 2004.
    [5] D.T. Luc. Theory of Vector Optimization[M]. Springer, Berlin, 1989.
    [6] G.Y. Chen, X.X. Huang, X.Q. Yang. Vector Optimization: Set-Valued and Variational Analysis[M]. Springer, Berlin, 2005.
    [7]陈光亚.优化和均衡中的某些问题[J].重庆师范大学学报(自然科学版), 2004, 21(1): 1-3.
    [8]陈光亚.向量优化问题某些基础理论及其发展[J].重庆师范大学学报(自然科学版), 2005, 22(3): 6-9.
    [9]盛宝怀,刘三阳.多目标集值优化理论及其进展.宝鸡文理学院学报(自然科学版), 2000, 20(1): 1-11.
    [10]董加礼.不可微多目标优化.数学进展, 1994, 23(6): 517-528.
    [11] W. Stadler. A survey of multicriteria optimization or the vector maximum problem, Part I: 1776-1960[J]. Journal of Optimization Theory and Applications, 1979, 29(1): 1–52.
    [12] J.P. Dauer, W. Stadler. A survey of vector optimization in infinite-dimensional spaces, Part 2[J]. Journal of Optimization Theory and Applications, 1986, 51(2): 205–241.
    [13] J.P. Aubin, H. Frankowska. Set-Valued Analysis[M]. Birkh?user, Boston, 1990.
    [14] J.P. Aubin, I. Ekeland. Applied Nonlinear Analysis[M]. John Wiley and Sons, New York, 1984.
    [15] H.W. Corley. Optimality conditions for maximizations of set-valued functions[J]. Journal of Optimization Theory and Applications, 1988, 58: 1-10.
    [16] J. Jahn, R. Rauh. Contingent epiderivatives and set-valued optimization[J]. Mathematical Methods of Operations Reserch, 1997, 46: 193-211.
    [17] G.Y. Chen, J. Jahn. Optimality conditions for set-valued optimization problems[J]. Mathematical Methods of Operations Reserch, 1998, 48: 187-200.
    [18] E.M. Bednarczuk, W. Song. Contingent epiderivative and its applications to set-valued optimization[J]. Control Cybernet. 1998, 27: 375-386.
    [19] J. Jahn, A.A. Khan. Generalized contingent epiderivatives in set-valued optimization:optimality conditions[J]. Numerical Functional Analysis and Optimization, 2002, 23(7-8): 807-831.
    [20] X.H. Gong, H.B. Dong, S.Y. Wang. Optimality conditions for proper efficient solutions of vector set-valued optimization[J]. Journal of Mathematical Analysis and Applications, 2003, 284: 332-350.
    [21] J. Jahn, A.A. Khan, P. Zeilinger. Second-order optimality conditions in set optimization[J]. Journal of Optimization Theory and Applications, 2005, 125: 331-347.
    [22] C.S. Lalitha, R. Arora. Weak Clarke epiderivative in set-valued optimization[J]. Journal of Mathematical Analysis and Applications, 2008, 342: 704-714.
    [23] G. Bigi, M. Castellani. K-epiderivatives for set-valued functions and optimization[J]. Mathematical Methods of Operations Reserch, 2002, 55: 401-412.
    [24] L. Rodríguez-Marín, M. Sama. About contingent epiderivatives[J]. Journal of Mathematical Analysis and Applications, 2007, 327: 745-762.
    [25] P.Q. Khanh. Sufficient optimality conditions and duality in vector optimization with invex-convexlike functions[J]. Journal of Optimization Theory and Applications, 1995, 87: 359-378.
    [26] P.H. Sach, B.D. Craven. Invex multifunctions and duality[J]. Numerical Functional Analysis and Optimization, 1991, 12: 575-591.
    [27] P.H. Sach, N.D. Yen, B.D. Craven. Generalized invexity and duality theories with multifunctions[J]. Numerical Functional Analysis and Optimization, 1994, 15: 131-153.
