双重非线性发展型方程及H-半变分不等式问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先介绍非线性问题研究中一类重要的单调型算子—伪单调算子,讨论此类算子在非线性问题研究过程中的各种多值推广形式以及它们之间的相互关联.然后,结合偏微分方程、非线性单调算子、凸分析、非光滑分析、集值分析理论以及隐时间离散方法、Lebesgue-Bochner函数空间中的紧致性引理等,重点研究几类含有伪单调算子的双重非线性发展型方程及H-半变分不等式问题.首次建立了这些问题的解的存在性定理,推广了双重非线性发展型方程,以及抛物型、双曲型发展方程和H-半变分不等式问题的现有成果.
     第一章为绪论部分,先引入不等式问题的两大分支—变分不等式和H-半变分不等式,简要介绍非线性问题的研究内容、难点和方法.随后,总结了非线性发展型方程以及椭圆型、抛物型和双曲型H-半变分不等式问题的已有成果和主要研究方法.最后介绍本文具体研究内容和主要理论成果.
     第二章归纳了本文所需的基础知识和理论.主要包括函数空间、凸分析、非光滑分析、非线性单调算子理论、几个重要的紧性引理以及非线性泛函分析中的一些重要结论.
     第三章第一部分重点介绍几类推广形式的多值伪单调映射和与之相关的抛物型问题的存在性定理.特别地,本节指出由Kasyanov等教授提出的一类Wλ0型伪单调映射和已有的广义伪单调映射等价而并非其推广.第二部分研究一类具有伪单调单值算子的非线性发展型方程.结合对偶算子正则化方法,在较弱的强制性条件下建立了其解的存在性定理.
     鉴于有关双重非线性发展型方程以及椭圆、抛物和双曲型的H-半变分不等式问题理论已比较成熟,成果非常丰富,但有关双重非线性发展型方程的研究局限于两个非线性算子都是极大单调算子或凸函数的次微分形式,而发展型的H-半变分不等式问题的理论研究又只是针对抛物和双曲型问题,有关双重非线性型发展型的H-半变分不等式问题没有任何理论研究和成果.因此,本文从这一切入点着手,在随后四至六章中重点研究几类双重非线性发展型方程及H-半变分不等式问题.
     在第四和第五章中,我们分别考虑了一类双重单值非线性发展型H-半变分不等式问题和一类双重非线性发展型边界H-半变分不等式问题.而第六章则主要研究一阶和二阶双重非线性发展型包含及其在H-半变分不等式问题中的应用,这章中非线性算子可以是多值型算子,其理论成果也更具普遍性.
     有别于研究抛物型H-变分不等式的诸如Faedo-Galerkin方法、对偶算子的正则化法以及上下解方法等,本文采用隐时间离散技术将发展型问题椭圆化,借助椭圆型问题的存在性定理构造逼近解,通过一系列的先验估计和建立恰当的紧性引理,并结合Clarke广义次梯度以及单调型算子特性实现了逼近解到真解的极限过程.我们的研究推广了已有的理论成果,是这方面最新突破和发展.
In this thesis, we first introduce a class of monotone operators, namely, pseudomonotone operator, which plays an important role in the study of nonlinear problems. We present its various generalization forms and discuss their relations to each other. Then, several types of doubly nonlinear evolution equations and hemivariational inequali-ties with pseudomonotone operators are studied seriously by means of the theory of partial differential equations, nonlinear monotone oper-ators, convex analysis, nonsmooth analysis and multivalued analysis, the method of implicit time-discretization and the compact embed-ding theorems in Lebesgue-Bochner spaces. The existence theorems are established at the first time and our results generalize the exist-ing ones concerning doubly nonlinear evolution equations, parabolic, hyperbolic evolutional equations and hemivariational inequalities.
     Chapter One is a general introduction. It introduces the two branches of inequalities, i.e., variational inequalities and hemivari-ational inequalities, and presents the main difficulty, methods and techniques regarding nonlinear problems. Then, we recall the main methods and results concerning nonlinear evolution equations, ellip-tic, parabolic and hyperbolic equations and hemivariational inequal-ities. Finally, we show the main point of this paper and the work of the following chapters.
