硅基材料的非线性和微纳光子学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体电子器件集成程度逼近量子隧穿的尺寸极限,维持摩尔定律已面临严重挑战。硅基光子学器件由于其更快速,更稳定,更低能耗等优点而得到了广泛的关注。由于体硅材料本身间接带隙的限制,如何设计硅或与硅基集成的其他材料的微纳结构,甚至直接利用硅材料的非线性光学性质进行应用是研究的主要关注点。
     本论文主要集中在: (1).用开孔Z扫描(OA Z-scan)方法探测了氢化纳米硅(nc-Si:H)薄膜的非线性吸收(nonlinear absorption, NLA)性质; (2).研究了nc-Si:H薄膜微米尺度飞秒激光晶化效应及其引起的新型光学吸收机制;(3)通过实验和理论计算研究了硅基上生长的氧化锌(Zinc Oxide, ZnO)微米塔中回音廊效应(whispering gallery mode, WGM)和准回音廊效应(quasi-WGM)引起的固定模式的光发射。
     nc-Si:H的硅纳米晶(Si-nc)镶嵌于无序的氢化非晶硅网络中(a-Si:H)。由于可用化学气象沉积(plasma-enhanced chemical vapor deposition, PECVD)的方法生长,nc-Si:H可以被集成到多数的硅基光电子器件中。以前对nc-Si:H的研究多侧重于线性光学和电学性能,本论文对nc-Si:H的非线性光学性质进行了详细研究。我们观察到,如果飞秒激光入射光子能量略低于能带时,nc-Si:H会呈现出从饱和吸收(saturable absorption, SA)到反饱和吸收(reverse saturable absorption, RSA)的转变。我们认为这种NLA的机制与nc-Si:H的带尾态密切相关。这种SA到RSA转变非常灵敏并且具有很强的可调控性,可通过调节入射光波长,光强与nc-Si:H的能带来实现,将有希望用于高灵敏的非线性光学器件中。
     同时在Z-scan实验过程中,我们发现当入射激光光强超过一定阈值时,样品将会发生突变,但突变点具有非常好的RSA信号,且此信号与入射光的波长和光强都无关。我们在极小入射光强下测得了非常强的Z-Scan RSA信号。我们提出了微米尺度的激光晶化模型,并依此建立了空间非均匀线性吸收(linear absorption, LA)理论来成功解释了观察的实验现象。据我们目前所知,这是一种全新的解释Z-scan结果的理论。此模型已被显微拉曼面扫描(micro-Raman mapping)实验进一步地证实。此项工作的实验与理论部分都将对设计新型的弱光非线性光学器件有所裨益。
     最后,本文还研究了用化学气相沉积(chemical vapor deposition, CVD)方法在硅基上生长的ZnO微米塔的激光模式。在355nm纳秒激光激发下,我们在ZnO微米塔阵列的光致发光(photoluminescence, PL)谱中观察到了两个固定模式的发射。通过全反射理论计算,我们认为光应该出射于微米塔中部平台,两个模式分别为WGM的横磁波TM8和quasi-WGM的横磁波QTM8模式。阴极发光(Cathodoluminescence, CL)实验很好地证实了理论计算。我们正在建立模型用FDTD法进行进一步的仿真模拟。
     以上研究得到了科技部重大研究计划课题(2010CB933702)和国家自然科学基金重点项目(10734020)和(11074169)的资助。特此感谢!
Maintaining the development of Moore’s Law has been a great challenge since the integration scale of electronic devices is approaching its limit of quantum tunneling. Silicon based photonic devices has been widely attracted attention because of the merits faster operation speed, more stable properties, lower energy consumption. However, bulk silicon is limited in photonic application because of the indirect band gap. How to design micro- and nanostructures of silicon or other materials that can be integrated in with silicon, or to utilize the nonlinear optical properties of silicon for application is the main focus in research.
     This thesis is focused on three main topics: (1). studied the nonlinear absorption (NLA) properties of hydrogenated nanocrystalline silicon (nc-SI:H) with open aperture (OA) Z-Scan technique; (2). investigated the micrometer-scale femtoscond laser crystallization of nc-Si:H and the new absorption mechanism induced by the crystallization; (3). experimentally and theoretically studied fixed mode light emission in ZnO microtower from whispering gallery mode (WGM) and quasi-WGM enhancement.