    [28] S.J. Li, K.L. Teo, X.Q. Yang. Higher order optimality conditions for set-valued optimization[J]. Journal of Optimization Theory and Applications, 2008, 137: 533–553.
    [29] S.J. Li, K.L. Teo, X.Q. Yang. Higher order Mond-Weir duality for set-valued optimization[J]. Journal of Computational and Applied Mathematics, 2008, 217: 339-349.
    [30] S.J. Li, C.R. Chen. Higher order optimality conditions for Henig efficient solutions in set-valued optimization[J]. Journal of Mathematical Analysis and Applications, 2006, 323: 1184-1200.
    [31] P.Q. Khanh, N.D. Tuan. Variational sets of multivalued mappings and a unified study of optimality conditions[J]. Journal of Optimization Theory and Applications, 2008, 139: 47–65.
    [32] P.Q. Khanh, N.D. Tuan. Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization [J]. Journal of Optimization Theory and Applications, 2008, 139: 243–261.
    [33] C.R. Chen, S.J. Li, K.L. Teo. Higher order weak epiderivatives and applications to duality and optimality conditions[J]. Computers & Mathematics with Applications, 2009, 57 (8):1389-1399.
    [34] C.J. Goh, X.Q. Yang. Duality in Optimization and Variational Inequalities[M]. Taylor and Francis, London, 2002.
    [35] W. Fenchel. On conjugate convex functions[J]. Canadian Journal of Mathematics, 1949, 1: 73-77.
    [36] J.J. Moreau. Inf-convolution des fonctions numeriques sur un espace vectoriel[J]. Comptes Rendus Academie Sciences Paris, 1963, 256: 5047-5049.
    [37] R.T. Rockafellar. Convex Analysis[M]. Princeton University Press, Princeton, New Jersey, 1970.
    [38] R.T. Rockafellar. Conjugate Duality and Optimization[M]. CBMS-NSF Regional Conference Series in Applied Mathematics 16, SIAM, Philadelphia, 1974.
    [39] I. Ekeland, R. Temam. Convex Analysis and Variational Problems[M]. North-Holland Publishing Company, Amsterdam, Holland, 1976.
    [40] G. Wanka, R.I. Bo?. On the relations between different dual problems in convex mathematical programming[A], in P. Chamoni, R. Leisten, A. Martin, J. Minnemann, H. Stadtler (eds.), Operations Research Proceedings 2001, Springer-Verlag, Berlin, 2002, 255-262.
    [41] R.I. Bo?, G. Kassay, G. Wanka. Strong duality for generalized convex optimization problems[J]. Journal of Optimization Theory and Applications, 2005, 127: 45-70.
    [42] R.I. Bot, G. Wanka. An analysis of some dual problems in multiobjective optimization (I)-(II)[J]. Optimization, 2004, 53: 281-324.
    [43] R.I. Bot, G. Wanka. Farkas-type results with conjugate functions[J]. SIAM Journal on Optimization, 2005, 15 (2): 540-554.
    [44] R.I. Bot, I.B. Hodrea, G. Wanka. Farkas-type results for inequality systems with composed convex functions via conjugate duality[J]. Journal of Mathematical Analysis and Applications, 2006, 322: 316-328.
    [45] R.I. Bot. Duality and optimality in multiobjective optimization[D]. PhD Dissertation, Faculty of Mathematics, Chemnitz University of Technology, 2003.
    [46] L. Altangerel. A duality approach to gap functions for variational inequalities and equilibrium problems[D]. PhD Dissertation, Faculty of Mathematics, Chemnitz University of Technology, 2006.
    [47] T. Tanino, Y. Sawaragi. Conjugate maps and duality in multiobjective optimization[J]. Journal of Optimization Theory and Applications, 1980, 31: 473-499.
    [48]汪寿阳.多目标最优化中的共轭对偶理论[J].系统科学与数学, 1984, 4(4): 303-313.
    [49] S. Brumelle. Duality for multiple objective convex programs[J]. Mathematics of OperationsResearch, 1981, 6 (2): 159-172.