     Chapter Two is concerned with the preliminaries necessary for the study of this paper, including the theory of functional spaces, convex analysis, nonsmooth analysis and monotone operators, sev-eral compactness lemmas and some conclusions in nonlinear functional analysis.
     In the first section of Chapter Three, we introduce some gener- alized definitions of multivalued pseudomonotone mapping and the existence theorems for parabolic problems governed by them. Par-ticularly, we show that the Wλ0pseudomonotone mapping given by professor Kasyanov is not the generalization of its previous one. The second section deals with a class of nonlinear evolution equations with pseudomonotone operators. The existence theorems of solutions for these problems are established under a weaker coerciveness condition compared to the previous result.
     As we know, much concern is devoted to doubly nonlinear evolu-tion equations and elliptic, parabolic, hyperbolic hemivariational in-equalities and the theory result is fruitful. However, on the one hand, the study of doubly nonlinear equations requires that both the two nonlinear operators be maximal monotone and the subdifferential of convex functional. On the other hand, the evolution hemivariational inequalities studied by mathematicians now are mainly parabolic and hyperbolic. Therefore, considering these situations, in this thesis we deal with several classes of doubly nonlinear evolution equations and hemivariational inequalities in the following fourth to sixth chapter.
     Chapter Four and Five are concerned with a class of single-valued doubly nonlinear evolutional hemivariational inequalities and a class of doubly nonlinear evolutional hemivariational inequalities of bound-ary type, respectively. In Chapter Six, we deal with the doubly non-linear evolutional inclusions and hemivariational inequalities of first and second orders. In this chapter, the nonlinear operator may be multivalued and the results are more general.
     Unlike the methods to parabolic hemivariational inequalities such as the method of Faedo-Galerkin, regularity method of duality opera-tor, and upper and lower solution method, in this paper we adopt the implicit time-discretization technique to transform the evolution prob-lems into elliptic ones, and then construct the approximate solutions by the existence theorems of elliptic problems. After establishing a series of a priori estimates and appropriate compact lemmas, we com-plete the limit process of approximate solutions to true solutions by using the properties of Clarke's generalized gradient and the mono-tonicity of the operators. Our results extend the existing ones and represent the latest breakthrough in this field.
引文
[1]Zeidler E. Nonlinear Functional Analysis and Its Application, Vol. Ⅱ A & B:Linear and Nonlinear Monotone Operators[M]. New York:Springer Verlag, 1990.
    [2]Grange O., Mignot F. Sur la resolution d'une equation et d'une inequation paraboliques non lineaires[J]. J. Funct. Anal.,1972,11:77-92.
    [3]Benedetto E. D., Showalter R. E. Implicit degenerate evolution equations and applications [J]. SIAM J. Math. Anal.,1981,12:731-751.
    [4]Showalter R. E. Monotone Operators in Banach Space and Nonlinear Par-tial Differential Equations[M]. Math. Surveys Monogr., vol.49, Amer. Math. Soc., Providence, RI,1997.
    [5]Bermudez A., Durany J., Saguez C. An existence theorem for an implicit nonlinear evolution equation[J]. Collect. Math. (Barcelona) 1984,35:19-34.
    [6]Maitre E., Witomski P. A pseudo-monotonicity adapted to doubly nonlinear elliptic-parabolic equations[J]. Nonlinear Anal.,2002.50:223-250.
    [7]Kenmochi N. Monotonicity and comapctness methods for nonlinear varia-tional inequalities:Handbook of Differential Equations, Vol. Ⅳ[M]. Amsterdam: Elsevier/North-Holland,2007:203-298.
    [8]Kenmochi N. Solvability of nonlinear evolution equations with time-dependent constrains and applications [J]. Bull. Fac. Education, Chiba Univ.1981, 30:1-87.
    [9]Kenmochi N., Pawlow I. A class of nonlinear elliptic-parabolic equations with time-dependent constrains[J]. Nonlinear Anal.,1986,10:1181-1202.
