苯氨基甲酸甲酯洁净催化合成及与其缩合反应耦合过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二苯甲烷二异氰酸酯(MDI)是生产聚氨酯的重要原料。以苯胺和碳酸二甲酯为原料合成MDI属于非光气法工艺。它由苯氨基甲酸甲酯合成、缩合及裂解等三步反应构成。该工艺目前存在使用均相催化剂和多步反应等问题。为此,本文针对合成苯氨基甲酸甲酯用新型高效多相催化剂和苯氨基甲酸甲酯合成与其缩合反应耦合实现两步反应一步化过程进行了系统研究。
     采用气相色谱-质谱联用仪对苯胺与碳酸二甲酯合成苯氨基甲酸甲酯反应体系中的组分进行了定性分析,确定了两种未知副产物:N,N-二甲基苯胺和邻(或对)甲基苯氨基甲酸甲酯;建立了利用液相色谱对该反应体系组分的定量分析方法,实现了反应体系中主副产物的全分析。
     对苯胺和碳酸二甲酯反应体系进行了热力学分析,其中主反应以及合成N-甲基苯胺和N,N-二甲基苯胺的反应是放热反应,而合成二苯基脲的反应是吸热反应;合成N-甲基苯胺和N,N-二甲基苯胺的反应在热力学上是主反应的主要竞争反应。
     制备出了用于苯氨基甲酸甲酯合成反应的纳米氧化锆新型催化剂。研究了溶胶-凝胶法制备条件对ZrO_2粒径、晶相和比表面的影响规律,并对溶胶-凝胶时间、尿素/ZrOCl_2比值、ZrOCl_2浓度、醋酸浓度及焙烧温度等制备因素与ZrO_2粒径、四方晶相比例及比表面等催化剂性质进行了定量关联;考察了纳米ZrO_2粒径与其酸量的关系,发现酸量随粒径减小而单调上升,且在15nm左右呈突变趋势;将纳米ZrO_2用于催化合成苯氨基甲酸甲酯反应,对催化反应性能与ZrO_2粒径和四方晶相比例进行了定量关联,发现在小粒径、四方晶相比例高的ZrO_2上苯胺转化率和苯氨基甲酸甲酯选择性较高。
     开发出了用于苯氨基甲酸甲酯合成反应的新型高效多相催化剂ZrO_2/SiO_2。考察了ZrO_2负载量和焙烧温度对ZrO_2/SiO_2催化反应性能的影响,在ZrO_2负载量为1 wt%、573 K焙烧2 h时,ZrO_2/SiO_2催化剂具有较好的活性;采用XRD、XPS、NH3-TPD、吡啶吸附红外光谱等对催化剂进行了表征,ZrO_2与SiO_2载体间的相互作用形成了Si-O-Zr键;负载后的ZrO_2催化剂酸量和弱酸中心的比例显著提高,且以L酸中心为主;通过催化剂性质与其反应性能的关联,认为苯氨基甲酸甲酯合成反应在弱L酸中心上进行;在优化的反应条件下,苯胺转化率为98.6%,苯氨基甲酸甲酯收率为79.8%。
     提出了ZrO_2/SiO_2催化剂上苯氨基甲酸甲酯合成反应机理,建立了反应动力学方程。利用原位红外光谱方法研究了ZrO_2/SiO_2催化碳酸二甲酯与苯胺反应的机理。首先,碳酸二甲酯的羰基和催化剂表面的L酸中心相互作用形成化学吸附,然后亲核试剂苯胺进攻被活化的羰基上的C原子,发生双分子亲核取代反应(SN2)。基于该反应机理,利用在线红外分析系统React IR IC-10研究了ZrO_2/SiO_2催化剂上碳酸二甲酯和苯胺合成苯氨基甲酸甲酯反应的动力学,其中表面反应为反应速率的控制步骤,动力学方程为:
     设计并制备出了用于苯氨基甲酸甲酯合成反应的新型催化剂ZnO-TiO_2。n(Ti)/n(Zn)为2且673 K焙烧的ZnO-TiO_2对于苯氨基甲酸甲酯合成具有较好的催化活性。苯胺转化率和苯氨基甲酸甲酯收率最高分别为96.9%和66.7%;将催化剂表征结果和反应性能进行了关联,发现Zn_2TiO_4和ZnTiO3晶相的形成提供了苯氨基甲酸甲酯合成反应所需的L酸中心;ZnO-TiO_2催化剂具有较好的稳定性,失活催化剂通过简单焙烧即可再生。
     建立了由苯氨基甲酸甲酯合成反应及其缩合制二苯甲烷二氨基甲酸甲酯(MDC)反应构成的微观尺度集成系统,实现了由苯胺、碳酸二甲酯、甲醛为初始原料一步直接合成MDC。设计制备出双功能催化剂H_4SiW_(12)O_(40)- ZrO_2/SiO_2。在n(DMC) / n(苯胺) / n(甲醛)=20 / 1 / 0.05(摩尔比),H_4SiW_(12)O_(40)的负载量10 wt%,443 K下反应7 h后降温到373 K下继续反应4.5 h的条件下,MDC收率为24.9%。
Methylene diphenyl diisocyanate (MDI) is an important raw material for the production of polyurethane. The synthesis of MDI from aniline and dimethyl carbonate (DMC) belongs to the non-phosgene route, and is composed of synthesis of methyl N-phenyl carbamate (MPC), condensation of MPC with formaldehyde to methylene diphenyl carbamate (MDC) and decomposition of MDC to MDI. However, this method has some drawbacks that to be deal with, such as the usage of homogeneous catalyst and the multistep process to obtain MDI, etc. In this paper, the novel efficient heterogeneous catalyst for MPC synthesis and the coupling of MPC synthesis with its condensation, that is to say, the one-pot synthesis of MDC from aniline and DMC, were studied systematically.