    [50] J.W. Nieuwenhuis. Supremal points and generalized duality[J]. Mathematische Operationsforschung und Statistik, Series Optimization, 1980, 11 (1): 41-59.
    [51] V. Postolica. Vectorial optimization programs with multifunctions and duality[J]. Annales des Sciences Mathematiques du Quebec, 1986, 10 (1): 85-102.
    [52] V. Postolica. A generalization of Fenchel’s duality theorem[J]. Annales des Sciences Mathematiques du Quebec, 1986, 10 (2): 199-206.
    [53] H. Kawasaki. Conjugate relations and weak subdifferentials of relations[J]. Mathematics of Operations Research, 1981, 6: 593-607.
    [54] H. Kawasaki. A duality theorem in multiobjective nonlinear programming[J]. Mathematics of Operations Research, 1982, 7: 95-110.
    [55] T. Tanino. On supremum of a set in a multi-dimensional space[J]. Journal of Mathematical Analysis and Applications, 1988, 130: 386-397.
    [56] T. Tanino. Conjugate duality in vector optimization[J]. Journal of Mathematical Analysis and Applications, 1992, 167: 84-97.
    [57] W. Song. Conjugate duality in set-valued vector optimization[J]. Journal of Mathematical Analysis and Applications, 1997, 216: 265-283.
    [58] R.I. Bot. The Fenchel duality in set-valued vector optimization[D]. Master thesis, Faculty of Mathematics and Computer Sciences,“Babes-Bolyai”University Cluj-Napoca, 1999.
    [59] L. Altangerel, R.I. Bot, G. Wanka. Conjugate duality in vector optimization and some applications to the vector variational inequality[J]. Journal of Mathematical Analysis and Applications, 2007, 329: 1010-1035.
    [60] L. Altangerel, R.I. Bo?, G. Wanka. Variational principles for vector equilibrium problems related to conjugate duality[J]. Journal of Nonlinear and Convex Analysis, 2007, 8: 179-196.
    [61] A. Lohne. Optimization with set relations: conjugate duality[J]. Optimization, 2005, 54(3): 265-282.
    [62] A. Lohne, C. Tammer. A new approach to duality in vector optimization[J]. Optimization, 2007, 56(1-2): 221-239.
    [63] C.S. Lalitha, R. Arora. Conjugate maps, subgradients and conjugate duality in set-valued optimization[J]. Numerical Functional Analysis and Optimization, 2007, 28(7-8): 897-909.
    [64] Q.H. Ansari, I.V. Konnov, J.C. Yao. Characterizations of solutions for vector equilibrium problems[J]. Journal of Optimization Theory and Applications, 2002, 113: 435-447.
    [65] Q.H. Ansari, I.V. Konnov, J.C. Yao. Existence of a solution and variational principles for vector equilibrium problems[J]. Journal of Optimization Theory and Applications, 2001, 110:481-492.
    [66] G.Y. Chen, C.J. Goh, X.Q. Yang. On gap functions for vector variational inequalities[A], in F. Giannessi (ed.), Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, Holland, 2000, 55-72.
    [67] C.R. Chen, S.J. Li. Different conjugate dual problems in vector optimization and their relations[J]. Journal of Optimization Theory and Applications, 2009, 140: 443-461.
    [68] S.J. Li, C.R. Chen, S.Y. Wu. Conjugate dual problems in constrained set-valued optimization and applications[J]. European Journal of Operational Research, 2009, 196: 21-32.
    [69] A.M. Rubinov, X.Q. Yang. Lagrange-type Functions in Constrained Non-convex Optimization[M]. Kluwer Academic Publishers, Dordrecht, 2003.
    [70] R.T. Rockafellar, R.J.-B. Wets. Variational Analysis[J]. Springer-Verlag, Berlin, 1998.
    [71] A.M. Rubinov, X.X. Huang, X.Q. Yang. The zero duality gap property and lower semicontinuity of the perturbation function[J]. Mathematics of Operations Research, 2002, 27(4): 775-791.