    [10]Kenmochi N., Kubo M. Periodic solutions of parabolic-elliptic obstacle problems[J]. J. Differential equatios,1990,88:213-237
    [11]Kubo M., Yamazaki N. Elliptic-parabolic variational inequalities with time-dependent constraints [J]. Discrete Contin. Dyn. Syst.,2007,19:335-359.
    [12]Colli P., Visintin A. On a class of doubly nonlinear evolution equations[J]. Comm. Partial Differential Equations,1990,15(5):737-756.
    [13]Akagi G., Stefanelli U. Periodic solutions for doubly nonlinear evolution equations[J]. J. Differential Equations,2011,251:1790-1812.
    [14]Akagi G. Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces[J]. J. Differential Equations,2006,231: 32-56
    [15]Akagi G. Doubly nonlinear evolution equations and Bean's critical-state model for type-ii superconductivity [J]. Discrete Contin. Dyn.Syst.,2005, Supple-ment Volume:30-39.
    [16]Liu Zhenhai. Periodic solutions for double degenerate quasilinear parabolic equations [J]. Nonlinear Analysis,2002,51:1245-1257.
    [17]Aizicovici S., Hokkanen V. M. Doubly nonlinear periodic problems with unbounded operators[J]. J. Math. Anal. Appl.,2004,292:540-557.
    [18]Aizicovici S., Hokkanen V. M. Doubly nonlinear equations with unbounded operators[J]. Nonlinear Anal.,2004,58:591-607.
    [19]Gilardi G., Stefanelli U. Time-discretization and global solution for a doubly nonlinear Volterra equation[J]. J. Differential Equations,2006,228:707-736.
    [20]Alt H. W., Luckhaus S. Quasilinear elliptic-parabolic differential equa-tions[J]. Math. Z.,1983,183:311-341.
    [21]Alt H. W., Luckhaus S., Visintin A. On nonstationary flow through porous media[J]. Ann. Mat. Pura Appl.(4).1984,136:303-316.
    [22]Xu Xingsheng, Existence and convergence theorems for doubly nonlinear partial differential equations of elliptic-parabolic type[J]. J. Math. Anal. Appl., 1990,150:205-223.
    [23]Otto F., L1-contraction and uniqueness for unstationary saturated-unsaturate porous media flow[J]. Adv. Math. Sci. Appl.,1997,7:537-553.
    [24]Visintin A. Homogenization of doubly nonlinear stefan-type problem. SIAM J. Math. Anal.,2007,39:987-1017.
    [25]Akagi G., Otani M. Evolution inclusions governed by the difference of two subdifferentials in reflexive Banach spaces[J]. J. Differnttial Equations,2005,209: 392-415.
    [26]Akagi G. Global attractors for doubly nonlinear evolution equations with non-monotone perturbations [J]. J. Differential Equations,2011,250:1850-1875.
    [27]Stefanelli U. The Brezis-Ekeland Principle for Doubly Nonlinear Equa-tions[J]. SIAM J. Control Optim.,2008,47(3):1615-1642.
    [28]Stefanelli U. On a class of doubly nonlinear nonlocal evolution equations [J]. Differential Integral Equations,2002,15(8):897-922.
    [29]Lions J. L. quelques methodes de resolution des Problemes aux limites non lineaires[M]. Pairs:Dunod, Gauthier-Villars,1969.
    [30]Lions J. L非线性边值问题的一些解法[M].郭柏灵,汪礼祁.译.广州:中山大学出版社,1993.
    [31]Duvaut G., Lions J. L. Inequalities in Mechanics and Physics[M]. Berlin: Springer-Verlag,1976.
    [32]Duvaut G, Lions J. L力学和物理学中的变分不等方程[M].王耀东.译.北京:科学出版社,1987.
    [33]Panagiotopoulos P. D. Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions[M]. Basel:Birkhauser,1985.
    [34]Panagiotopoulos P. D. Hemivariational Inequalities:Applications in Me-chanics and Engineering[M]. Berlin:Springer,1993.