     The qualitative analysis of the reaction system of aniline and DMC was carried out by a gas chromatography-mass spectrometry (GC-MS), and two unknown by-products were determined as N,N-dimethyl aniline (DMA) and methyl 2-methylphenylcarbamate (or methyl 4-methylphenylcarbamate). The quantitative analysis method for the reaction system was developed using a reversed-phase high performance liquid chromatography and all the components could be separated well.
     The thermodynamics analysis of the reaction system of DMC and aniline showed that the main reaction and two side reactions, the formation of N-methyl aniline (NMA) and DMA, were exothermal. While,the synthesis of diphenylurea was endothermic reaction. In addition, the synthesis of NMA and DMA were more competitive than the synthesis of MPC in thermodynamics.
     A novel nano-sized ZrO_2 catalyst for MPC synthesis was prepared through sol-gel process. The influence of preparation conditions on particle size, crystal phase and specific surface area was studied. The preparation conditions, such as sol-gel time, molar ratio of urea to ZrOCl_2, ZrOCl_2 concentration, acetic acid concentration and calcination temperature was correlated quantitatively with the nature of ZrO_2 catalyst, such as particle size, content of tetragonal ZrO_2 and the specific surface area. The influence of ZrO_2 particle size on its acidic nature was explored. It was found that the acid amounts decreased monotonously with the particle size increasing, and there was an instant change around 15 nm. The synthesis of MPC was evaluated over nano-sized ZrO_2 catalyst, and high aniline conversion and MPC selectivity were obtained over ZrO_2 with small size and high content of tetragonal phase.
     A novel supported ZrO_2/SiO_2 catalyst for MPC synthesis was developed based on the abovementioned study. When ZrO_2 loading was 1 wt% and the catalyst was calcined at 573 K for 2 h, it showed high activity. XRD, XPS, NH3-TPD and FT-IR of the catalyst adsorbed with pyridine were carried out to characterize the supported catalyst. From the results, it can be concluded that the formation of Si-O-Zr bonds was due to the interaction between ZrO_2 and SiO_2. The acid amounts and the content of weak acid sites on the surface of ZrO_2/SiO_2 increased obviously than that of ZrO_2, and Lewis acid sites were dominant. Aniline conversion is 98.6% and MPC yield is 79.8% under the optimized reaction conditions.
     The reaction scheme of DMC and aniline over ZrO_2/SiO_2 catalyst was proposed and studied by in-situ FT-IR. Firstly, DMC adsorbed on the surface of ZrO_2/SiO_2 catalyst, and C atom in carbonyl group became more electropositive. Then,aniline, the nucleophilic reagent, attacked the C atom and bimolecular nucleophilic substitution (SN2) took place. Based on the reaction scheme, kinetics of MPC synthesis over ZrO_2/SiO_2 catalyst was studied by Reactor IR IC-10. The surface reaction was the control step of reaction rate, and the kinetic equation was as follows.
     A novel heterogeneous catalyst, ZnO-TiO_2 was designed and prepared for MPC synthesis. ZnO-TiO_2 catalyst, calcined at 673 K, with n(Ti)/n(Zn) equaling to 2 exhibited a better activity. Aniline conversion was 96.9% and MPC yield was 66.7%. The characterization results and catalytic activity was correlated. It was found that the formation of ZnTiO3 and Zn_2TiO_4 provided the Lewis acid sites for MPC synthesis. Furthermore, ZnO-TiO_2 showed better stability, and its catalytic activity could be reactivated almost completely just by calcination.
     The integrated reaction system of MPC synthesis with its condensation to MDC in microscale was set up. A bifunctional catalyst, H_4SiW_(12)O_(40)-ZrO_2/SiO_2, was designed and prepared for the one-pot synthesis of MDC using aniline, DMC and formaldehyde as raw material. The better reaction conditions were as follows: n(DMC)/n(aniline)/n(formaldehyde) = 20/1/0.1(molar ratio), H_4SiW_(12)O_(40) load was 10 wt% and the reaction temperature was designed by stages, namely, maintaining 443 K for 7 h and then cooling down to 373 K for 4.5 h. Under above conditions, the MDC yield was 24.9%.