    [72] C.J. Goh, X.Q. Yang. Nonlinear Lagrangian theory for nonconvex optimization[J]. Journal of Optimization Theory and Applications, 2001, 109(1): 99-121.
    [73] C.Y. Wang, X.Q. Yang, X.M. Yang. Unified nonlinear Lagrangian approach to duality and optimal paths[J]. Journal of Optimization Theory and Applications, 2007, 135(1): 85-100.
    [74] X.X. Huang, X.Q. Yang. A unified augmented Lagrangian approach to duality and exact penalization[J]. Mathematics of Operations Research, 2003, 28(3): 533-552.
    [75] X.Q. Yang, X.X. Huang. A nonlinear Lagrangian approach to constrained optimization problems[J]. SIAM Journal on Optimization, 2001, 11(4): 1119-1144.
    [76] Y.Y. Zhou, X.Q. Yang. Some results about duality and exact penalization[J]. Journal of Global Optimization, 2004, 29: 497-509.
    [77] Y.Y. Zhou, X.Q. Yang. Augmented Lagrangian function, non-quadratic growth condition and exact penalization[J]. Operations Research Letters, 2006, 34: 127-134.
    [78] P.Q. Khanh, T.H. Nuong, M. Thera. On duality in nonconvex vector optimization in Banach spaces using augmented Lagrangians[J]. Positivity, 1999, 3: 49-64.
    [79] X.X. Huang, X.Q. Yang. Duality and exact penalization for vector optimization via augmented Lagrangian[J]. Journal of Optimization Theory and Applications, 2001, 111(3): 615-640.
    [80] X.X. Huang, X.Q. Yang. Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization[J]. SIAM Journal on Optimization, 2002, 13(3): 675-692.
    [81] X.X. Huang, X.Q. Yang. Duality for multiobjective optimization via nonlinear Lagrangian functions[J]. Journal of Optimization Theory and Applications, 2004, 120(1): 111-127.
    [82] X.X. Huang, X.Q. Yang, K.L. Teo. Convergence analysis of a class of penalty methods for vector optimization problems with cone constraints[J]. Journal of Global Optimization, 2006, 36(4): 637-652.
    [83]张石生.变分不等式及其相关问题[M].重庆:重庆出版社, 2008.
    [84] P.T. Harker, J.S. Pang. Finite-dimensional variational inequality and nonlinear complementary problems: A survey of theory, algorithms and applications[J]. Mathematical Programming, 1990, 48: 161-220.
    [85] F. Giannessi. Theorems of the alternative, quadratic programs and complementary problems[A], in R.W. Cottle, F. Giannessi, J.L. Lions (eds.), Variational Inequalities and Complementary Problems, Wiley, New York, 1980, 151-186.
    [86] G.Y. Chen, X.Q. Yang. Vector complementarity problem and its equivalences with the weak minimal element in ordered spaces[J]. Journal of Mathematical Analysis and Applications, 1990, 153: 136-158.
    [87] G.Y. Chen. Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem[J]. Journal of Optimization Theory and Applications, 1992, 74: 445-456.
    [88] X.Q. Yang. Vector variational inequality and its duality[J]. Nonlinear Analysis: Theory, Methods & Applications, 1993, 21: 869-877.
    [89] References on Vector Variational Inequalities. Journal of Global Optimization, 2005, 32: 529-536.
    [90] G.Y. Chen, S.J. Li. Existence of solutions for a generalized vector quasivariational inequality[J]. Journal of Optimization Theory and Applications, 1996, 90: 321-334.
    [91] S.J. Li, G.Y. Chen, K.L. Teo. On the stability of generalized vector quasivariational inequality problems[J]. Journal of Optimization Theory and Applications, 2002, 113: 283-295.
    [92] E. Blum, W. Oettli. From optimization and variational inequalities to equilibrium problems[J]. The Mathematics Student, 1994, 63: 123-145.
    [93] M. Bianchi, N. Hadjisavvas, S. Schaible. Vector equilibrium problems with generalized monotone bifunctions[J]. Journal of Optimization Theory and Applications, 1997, 92: 527-542.