    [35]Naniewicz Z, Panagiotopoulos P. D. Mathematical Theorey of Hemivaria-tional Inequalities and Applications[M]. New York:Marcel Dekker,1995.
    [36]Motreanu D., Panagiotopoulos P. D. Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities and Applications:Non-convex Optimization and its Applications vol 29[M]. Dordrecht:Kluwer,1999.
    [37]Baiocchi C., Capelo A. Variational and Quasivariational Inequalities:Ap-plications to Free Boundary Problems[M]. New York:Wiley,1984.
    [38]张石生.变分不等式和相补问题理论及应用[M].上海:上海科学技术出版社.1991.
    [39]Kinderlehrer D., Stampacchia G. An Introduction to Variational Inequali-ties and Thier Applications[M]. Philadelphia:SIAM.,2000.
    [40]Goeleven D., Motreanu D. Variational and Hemivariational Inequalities, Theory, Methods and Applications, Volume Ⅱ:Unilateral Problems[M]. Boston, Dordrecht, London:Kluwer Academic Publishers,2003.
    [41]Denkowski Z., Migorski S., Papageorgiou N. S. An Introduction to Non-linear Analysis:Theory. Boston, Dordrecht, London, New York:Kluwer Aca-demic/Plenum Publishers,2003.
    [42]Yosida K. Functional Analysis[M]. Springer-Verlag第六版.北京:世界图书出版公司,1999.
    [43]Brezis H泛函分析-理论和应用[M].叶东,周风译.北京:清华大学出版社,2009.
    [44]赵义纯.非线性泛函分析及其应用[M].北京:高等教育出版社,1989.
    [45]郭大均.非线性泛函分析[M].山东:山东科技出版社:1985.
    [46]张恭庆,林源渠.泛函分析讲义[M].上册.北京:北京大学出版社,2002.
    [47]Ekland I., Teman R. Convex Analysis and Variational Problems[M]. Philadelphia:SIAM.,1999.
    [48]Clarke F. H. Optimization and Nonsmooth Analysis[M]. New York:Wiley-Interscience,1983.
    [49]Clarke F. H. Optimization and Nonsmooth Analysis[M]. Philadelphia: SIAM.,1990.
    [50]Adams R. A., Fouriner J. F. Sobolev Spaces[M]. Second Edition. Academic Press,2003.
    [51]Adams R. A索伯列夫空间[M].叶其孝等译.北京:人民教育出版社.1983.
    [52]Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Sec-ond Order[M]. Berlin:Springer-Vcrlag,2001.
    [53]王术Sobolev空间与偏微分方程引论[M].北京:科学出版社.2009.
    [54]伍卓群,尹景学,王春明.椭圆与抛物型方程引论[M].北京:科学出版社.2003.
    [55]Evans L. C. Weak convergence methods for nonlinear partial differential equations[M]. CBMS 74, Providence, Rode Island:American Mathematical Soci-ety,1990.
    [56]Evans L. C. Partial Differential Equations. Graduate Studies in Mathemat-ics Vol 19[M]. Rode Island:American Mathematical Society,1998.
    [57]Grisvard P. Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics[M]. Boston:Pitman,1985.
    [58]Aubin J. P., Cellina A. Differential Inclusions:Set-Valued Maps and Via-bility Theory[M]. Berlin, New York, Tokyo:Springer-Verlag,1984.
    [59]Aubin J. P., Frankowska H. Set-Valued Analysis[M]. Reprint of 1990 Edi-tion. Birkhauser, Boston, Basel, Berlin:Modern Birkhauser Classics.2009.
    [60]Hu Shouchuan, Papageorgiou N. S. Handbook of Multivalued Analysis Vol-ume I:Theory[M]. Dordrecht:Kluwer Academic Publishers,1997.
    [61]Hu Shouchuan, Papageorgiou N. S. Handbook of Multivalued Analysis Vol-ume II:Applications[M]. Dordrecht:Kluwer Academic Publishers,2000.
    [62]Liu Zhenhai. Elliptic variational hemivariational inequalities [J]. Applied Mathematics Letters,2003,16:871-876.