引文
[1]韩秀山. MDI 国内外市场情况. 化学推进剂与高分子材料, 2001, 5:22
    [2]李明. 二苯甲烷二异氰酸酯的生产技术及市场分析. 精细化工原料及中间体,2006,9:22
    [3]陈冠荣, 时钧. 化工百科全书.北京:化学工业出版社, 1998. 209
    [4]Chiyouno M, Fukuoka S. Preparation of polyisocyanates [P]. JP 59172451. 1984
    [5]Apler H, Hartstock F W. An exceptionally mild, catalytic homogeneous method for the conversion of amines into carbamate esters. J Chem Soc Chem Commun, 1985:1141
    [6]许翩翩, 张藩贤, 王文峰, 等. Pd/C 催化剂用于苯胺氧化羰基化. 应用化学, 1997, 14: 41
    [7]Venkatesh Prasad K, Chaudhari R V. Activity and selectivity of supported Rh catalysts for oxidative carbonylation of aniline. Journal of Catalysis, 1994,145:204
    [8]Shi F, Deng Y. Polymer-Immobilized Gold Catalysts for the Efficient and Clean Syntheses of Carbamates and Symmetric Ureas by Oxidative Carbonylation of Aniline and Its Derivatives. Journal of Catalysis, 2002, 211:548
    [9]石峰, 邓友全, 司马天龙等. 有机金催化胺氧化羰化制氨基甲酸酯. 高等学校化学学报, 2001, 22(4): 645
    [10]Wan B, Liao S, Yu D. Polymer-supported palladium–manganese bimetallic catalyst for the oxidative carbonylation of amines to carbamate esters. Applied Catalysis A:General, 1999,183:81
    [11]Shi F, Deng Y, SiMa T, et al. A novel PdCl2/ZrO2–SO2?4 catalyst for synthesis of carbamates by oxidative carbonylation of amines. Journal of Catalysis, 2001, 203:525
    [12]Chen B, Chuang S S C. CuCl2 and PdCl2 catalysts for oxidative carbonylation of aniline with methanol. Journal of Molecular Catalysis A:Chemical, 2003,195:37
    [13]关士友, 黄美玉, 江英彦. CuCl2-CuI 体系对苯胺氧化乙氧羰基化生成苯基氨基甲酸乙酯反应的催化作用. 分子催化,1992, 6(3): 168
    [14]Hoon Sik Kim, Yong Jin Kim, Hyunjoo Lee, et al. Oxidative Carbonylation of Aromatic Amines by Selenium Compounds. Journal of Catalysis, 1999, 184:526
    [15]石峰, 马宇春, 周翰成, 等. 钯-离子液体/钛硅复合氧化物催化剂的合成及在胺羰化中的应用.高等学校化学学报, 2002, 23(9) : 1781
    [16]Alessio E,Mestroni G.. Catalytic reductive carbonylation of aromatic nitro compounds to urethanes promoted by supported palladium activated with 1,10-phenanthroline derivatives. Journal of Organometallic Chemistry, 1985,291:117
    [17]Wehman P, Borst L, Kamer P C J, et al. Influence of an aromatic carboxylic acid as cocatalyst in thepalladium-catalysed reductive carbonylation of aromatic nitro compounds. Journal of Molecular Catalysis A: Chemical, 1996, 112: 23
    [18]Santi R, Rnmano A M, Panella F, et al. Palladium and silver reductive catalyzed carbonylation of nitrobenzene to methyl N-phenylcarbamate. Journal of Molecular Catalysis A: Chemical, 1997, 127: 95
    [19]Mizuno T, Alper H. Reductive carbonylation of nitrobenzene catalyzed by a new binuclear rhodium complex. Journal of Molecular Catalysis A: Chemical, 1997, 121: 119
    [20]Ragaini F, Cenini S. Mechanistic study of the Ru3(CO)12/chloride catalyzed carbonylation reactions of nitroarenes to carbamates and ureas; the role of the alkylammonium cation. Journal of Molecular Catalysis A: Chemical, 2000, 161: 31
    [21]Islam S M, Mal D, Palit B K, et al. Reductive carbonylation of nitroaromatics using RhA(CO)2. Journal of Molecular Catalysis A: Chemical, 1999, 142: 169
    [22]杨瑛, 陆世维. 硒催化硝基苯的还原羰基化生成苯氨基甲酸酯. 催化学报, 1999, 20(3): 224
    [23]康武魁, 王公应, 胡常伟, 等. 异氰酸酯的清洁生产工艺进展. 天然气化工, 2003, 28: 36
    [24]Kye Duck Kim, Sang Moo Lee, et al. Palladium-catalyzed N, N'-diphenylurea synthesis from nitrobenzene, aniline, and carbonmonoxide. Part3 Evidence of carbamoyl intermediate. Journal of Molecular Catalysis A: Chemical, 1992, 75(1): 1
    [25]Jae Seung Oh, Sang Moo Lee, et al. Palladium-catalyzed synthesis of N,N'-diphenylurea from nitrobenzene, aniline, and carbon monoxide. Industry engineering chemical research, 1991, 30 (7): 1456.
    [26]Wang J, Li Q, Dong W, et al. A new non-phosgene route for synthesis of methyl N-phenyl carbamate from phenylurea and methanol. Applied Catalysis A: General, 2004, 261: 191
    [27]刘毅峰, 张娟. 氨基甲酸酯的制备方法[P]. CN1365969A, 2001
    [28]Peter H, Klaus K, Rudolf F, et al. Process for preparing N,O-disubstituted urethanes. DE 2943480, 1981
    [29]朱明乔, 谢方友, 吴廷华. 尿素法合成氨基甲酸甲酯及其应用进展. 浙江化工, 2003, 34(8): 10
    [30]Li Q, Wang J, Dong W, et al. A phosgene-free process for the synthesis of methyl N-phenyl carbamate by the reaction of aniline with methyl carbamate. Journal of Molecular Catalysis A: Chemical, 2004, 212: 99
    [31]周忠强, 李焰. Hofmann 重排法合成苯氨基甲酸酯. 湖北大学学报, 1998, 20(4): 345
    [32]王延吉,赵新强. 绿色催化过程与工艺. 北京: 化学工业出版社, 2002. 118