    [94] Q.H. Ansari, W. Oettli, D. Schlager. A generalization of vectorial equilibria[J]. Mathematical Methods of Operations Research, 1997, 46: 147-152.
    [95] Q.H. Ansari, A.H. Siddiqi, S.Y. Wu. Existence and duality of generalized vector equilibriumproblems[J]. Journal of Mathematical Analysis and Applications, 2001, 259: 115-126.
    [96] K. Kimura, J.C. Yao. Sensitivity analysis of vector equilibrium problems[J]. Taiwanese Journal of Mathematics, 2008, 12(3): 649-669.
    [97] K. Kimura, J.C. Yao. Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems[J]. Journal of Industrial Mamagement and Optimization, 2008, 4: 167-181.
    [98] S.J. Li, K.L. Teo, X.Q. Yang, S.Y. Wu. Gap functions and existence of solutions to generalized vector quasi-equilibrium problems[J]. Journal of Global Optimization, 2006, 34: 427-440.
    [99] L.Q. Anh, P.Q. Khanh. On the stability of the solution sets of general multivalued vector quasiequilibrium problems[J]. Journal of Optimization Theory and Applications, 2007, 135: 271-284.
    [100] K. Kimura, J.C. Yao. Semicontinuity of solution mappings of parametric generalized vector equilibrium problems[J]. Journal of Optimization Theory and Applications, 2008, 138: 429-443.
    [101] K.W. Meng, S.J. Li. Differential and sensitivity properties of gap functions for Minty vector variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2008, 337: 386-398.
    [102] C. Berge. Topological Spaces[M]. Oliver and Boyd, London, 1963.
    [103] W.W. Hogan. Point-to-set maps in mathematical programming[J]. SIAM Review, 1973, 15: 591-603.
    [104] Y.H. Cheng, D.L. Zhu. Global stability results for the weak vector variational inequality[J]. Journal of Global Optimization, 2005, 32: 543-550.
    [105] S.J. Li, Z.M. Fang. On the stability of a dual weak vector variational inequality problem[J]. Journal of Industrial and Management Optimization, 2008, 4: 155-165.
    [106] C.R. Chen, S.J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality[J]. Journal of Industrial and Management Optimization, 2007, 3: 519-528.
    [107] C.R. Chen, S.J. Li, Z.M. Fang. On the solution semicontinuity to a parametric generalized vector quasivariational inequality. 2009, submitted.
    [108] S.J. Li, C.R. Chen. Stability of weak vector variational inequality[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(4): 1528-1535.
    [109] P.Q. Khanh, L.M. Luu. Upper semicontinuity of the solution set to parametric vector quasivariational inequalities[J]. Journal of Global Optimization, 2005, 32: 569-580.
    [110] B.T. Kien. On the lower semicontinuity of optimal solution sets[J]. Optimization, 2005, 54: 123-130.
    [111] J. Zhao. The lower semicontinuity of optimal solution sets[J]. Journal of Mathematical Analysis and Applications, 1997, 207: 240-254.
    [112] L.Q. Anh, P.Q. Khanh. Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems[J]. Journal of Mathematical Analysis and Applications, 2004, 294: 699-711.
    [113] N.J. Huang, J. Li, H.B. Thompson. Stability for parametric implicit vector equilibrium problems[J]. Mathematical and Computer Modelling, 2006, 43: 1267-1274.
    [114] K. Kimura, J.C. Yao. Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems[J]. Journal of Global Optimization, 2008, 41: 187-202.
    [115] X.H. Gong, J.C. Yao. Lower semicontinuity of the set of efficient solutions for generalized systems[J]. Journal of Optimization Theory and Applications, 2008, 138: 197-205.
    [116] X.H. Gong. Continuity of the solution set to parametric weak vector equilibrium problems[J]. Journal of Optimization Theory and Applications, 2008, 139: 35-46.
    [117] C.R. Chen, S.J. Li, K.L. Teo. Solution semicontinuity of parametric generalized vector equilibrium problems[J]. Journal of Global Optimization, 2008, doi: 10.1007/s10898-008-9376-9.