    [63]Liu Zhenhai. On boundary variational-hemivariational inequalities of ellip-tic type[J]. Proc. Roy. Soc. Edinburgh Sect. A,2010,140(2):419-434.
    [64]Liu Zhenhai, Motreanu D. A class of variational-hemivariational inequalities of elliptic type[J]. Nonlinearity,2010,23:1741-1752.
    [65]Carl S. Existence of Extremal Solutions of Boundary Hemivariational In-equalities [J]. J. Differential Equations,2001,171:370-396.
    [66]Carl S. Existence and comparison results for noncoercive and nonmonotone multivalued elliptic problems[J]. Nonlinear Anal.,2006,65:1532-1546.
    [67]Carl S., Motreanu D. Quasilinear elliptic inclusions of hemivariational type: Extremality and compactness of the solution set[J]. J. Math. Anal. Appl.,2003, 286:147-159.
    [68]Carl S., Motreanu D. General comparison principle for quasilinear elliptic inclusions[J]. Nonlinear Anal.,2009,70:1105-1112.
    [69]Miettinen M. A parabolic hemivariational inequality [J]. Nonlinear Anal., 1996,26:725-734.
    [70]Miettinen M, Panagiotopoulos P. D. On parabolic hemivariational inequal-ities and applications [J]. Nonlinear Anal.,1999,35:885-915.
    [71]Papageorgiou N. S, Papalini F, Renzacci F. Existence of solutions and peri-odic solutions for nonlinear evolution inclusions [J]. Rendiconti Del Circolo Matem-atico Di Palermo Serie II. Tomo ⅪⅧ,1999,341-364.
    [72]Migorski S. Existence and convergence results for evolution hemivariational inequalities[J]. Top. Methods Nonlinear Anal.,2000,16:125-44.
    [73]Carl S., Le V. K, Motreanu D. Existence and comparison results for quasi-linear evolution hemivariational inequalities [J]. J. Differential Equations,2004, 57:1-17.
    [74]Carl S., Motreanu D. Extremal solutions of quasilinear parabolic inclusions with generalized Clarke's gradient[J]. J. Differential Equations,2003,191:206-233.
    [75]Carl S., Le V. K, Motreanu D. Evolutionary variational-hemivariational inequalities:Existence and comparison results[J]. J. Math. Anal. Appl.,2008, 345:545-558.
    [76]Liu Zhenhai. Existence results for quasilinear parabolic hemivariational in-equalities [J]. J. Differential Equations,2008,244:1395-1409.
    [77]Liu Zhenhai. Anti-periodic solutions to nonlinear evolution equations [J]. J. Func. Anal.,2010,258:2026-2033.
    [78]Deuel J, Hess P. Nonlinear parabolic boundary value problems with upper and lower solutions[J]. Israel J. Math.,1978,29:92-106.
    [79]Liu Zhenhai. A class of evolution hemivariational inequalities [J]. Nonlinear Anal.,1999,36:91-100.
    [80]Liu Zhenhai. Some convergence results for evolution hemivariational in-equalities [J]. J. Glob. Optim.,2004,29:85-95.
    [81]Liu Zhenhai, Simon L. Existence results for evolution hemivariational in-equalities [J]. Adv. Math.,2001,30:47-55.
    [82]Migorski S. On existence of solutions for parabolic hemivariational inequal-ities[J]. J. Comp. Appl. Math.,2001,129:77-87.
    [83]Migorski S., Ochal A. Boundary hemivariational inequality of parabolic type[J]. Nonlinear Anal.,2004,57:579-596.
    [84]Migorski S. Dynamic hemivariational inequality modeling viscoelastic con-tact problem with normal damped response and friction[J]. Applicable Analysis, 2005,84:669-699.
    [85]Migorski S., Ochal A., Sofonea M. A dynamic frictional contact problem for piezoelectric materials[J]. J. Math. Anal. Appl.,2010,361:161-176.
    [86]Papageorgiou N. S, Yannakakis N. Second order nonlinear evolution in-clusions I:Existence and relaxation results. Acta Mathematica Sinica, English Series[J].2005,21:977-996.