     The silicon nanocrystals (Si-ncs) of nc-SI:H is embedded a disordered amorphous Si:H matrix. Since it can be grown by plasma-enhanced chemical vapor deposition (PECVD), nc-Si:H is readily able to be integrated with most Si-based devices. Previous research on nc-Si:H laid emphasis on its linear optical and electronic properties, in this thesis, the main focus is to study the nonlinear optical properties. It is observed that, III if the photon energy of the femtosecond laser lies slightly below the band gap, nc-Si:H will show a switch from saturable absorption (SA) to reverse saturable absorption (RSA). The mechanism of this NLA behavior is tightly related to the band tail states of nc-Si:H. And the switch from SA to RSA is high sensitive and tunable. It can be easily tuned by incident wavelength, intensity and the band gap of nc-Si:H. Judging from this excellent property, nc-Si:H is a potential material for high sensitive nonlinear photonic devices.
     During the Z-scan experiment, it is also observed that once the power of the incident laser exceeds a threshold, the samples will suffer an mutation. However, mutated spot owns excellent RSA property, and the RSA signal from Z-scan is independent of both optical power and wavelength of the incident light. We gained extremely strong RSA Z-scan signal in a really small power. We proposed a micrometer-scale laser crystallization model and, based on this model, we successfully explained the experimental phenomenon by a linear absorption (LA) theory—spatially non-uniform LA theory. To the best of our knowledge, this is a totally new theory to explain Z-scan results. The model is further confirmed by micro-Raman mapping experiment. Both the experimental and theoretical part of this work will be instrumental in designing new type low-intensity nonlinear optical devices.
     At last, in this thesis, we studied the light emission properties of ZnO microtower that were prepared by chemical vapor deposition (CVD) in a silicon substrate. Pumped by a 355nm nanosecond laser, we observed two fixed modes in the photoluminescence (PL) spectrum of ZnO microtowe array. Calculation results of total internal reflection showed that the observed two modes came from the contribution of whispering gallery mode (WGM) and quasi-WGM resonance in the middle flat part of the microtower. One of them is TM8 mode and the other QTM8. Calthodoluminescence (CL) experiment further verified our theoretical calculation. We will set up a model to further simulate the optical properties of a single microtower by finite-difference time-domain (FDTD) method.
     This work is supported by the National Major Basic Research Project of 2010CB933702, and Natural Science Foundation of China under contracts 10734020 and 11074169.
引文
[1]张力德、牟季美, Ed.,纳米材料和纳米结构.科学出版社, 2001.
    [2]谢卫强. "硅纳米线的制备及其光学性质的研究."上海交通大学硕士学位论文. 2011.
    [3] LT Canham. "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers." Applied physics letters. 57(10): 1046-1048, 1990.
    [4] W.L. Barnes, A. Dereux, T.W. Ebbesen. "Surface plasmon subwavelength optics." Nature. 424(6950): 824-830, 2003.
    [1] L. Pavesi, D.J. Lockwood. Silicon photonics vol. 1: Springer Verlag. 2004.
    [2] B. Jalali, S. Fathpour. "Silicon photonics." Lightwave Technology, Journal of. 24(12): 4600-4615, 2006.
    [3] R. Soref. "The past, present, and future of silicon photonics." Selected Topics in Quantum Electronics, IEEE Journal of. 12(6): 1678-1687, 2006.
    [4] D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch. "Breakdown of the k-conservation rule in Si nanocrystals." Physical Review Letters. 81(13): 2803-2806, 1998.
    [5] M. Sykora, L. Mangolini, R.D. Schaller, U. Kortshagen, D. Jurbergs, V.I. Klimov. "Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies." Physical Review Letters. 100(6): 67401, 2008.
    [6] XD Pi, RW Liptak, J. Deneen Nowak, NP Wells, CB Carter, SA Campbell, U. Kortshagen. "Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach." Nanotechnology. 19245603, 2008.
    [7] W. De Boer, D. Timmerman, K. Dohnalova, IN Yassievich, H. Zhang, WJ Buma, T. Gregorkiewicz. "Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals." Nature Nanotechnology. 5(12): 878-884, 2010.
    [8] P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic. "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum." Nano Letters. 9(7): 2532-2536, 2009.
    [9] Q. Sun, Y.A. Wang, L.S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li. "Bright, multicoloured light-emitting diodes based on quantum dots." Nature Photonics. 1(12): 717-722, 2007.
    [10] JM Caruge, JE Halpert, V.B. V Wood, MG Bawendi. "Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers." NaturePhotonics. 2(4): 247-250, 2008.