    [33]Gurgiolo Arthur E, Lake Jackson, Preparation of carbamates from aromatic amines and organic carbonates [P]. US4268683, 1981
    [34]Ggiolo Athur E. Preparation of carbamates from aromatic amines and organic carbonates [P]. 4268684, 1981
    [35]Baba T, Kobayashi A, Tanaka H, et al. Catalytiv methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catalysis Letter, 2002, 82(3-4): 193
    [36]李芳,丛津生,薛伟等.非光气合成 1,5-萘二氨基甲酸甲酯的研究. 石油学报(石油加工),2005,21(5):48
    [37]王延吉, 赵新强, 李芳等. 二苯甲烷二异氰酸酯清洁合成过程研究 Ⅰ .苯氨基甲酸甲酯催化合成及其缩合反应.石油学报(石油加工),1999,15(6):9
    [38]赵新强, 王延吉, 李芳等. 用碳酸二甲酯代替光气合成甲苯二异氰酸酯 Ⅰ .甲苯二氨基甲酸甲酯的催化.合成石油化工, 1999, 28(9): 611
    [39]薛伟, 丛津生, 李芳等. 绿色合成 TDI 前体——甲苯二氨基甲酸甲酯的制备.石油学报(石油加工), 2002, 18(6):50
    [40]Fu Z, Ono Y. Synthesis of methyl N-phenyl carbamate by methoxycarbonylation of aniline with dimethyl carbonate using Sn compounds as catalysts. Journal of Molecular Catalysis, 1994, 91:399
    [41]康武魁, 姚洁, 王公应等. 碳酸二甲酯胺解合成苯氨基甲酸甲酯催化研究. 分子催化, 2003, 17(2):136
    [42]康武魁,康涛,马飞等. 负载 PbO 催化剂对苯胺与碳酸二甲酯合成苯氨基甲酸甲酯的催化性能. 催化学报,2007,28(1):5
    [43]Baba T, Fujiwara M, Oosaku A, et al. Catalytic synthesis of N-alkyl carbamates by methoxycarbonylation of alkylamines with dimethyl carbonate using Pb(NO3)2. Applied Catalysis A:General, 2002, 227:1
    [44]Curini M, Epifano F, Maltese F, et al. Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis. Tetrahedron Letters, 2002, 43:4895
    [45]Katada N, Fujinaga H, Nakamura Y, et al. Catalytic activity of mesoporous silica for synthesis of methyl N-phenyl carbamate from dimethyl carbonate and aniline. Catalysis Letters, 2002,80(1-2): 47
    [46]李其峰,王军威,董文生等.苯胺与碳酸二甲酯反应合成苯氨基甲酸甲酯.催化学报,2003,24(8):639
    [47]Deleon R G, Kobayashi A, Yamauchi T, et al. Catalytic methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate to dimethylhexane-1,6-dicarbamate using Bi(NO3)3. Applied Catalysis A: Gernal, 2002,225:43
    [48]Distaso M, Quaranta E. Group 3 metal (Sc, La) triflates as catalysts for the carbomethoxylation of aliphatic amines with dimethylcarbonate under mild conditions. Tetrahedron, 2004,60:1531
    [49]Aresta M, Berioco C, Quaranta E. Biomimetic building-up of the carbamic moiety: the intermediacy of carboxyphosphate analogues in the synthesis of N-aryl carbamate esters from arylamines and organic carbonates promoted by phosphorus acids. Tetrahedron, 1995, 51(29): 8073
    [50]Romano U, Fornasari G, Gioacchino S D. Preparing aromatic urethanes[P]. US4395565, 1983
    [51]丛津生, 王胜平, 赵新强等. 甲酸甲酯促进甲醇钠催化DMC和2,4-二氨基甲苯合成2,4-甲苯二氨基甲酸甲酯反应的研究. 河北工业大学学报, 2000, 29(1): 62
    [52]Frulla F F, Stuber F A, Whitman P J. Preparation of carbamates [P]. US4550188, 1985.
    [53]Bosetti A, Cesti P, Cauchi E, et al. Process for the production of aromatic urethanes [P]. US5688988, 1997.
    [54]Bosetti A, Cesti P, Calderazzo F. Process for the production of aromatic carbamates [P]. US5698731, 1997.
    [55]Mason R W. Enzyme catalyzed synthesis of methyl urethanes [P]. US5002880, 1991.
    [56]王海鸥. 生物酶催化合成甲苯二氨基甲酸甲酯反应的研究:[硕士学位论文] .保存地点:河北工业大学,2005
    [57]Welton T. Room-temperature Ionic Liquids Solvents for Synthesis and Catalysis. Chem Rev. 1999, 99:2071
    [58]Olivier H. Recent developments in the use of non-aqueous ionic liquids for two-phase catalysis. Journal of Molecular Catalysis, A: Chemical, 1999, 146: 285
    [59]Sima T, Guo S, Shi F, et al. The syntheses of carbamates from reactions of primary and secondary aliphatic amines with dimethyl carbonate in ionic liquids. Tetrahedron Letters, 2002, 43:8145
    [60]Zhou H, Shi F, Tian X, et al. Synthesis of carbamates from aliphatic amines and dimethyl carbonatecatalyzed by acid functional ionic liquids. Journal of Molecular Catalysis A: Chemical, 2007, 271:89
    [61]Carmen L R, Edard T S. Selective process for the preparation of diphenylmethane diisocyanate precursors [P]. US5206412, 1993
    [62]Asahi K, Kogyo K.Condensing method of N-phenyl-carbamic ester [P]. JP58067660, 1983.
    [63]Merger F, Nestler G. Preparation of methylene-bis-phenylcarbamic acid esters and of polymethylene-polyphenylcarbamic acid esters [P]. US4282370, 1980.
    [64]Shinsuke F. Masazumi C. Introduction of methylene group to N-phenylcarbamic acid ester [P]. JP 57154159, 1982
    [65]Shinsuke F. Introduction of methylene into N-phenylcarbamic acid ester [P].JP5896054,1983.