    [87]Li Yunxiang, Liu Zhenhai. A quasistatic contact problem for viscoelastic materials with friction and damage [J]. Nonlinear Anal.,2010:73,2221-2229.
    [88]Li Yunxiang, Liu Zhenhai. Dynamic contact problem for viscoelastic piezo-electric materials with normal damped response and friction[J]. J. Math. Anal. Appl.,2011,373:726-738.
    [89]Migorski S. A unified approach to dynamic contact problems in viscoelas-ticity[J]. J. Elasticity,2006,83:247-275.
    [90]Migorski S. Boundary Hemivariational Inequalities of Hyperbolic Type and Applications[J]. J. Glob Optim.,2005,31:505-533.
    [91]Migorski S., Ochal A. Dynamic bilateral contact problem for viscoelastic piezoelectric materials with adhesion[J]. Nonlinear Anal.,2008,69:495-509.
    [92]Simon J. Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl.(4)[J]. 1987,146:65-96.
    [93]Moreira D. R., Teixeira E. V. On the behavior of weak convergence under nonlinearities and applications[J]. Proc. American Mathematical Society.2004, 133:1647-1656.
    [94]Chang K. C. Variational methods for non-differential functionals and their applications to partial differential equations [J]. J. Math. Anal. Appl.,1981,80: 102-129.
    [95]Brezis H. Equations et inequations non lineaires dans les espaces vectoriels en dualite[J]. Ann. Inst. Fourier,1968,18:115-175.
    [96]Browder F. E., Hess P. Nonlinear mappings of monotone type in Banach spaces[J]. J. Funct. Anal.,1972,11:251-294.
    [97]Browder F. E. Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains [J]. Proc. Natl. Acad. Sci. USA,1977,74: 2659-2661.
    [98]Le V. K. A range and existence theorem for pseudomonotone perturbations of maximal monotone operators[J]. Proc. AMS.,2011,139(5):1645-1658.
    [99]Kasyanov P. O., Mel'nik V. S., Toscano S. Solutions of Cauchy and pe-riodic problems for evolution inclusions with multi-valued Wλ0-pseudomonotone maps[J]. J. Differential Equations,2010,249:1258-1287.
    [100]Kasyanov P. O., Mel'nik V. S., Toscano S. Periodic solutions of nonlinear evolution equations with Wλ0-pseudomonotone maps[J]. Nonlinear Oscil.,2006, 9:181-206.
    [101]Kasyanov P. O., Mel'nik V. S., Valero J. On the method of approximation for evolutionary inclusions of pseudomonotone type[J]. Bull. Austral. Math. Soc. 2008,77:115-143.
    [102]Mel'nik V. S. Multivariational inequalities and operator inclusions in Ba-nach spaces with mappings of the class (S)+[J]. Ukrainian Math. J.,2000,52: 1724-1734.
    [103]Peng Zijia, Liu Zhenhai. A note on multivalued Wλ0 pseudomonotone map[J]. Applied Mathematics Letters,2011,24:1204-1208.
    [104]Rockafellar R. T. Integral functionals, normal integrands and mesurable selections, Nonlinear Operators and the Calculus of Variations[M]. Waelbroeck L., edit. Lecture notes in Math. Springer-Verlag,1976,543:157-207.
    [105]Carl S., Le V. K., Motreanu D. Nonsmooth Variational Problems and Their Inequalities:Comparison Principles and Applications[M]. Springer Monographs in Mathematics. New York:Springer,2007.
    [106]Berkovits J., Mustonen V. Monotonicity methods for nonlinear evolution equations[J]. Nonlinear Anal.,1996,27:1397-1405.
    [107]Gossez J. P., Mustonen V. Pseudomonotonicity and the Leray-Lions condi-tion[J]. Diff. Integral Eqns.,1993,6:37-46.
    [108]Migorski S. Quasi-static hemivariational inequality via vanishing accelera-tion approach[J]. SIAM J. Math. Anal.,2009,41:1415-1435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700