    [118] C.R. Chen, S.J. Li. On the solution continuity of parametric generalized systems[J]. Pacific Journal of Optimization, 2009, accepted.
    [119] L.Q. Anh, P.Q. Khanh. On the H?lder continuity of solutions to parametric multivalued vector equilibrium problems[J]. Journal of Mathematical Analysis and Applications, 2006, 321: 308-315.
    [120] L.Q. Anh, P.Q. Khanh. Uniqueness and H?lder continuity of the solution to multivalued equilibrium problems in metric spaces[J]. Journal of Global Optimization, 2007, 37: 449-465.
    [121] L.Q. Anh, P.Q. Khanh. Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces: H?lder continuity of solutions[J]. Journal of Global Optimization, 2008, 42: 515-531.
    [122] S.J. Li, X.B. Li, L.N. Wang, K.L. Teo. The H?lder continuity of solutions to generalized vector equilibrium problems[J]. European Journal of Operational Research, 2008, doi: 10.1016/j.ejor.2008.12.024.
    [123] L.Q. Anh, P.Q. Khanh. Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks I: Upper semicontinuities[J]. Set-Valued Analysis, 2008, 16: 267-279.
    [124] L.Q. Anh, P.Q. Khanh. Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks II: Lower semicontinuities applications[J]. Set-Valued Analysis, 2008, 16: 943-960.
    [125] X.Q. Yang, H. Yu. Vector variational inequalities and dynamic traffic equilibria[A], in F. Giannessi, A. Maugeri (eds.), Variational Analysis and Applications, Springer, 2005, 1141-1157.
    [126] X.Q. Yang, J.C. Yao. Gap functions and existence of solutions to set-valued vector variational inequalities[J]. Journal of Optimization Theory and Applications, 2002, 115: 407-417.
    [127] J.M. Borwein, D. Zhuang. Super efficiency in vector optimization[J]. Transactions of the American Mathematical Society, 1993, 338: 105-122.
    [128] W. Song. A generalization of Fenchel duality in set-valued vector optimization[J]. Mathematical Methods of Operations Research, 1998, 48: 259-272.
    [129] W. Song. Vector equilibrium problems with set-valued mappings[A], in F. Giannessi (ed.), Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, 2000, 403-422.
    [130] B. Bank, J. Guddat, D. Klatte, B. Kummer, K. Tammer. Non-Linear Parametric Optimization[M]. Akademie-Verlag, Berlin, 1982.
    [131] F. Ferro. A minimax theorem for vector-valued functions[J]. Journal of Optimization Theory and Applications, 1989, 60: 19-31.
    [132] G.Y. Chen, X.Q. Yang, H. Yu. A nonlinear scalarization function and generalized quasi-vector equilibrium problems[J]. Journal of Global Optimization, 2005, 32: 451-466.
    [133] C.H. Su, V.M. Sehgal. Some fixed point theorems for condensing multifunctions in locally convex spaces[J]. Proceedings of the American Mathematical Society, 1975, 50: 150-154.
    [134] E. Muselli. Upper and lower semicontinuity for set-valued mappings involving constraints[J]. Journal of Optimization Theory and Applications, 2000, 106: 527-550.
    [135] B.T. Kien, N.C. Wong, J.C. Yao. On the solution existence of generalized quasivariational inequalities with discontinuous multifunctions[J]. Journal of Optimization Theory and Applications, 2007, 135: 515-530.
    [136] X.H. Gong, J.C. Yao. Connectedness of the set of efficient solutions for generalized systems[J]. Journal of Optimization Theory and Applications, 2008, 138: 189-196.
    [137] X.H. Gong. Connectedness of the solution sets and scalarization for vector equilibrium problems[J]. Journal of Optimization Theory and Applications, 2007, 133: 151-161.
    [138] A. Chinchuluun, P.M. Pardalos. A survey of recent developments in multiobjective optimization[J]. Annals of Operations Research, 2007, 154: 29-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700