    [66]Ikariya T, Itagaki M, Mizuguchi M, et al. Method of manufacturing diphenylmethane dicarbamic acid diesters [P]. US4699994, 1987
    [67]Shinsuke F. Method for manufacture of diphenylmethane diisocyanates [P]. US4547322, 1985
    [68]Fukuoka S, Watanabe T. Process for producing diphenylmethane dicarbamates [P]. US4552974, 1985
    [69]郭玉玺, 王富强, 陈彤等. 固体酸催化合成二苯甲烷二氨基甲酸酯. 天然气化工,2005,31(1):55
    [70]Merger F, Nestler G. Preparation of methylene-bis-phenylcarbamic acid esters and polymethylene-polyphenylcarbamic acid esters [P]. US4328354, 1982
    [71]Fujihisa M, Mitsuki Y.Method of condensing N-phenylcarbamates [P]. EP0410684A2, 1990
    [72]Mitsutatsu Y, Hiroshi F, Katsuo T. Production of diphenyl methane dicarbomates [P]. JP4112864, 1992
    [73]赵新强, 王延吉, 李芳等. 二苯甲烷二异氰酸酯清洁合成过程研究 Ⅱ .二苯甲烷二氨基甲酸甲酯催化合成及其分解. 石油学报(石油加工), 2001,17:54
    [74]Lee Jae S, Lee Chul W, Lee Sang M. Condensation of methyl N-phenylcarbamate with solid acidcatalysts. Stud Surf Sci Catal, 1991,59:495
    [75]Clerici G M. Process for the preparation of 4,4'-diaminodiphenyl-methane and its derivatives [P]. US5241119, 1993
    [76]王富强,陈彤,马飞等. 硅钨酸催化合成二苯甲烷二氨基甲酸甲酯. 石油化工, 2006, 35(3): 260
    [77]Fukuoka Shinsuke, Chiyouno Masazumi. Methylenating method of N-phenylcarbamic ester [P]. JP57149260. 1982
    [78]Hronec M, Cvengro?ová Z, ?ejka J. Synthesis of diphenylamine catalyzed by zeolites. Applied Catalysis A: Gernal, 2003, 255:197
    [79]Hou Z, Okuhara T. Condensation of benzene and aqueous formaldehyde to diphenylmethane in a biphasic system consisting of an aqueous phase of heteropolyacid. Journal of Molecular Catalysis A: Chemical, 2003, 206:121
    [80]赵新强, 王延吉. TDI 和 MDI 洁净合成方法的研究进展. 化学通报, 64(4):201
    [81]Rudolf S. Process for the preparation of polyisocyanates [P]. US4388246, 1983
    [82]Shinsuke F. Method for manufacture of diphenylmethane diisocyanates [P].US4547322, 1985
    [83]Henson R. Preparation of organic isocyanates [P]. US4294774, 1981
    [84]Alper H, Velaga V. Process for preparing isocyanates from urethanes by a novel technique [P]. US5457229, 1995
    [85]Valli V L K, Alper H. A simple, convenient and efficient method for the synthesis of isocyanates from urethanes. Journal of Organic Chemistry, 1995, 60(1): 257
    [86]Sundermann R, Konig K, Engbert T, et al. Process for the preparation of polyisocyanates [P]. US4388246, 1983
    [87]陈东, 刘良明, 王越等. 氧化锌催化二苯甲烷二氨基甲酸甲酯分解反应. 催化学报, 2005, 26(11): 987
    [88]Tanabe K, Yamaguchi T. Acid-base bifunctional catalysis by ZrO2 and its mixed oxides. Catalysis. Today 1994,20:185
    [89]方小龙,杨传芳,陈家镛. 用 CTAB/正己醇/水/盐反胶团体系制备纳米 ZrO2 超细粉. 化工冶金, 1997,18(1):67
    [90]曲敬信,汪泓宏. 表面工程手册. 北京:化学工业出版社,1998.748
    [91]王大志,罗毅,杨兰, 等. 非晶氧化锆水合物红外研究. 化学物理学报, 2000,13(4):481
    [92]Yamguchi T, Hightower J. Hydrogenation of 1,3-butandiene with 1,3-cyclohexadiene and D2 over ZrO2 catalysts. Journal of the American Chemical Society, 1977,99:4201
    [93]赵贵木. 氧化锆在催化剂中的应用. 化学工业与工程技术, 1996,17(1):23
    [94]Mercera P D L, van Ommen J G, Doesburg E B M, et al. Zirconia as a support for catalysts--Influence of additives on the thermal stability of the porous texture of monoclinic zirconia. Applied Catalysis, 1991,71:363
    [95]Yamaguchi T. Application of ZrO2 as a catalyst and a catalyst support. Catalysis Today, 1994.20:199
    [96]Nawrocki J, Rigney M P, McCormick A, et al. Chemistry of zirconia and its use in chromatography. Journal of Chromatography, A, 1993,657:229
    [97]田部浩三,御園生誠,小野嘉夫等. 新固体酸和碱及其催化作用[M]. 北京:化学工业出版社,1992,79
    [98]徐柏庆, 山口力, 田部浩三, 等. ZrO2 酸碱性质的 TPD 表征 Ⅰ . 单组分吸附研究. 物理化学学报, 1994, 10(2): 107-113
    [99]Nakano Y, Iizuka T, Hattori H, et al. Surface properties of zirconium oxide and its catalytic activity for isomerization of 1-butene. Journal of Catalysis, 1979,57:1-10
    [100]Matta J, Lamonier J-F, Abi-Aas E, et al. Transformation of tetragonal zirconia to monoclinic phase in the presence of Fe(3+) ions as probes: an EPR study. Phys. Chem. Chem. Phys. 1999, 1(21):4975
    [101]Li W, Yin Y, Feng L. EPR study on zirconia. Chinese Chemical Letter,1995,8:723
    [102]Nakano Y, Iizuka T, Hattori H, et al. Surface properties of zirconium oxide and its catalytic activity for isomerization of 1-butene. Journal of Catalysis, 1979,57:1
    [103]Yamaguchi T. Application of ZrO2 as a catalyst and a catalyst support. Catalysis Today, 1994, 20:199
    [104]Yadav G D, Nair J J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Mesoporous Material, 1999, 33: 1
    [105]赵玉宝. 纳米结构氧化锆的制备及其催化应用的研究:[博士学位论文] .保存地点:南开大学,2002
    [106]赵贵木. 氧化锆在催化剂中的应用. 化学工业与工程技术, 1996, 17(1): 23
    [107]Partt K C, Sanders J V, Christov V. Morphology and Activity of MoS2 on various Supports: Genesis of the Active Phase. Journal of Catalysis, 1990, 124: 416
    [108]Afanasiev P, Geantet C, Breysse M, et al. Molten salt preparation of mixed transition metals on zirconia---application to hydrotreating reactions. Prepr. Div. Petrol. Chem. ACS, 1994, 39: 598
    [109]Wei J M, Xu B Q, Li J L. Highly active and stable Ni/ZrO2 catalysts for syngas production by CO2 reforming of methane. Applied Catalysis A: General, 2000, 196: 167
    [110]尹邦跃, 王零森, 樊毅. 乙二醇在络合物溶胶-凝胶法中的作用. 中南工业大学学报, 1999, 30(2): 171
    [111]方小龙, 杨传芳, 陈家镛. 湿化学工艺条件对 ZrO2(Y2O3)超细颗粒团聚的影响. 硅酸盐学报, 1998, 26(6): 732
    [112]仇海波, 高濂, 冯楚德, 等. 纳米氧化锆的共沸蒸馏法制备及研究. 无机材料学报, 1994, 9(3): 365
    [113]梁丽萍, 高荫本, 陈诵英. 制备条件对 ZrO2 超细粒子尺寸及分布的影响. 材料科学与工程, 1997, 15(1): 33
    [114]赵玉宝. SO42-/ZrO2 超强酸催化剂制备化学、表面微结构及其催化性能的研究. 硕士学位论文, 南京化工大学. 江苏, 南京, 1999
    [115]Clearfield A. Crystalline hydrous zirconia. Inorganic. Chemistry, 1964, 3(1): 146
    [116]Duprez D. Sol-gel methods at the Sixth International Symposium of Louvain. Applied Catalysis A:Gernal, 1995, 129:N7
    [117]梁丽萍, 高荫本, 陈诵英. 制备条件对 ZrO2 超细粒子尺寸及分布的影响. 材料科学与工程, 1997, 15(1): 33
    [118]余忠民, 成晓玲, 周立清. 制备条件对纳米氧化锆粉体粒度影响的讨论. 硬质合金, 2002, (19)2: 74
    [119]余忠民, 邱建明. 溶胶凝胶法制备纳米级 ZrO2 粉体的团聚及其控制. 广州化工, 2000, 28(4): 159
    [120]赵青, 常爱民, 简家文. 改性溶胶-凝胶法制备 ZrO2 纳米晶粉及其团聚控制. 中国粉体技术, 2003.5: 14
    [121]王零森, 尹邦跃. 一种制备 ZrO2 纳米粉末的新方法. 中国有色金属学报, 1998, 8 (4): 617
    [122]谢玉群. 超细 ZrO2 粒子的制备. 材料研究学报, 2001,14: 45
    [123]Srinivasan R, Davis B H. Influence of zirconium salt precursors on the crystal structures of zironia. Catalysis Letter, 1992, 14: 165
    [124]韦薇, 段连运, 汪传宝, 等. ZrO2/γ-Al2O3复合载体的制备及 ZrO2在 γ-Al2O3表面的分散状态. 天然气化工, 1994,19(1):20
    [125]Dang Z, Anderson B G, Amenomiya Y, et al. Silica-supported zirconia.Ⅰ .Characterization by infrared spectroscopy, temperature-programmed desorption, and X-ray diffraction. Journal of Physical Chemistry, 1995,99,14437
    [126]Meijers A C Q M, de Jong A M, van Gruijthuijsen, et al. Preparation of irconium oxide on silica and characterization by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, temperature programmed oxidation an infra-red spectroscopy. Applied catalysis A:Gernal,1991,70:53
    [127]Yamaguchi T, Morita T, Salama T M, et al. Surface properties of ZrO2 dispersed on SiO2. Catalysis Letter,1990,4:1
    [128]Damyanova S, Grange P, Delmon B. Surface Characterization of Zirconia-Coated Alumina and Silica Carriers. Journal of Catalysis, 1997, 168: 421
    [129]Márquez-Alvarez C, Fierro J L G, Guerrero-Ruiz A,et al. Surface characterization of zirconia-coated alumina and silica carriers. Journal of Colloid and Interface Science, 1993,159:454
    [130]陈建刚,相宏伟,王秀芝,等.锆助剂含量对钴基费-托合成催化剂的影响.催化学报,2000,21(4):359
    [131]常杰,滕波涛,白亮,等. Co/ZrO2/SiO2 催化剂 F-T 合成反应研究. 天然气化工,2005,30:1
    [132]常杰,滕波涛,白亮,等. Co/ZrO2/SiO2 催化剂上费-托合成反应动力学研究. Ⅰ .反应途径分析. 催化学报, 2005, 26(7): 614
    [133]Chen Y, Liaw B, Lai W. ZrO2/SiO2- and La2O3/Al2O3-supported platinum catalysts for CH4/CO2 reforming. Applied Catalysis A: General 2002, 230:73
    [134]钟顺和, 黎汉生, 王建伟等. CO2 和 CH3OH 直接合成碳酸二甲酯用 Cu-Ni/ZrO2-SiO2 催化剂. 催化学报, 2000,21(2):117
    [135]Damyanova S, Petrov L, Centeno M A, et al. Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2-Al2O3 and ZrO2-SiO2 carriers. Applied Catalysis A: General, 2002, 224: 271
    [136]Zhuang Q, Miller J M. ZrO2/SiO2 mixed oxides as catalysts for alcohol dehydration. Applied Catalysis A: General, 2001, 209: L1
    [137]汪正范. 色谱的定性与定量[M]. 北京:化学工业出版社,2000. 169
    [138]Benson Sidney W. Thermochemical kinetics: method for the estimator of thermochemical data and rate parameters. 2nd Edition. New York: John Wiley & Sons, 1976.19-77,272-299
    [139]Reid Robert C, Prausnitz John M, Sherwood Thomas K. The properties of gases and liquids. 4th Edition. New York: McGraw-Hill, 1987.151-192
    [140]Dean J A. Lange's Handbook of Chemistry [M]. McGraw-Hill, Inc, 15th, 1998, 6.6
    [141]宋世谟,庄公惠,王正烈. 物理化学(上册)[M]. 北京:高等教育出版社,1993. 395
    [142]马沛生,许文,文贻胜,阮永嗣. 用官能团法估算沸点下的蒸发焓. 石油化工,1992,21(9):623
    [143]Majer V, Svoboda V. Enthalpies of vaporization of organic compounds: A critical review and data compilation [M]. Oxford: Blackwell Scientific Publications, 1985, 300.
    [144]马沛生. 石油化工基础数据手册(续编)[M]. 北京: 化学工业出版社, 1993
    [145]时钧,汪家鼎,余国综等. 化学工程手册(上册)[M]. 北京: 化学工业出版社, 1996
    [146]许文,张建候. 估算有机物基础物性的三基团参数关联式. 化工学报, 1992, 43(2): 222
    [147]卢焕章. 石油化工基础手册[M]. 北京: 化学工业出版社, 1996
    [148]周少红, 甘才, 陈博. 纳米材料的发展及其展望. 世界地质, 1999, 18(3): 100-104
    [149]代小燕, 王玲, 江丽群, 等. 我国纳米材料用于催化领域的研发概况. 天然气化工, 2001, 26(3): 47-52
    [150]Nawrocki J, Rigney M P, McCormick A, et al. Chemistry of zirconia and its use in chromatography. Journal of Chromatography A, 1993, 657: 229-282
    [151]Nakano Y, Iizuka T, Hattori H, et al. Surface properties of zirconium oxide and its catalytic activity for isomerization of 1-butene. Journal of Catalysis, 1979, 57:1-10
    [152]李文, 殷元骐, 高润雄, 等. 单斜及四方晶相 ZrO2 催化 CO 加氢反应性能的比较. 分子催化, 1999, 13(3): 1862
    [153]Stichert W, Schth F. Synthesis of catalytically active high surface area monoclinic sulfated zirconia. Journal of Catalysis, 1998, 174: 2422
    [154]赵玉宝, 李 伟, 张明慧, 等. ZrO2 晶相对 Mo 基纳米结构 ZrO2 加氢脱硫催化剂活性的影响. 石油学报(石油加工), 2002, 18(5): 21
    [155]黄惠忠. 纳米材料分析 [M]. 北京: 化学工业出版社, 2003, 244
    [156]Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic tetragonal ZrO2 system by X ray diffraction. Journal of the American Ceramic Society, 1984, 67(6): C 119
    [157]Srinivasan R, Davis B H. Crystallization and phase transformation process in zirconia: An in situ high-temperature X-ray diffraction study. Journal of the American Ceramic Society, 1992, 75(5): 1217
    [158]汪国军, 苏桂琴, 殷元骐. pH值对ZrO2晶型的影响. 第九届全国催化学术会议论文集. 北京 1998, 693-694
    [159]Su C, He D, Li J, et al. Influences of preparation parameters on the structural and catalytic performance of zirconia in isosynthesis. Journal of Molecular Catalysis A: Chemical, 2000, 153: 139
    [160]Clearfield A, Serrette G P D, Khazi-Syed A H. Nature of hydrous zirconia and sulfated hydrous zirconia. Catalysis Today, 1994, 20: 295.
    [161]Chuah G K, Jaenicke S, Pong, B K. The Preparation of high-surface-area zirconia: II. influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia. Journal of Catalysis, 1998, 175: 80.
    [162]Clearfield A, Serrette G P D, Khazi-Syed A H. Nature of hydrous zirconia and sulfated hydrous zirconia. Catalysis Today, 1994, 20: 295
    [163]尹双凤, 徐柏庆. 碱液回流老化制备高表面积二氧化锆. 催化学报, 2002, 23(3): 214
    [164]Muha G M, Vaughhan P A. Structure of complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides. Journal of Physical Chemistry, 1960, 33(1): 194
    [165]李懋强. 一种从无机盐水溶胶制备球形氧化锆颗粒的方法及其原理. 中国粉体技术, 2000, 6(5): 13
    [166]廖帜, 张邦维, 刘新海等. 热处理对纳米粉末粒度和结构的影响. 稀有金属材料与工程, 1998.10 27(5): 309-312
    [167]Ward D A, Ko E I. Synthesis and structural transformation of zirconia aerogels. Chemistry of Materials, 1993, 5: 956.
    [168]Coma A, Fornes V, Uan-adel M I,et al. Influence of preparation conditions on the structure and catalytic properties of SO42?/ZrO2 superacid catalysts. Applied Catalysis A: General, 1994, 116: 151.
    [169]Inoue M, Koninami H, Inui T. Novel synthesis method for thermally stable monoclinic zirconia hydrolysis of zirconium alkoxides at high temperatures with a limited amount of water dissolved in inert organic solvent from the gas phase. Applied Catalysis A: General, 1995, 121: 11.
    [170]Collins D E, Bowman K J, Influence of atmosphere on crystallization of zirconia from a zirconium alkoxide. Journal of Materials Research, 1998, 13: 1230.
    [171]Zhan Z, Zeng H C. Metastability of tetragonal ZrO2 derived from Zr-n-propoxide- acetylacetone-water-isopropy alcohol. Journal of Materials Research, 1998, 13: 2174.
    [172]Stichert W, Schuth F. Influence of crystallite size on the properties of zirconia. Chemistry of Materials, 1998,10:2020.
    [173]Chuah G K. An investigation into the preparation of high surface area zirconia. Catalysis Today, 1999, 49: 131.
    [174]Garvie R C. Stabilization of tetragonal structure in zirconia microcrystals. Journal of Physical Chemistry, 1978, 82(2): 218-224
    [175]Garvie R C, Goss M F. Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals. Journal of Materials Science, 1986, 21: 1253
    [176]曾燮榕, 杨 峥, 康沫狂. 粒径对氧化锆纳米粒子结构的影响. 西北工业大学学报, 1998, 16(2): 178-181
    [177]Chraska T, King A H, Berndt C C. On the size-dependent phase transformation in nanoparticutate zirconia. Materials Science and Engineering A , 2000, 286: 169-178
    [178]Djurado E, Bouvier P, Lucazeau G. Crystallite size effect on the tetragonal-monoclinic transition of undoped nanocrystalline zirconia studied by XRD and Raman spectrometry. Journal of Solid State Chemistry, 2000, 149: 399-497
    [179]Benedetti A, Fagherazzi J, Pinna F. Preparation and Structural Characterization of Ultrafine Zirconia Powders. Journal of the American Ceramic Society, 1989, 72: 467
    [180]刘希尧. 工业催化剂分析测试表征. 北京: 烃加工出版社, 1990, 354
    [181]吉定豪, 王振旅, 朱万春, 等. 碱金属掺杂对 Cu/SiO2 催化剂环己醇脱氢的影响. 吉林大学学报(理学版), 2007,45(2):293
    [182]Koretsky C M, Sverjensky D A, Salisbury J W, et al. Detection of surface hydroxyl species on quartz, y-alumina, and feldspars using diffuse reflectance infrared spectroscopy. Geoc4himica et Cosmochimica Acta, 1997, 61(11): 2193
    [183]Meijers A L Q M, A M de Jong, L M P van Grijthuijsen, et al. Preparation of zirconium oxide on silica and characterization by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, temperature programmed oxidation and infrared spectroscopy. Applied Catalysis A: General, 1991,70: 53.
    [184]Shane M, Mecartney L. Sol-Gel synthesis of zirconia barrier coatings. Journal of Materials Science, 1990, 25: 1537.
    [185]Debsikdar J C. Transparent zirconia gel-monolith from zirconium alkoxide. Journal of Non-Crystalline Solids, 1986,86:231.
    [186]Peri J B, Hannan R B. Surface hydroxyl groups on alumina. Journal of Physical Chemistry, 1969,64:1526.
    [187]Kerkhof F P J M, Moulijn J A. Quantitative analysis of XPS intensities for supported catalysts, Journal of Physical Chemistry, 1979, 83:1612
    [188]Anderson J A, Fergusson C, Rodríguez-Ramos. I Influence of Si/Zr ratio on the formation of surface acidity in silica-zirconia aerogels. Journa of Catalysis, 2000,192:344
    [190]Kyeong T J, Alexis T B. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia. Journal of Molecular Catalysis A: Chemical, 2000,163:27
    [191]李玉敏. 工业催化原理. 天津:天津大学出版社,1996,9
    [192]徐寿昌. 有机化学. 北京:高等教育出版社,1993,374
    [193]马新宾,李振花,王保伟,许根慧. 甲醇氧化羰基合成碳酸二甲酯原位红外研究. 天津大学学报,2002,35(4):459
    [194]谢晶曦, 常使标, 王绪明. 红外光谱在有机化学和药物化学中的应用. 北京: 科学出版社,2001.173.
    [195]谢晶曦, 常使标, 王绪明. 红外光谱在有机化学和药物化学中的应用. 北京: 科学出版社,2001.276
    [196]翁诗甫. 傅立叶变换红外光谱仪, 北京: 化学工业出版社, 2005. 226.
    [197]清山哲郎. 金属氧化物及其催化作用[M].合肥: 中国科学技术大学出版社, 1991, 37
    [198]徐甲强, 刘艳丽, 牛新书. ZnSnO3 纳米粉体的合成及其气敏特性研究. 硅酸盐学报, 2002, 30(3): 321
    [199]Baba T, Kobayashi A, Tanaka H, et al. Catalytiv methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catalysis Letter, 2002, 82(3-4): 193
    [200]Miller J B, Rankin S E, Ko E I. Strategies in controlling the homogeneity of zirconia-silica aerogels: effect of preparation on textural and catalytic properties. Journal of Catalysis, 1994, 148(2): 673
    [201]田部浩三,御園生誠,小野嘉夫等. 新固体酸和碱及其催化作用[M]. 北京: 化学工业出版社, 1992, 79
    [202]焦正, 刘金淮, 边历峰. ZnGa2O4 纳米晶的制备和结构表征. 功能材料, 2002, 33(6): 671
    [203]靳建华, 白涛, 常新红等. 酒石酸溶胶-凝胶法制备 ZnFe2O4 纳米材料. 化学研究与应用, 2001, 13(6): 667
    [204]蒋正静, 唐果东, 戴洁. 纳米级钛酸锌粉的制备及其光催化染料降解的应用. 光谱实验室, 2002, 19(5): 593
    [205]黄彦, 王果甲, 于剑峰等. 异丁烷在钼酸锌上的催化氧化脱氢. 高等学校化学学报, 1998, 19(1): 116
    [206]Yu Jiaguo, Zhou Minghua, Cheng Bei, Yu Huogen, Zhao Xiujian. Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity. Journal of Molecular Catalysis, A: Chemical, 2005, 227: 75
    [207]王延吉,胡洁,薛伟,赵新强. 催化反应过程绿色集成系统. 化工学报,2007 ,58 (11):2689
    [208]高滋,陈建民,唐颐. SO42-/ZrO2 超强酸体系红外光谱研究. 高等学校化学学报,1993,5:658
    [209]赵博. 1,5-萘二异氰酸酯合成新工艺及相关研究 [硕士学位论文] .保存地点:河北工业大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700