    [11] J. Heitmann, F. Müller, M. Zacharias, U. G?sele. "Silicon nanocrystals: size matters." Advanced Materials. 17(7): 795-803, 2005.
    [12] U. G?sele. "Nanocrystals: Shedding new light on silicon." Nature Nanotechnology. 3(3): 134-135, 2008.
    [13] S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, OI Lebedev, G. Van Tendeloo, V.V. Moshchalkov. "Classification and control of the origin of photoluminescence from Si nanocrystals." Nature Nanotechnology. 3(3): 174-178, 2008.
    [14] L. Pavesi, LD Negro, C. Mazzoleni, G. Franzo, F. Priolo. "Optical gain in silicon nanocrystals." Nature. 408(6811): 440-444, 2000.
    [15] K.Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes. "High-Efficiency Silicon Nanocrystal Light-Emitting Devices." Nano Letters.2011.
    [16] D.P. Puzzo, E.J. Henderson, M.G. Helander, Z.B. Wang, G.A. Ozin, Z. Lu. "Visible Colloidal Nanocrystal Silicon Light-Emitting Diode." Nano Letters.2011.
    [17] A.J. Nozik. "Multiple exciton generation in semiconductor quantum dots." Chemical Physics Letters. 457(1-3): 3-11, 2008.
    [18] M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik. "Multiple exciton generation in colloidal silicon nanocrystals." Nano Letters. 7(8): 2506-2512, 2007.
    [19] W.Z. Shen W.A. Su. "A statistical exploration of multiple exciton generation in silicon quantum dots and optoelectronic application." Appl. Phys. Lett. 100071111, 2012.
    [20] R.D. Schaller, M. Sykora, J.M. Pietryga, V.I. Klimov. "Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers." Nano Letters. 6(3): 424-429, 2006.
    [21] R.D. Schaller, V.I. Klimov. "High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion." Physical Review Letters. 92(18): 186601, 2004.
    [22] D. Timmerman, I. Izeddin, P. Stallinga, IN Yassievich, T. Gregorkiewicz. "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications." Nature Photonics. 2(2): 105-109, 2008.
    [23] M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, K. Yamamoto. "1.54μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+." Applied physics letters. 71(9): 1198-1200, 1997.
    [24] ALBERT POLMAN. "Photonic materials: Teaching silicon new tricks." Nature Materials. 110, 2002.
    [25] R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J.M. Fedeli, L. Pavesi. "Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm." Opt. Express. 17(5): 3941-3950, 2009.
    [26] G.V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, F. Priolo. "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition." Journal of Applied Physics. 914607, 2002.
    [27] R.D. Kekatpure, M.L. Brongersma. "Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity." Nano Letters. 8(11): 3787-3793, 2008.
    [28] K. Imakita, M. Ito, M. Fujii, S. Hayashi. "Nonlinear optical properties of Phosphorous-doped Si nanocrystals embedded in phosphosilicate glass thin films." Opt. Express. 177368, 2009.
    [29] M. Ito, K. Imakita, M. Fujii, S. Hayashi. "Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO films: Annealing temperature dependence." Journal of Applied Physics. 108063512, 2010.
    [30] I. PHOTONICS. "Introduction to Integrated Photonics." 2003.
    [31] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia. "An all-silicon Raman laser." Nature. 433(7023): 292-294, 2005.
    [32] H. Rong, S. Xu, Y.H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia."Low-threshold continuous-wave Raman silicon laser." Nature Photonics. 1(4): 232-237, 2007.
    [33] S.G. Cloutier, P.A. Kossyrev, J. Xu. "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nature Materials. 4(12): 887-891, 2005.
    [34] B. Corcoran, C. Monat, C. Grillet, DJ Moss, BJ Eggleton, TP White, L. O'faolain, TF Krauss. "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides." Nature Photonics. 3(4): 206-210, 2009.
    [35] D. Liang, J.E. Bowers. "Recent progress in lasers on silicon." Nature Photonics. 4(8): 511-517, 2010.
    [36] J. Leuthold, C. Koos, W. Freude. "Nonlinear silicon photonics." Nature Photonics. 4(8): 535-544, 2010.
    [37] R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou. "Strained silicon as a new electro-optic material." Nature. 441(7090): 199-202, 2006.
    [38] S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi. "Second-harmonic generation in silicon waveguides strained by silicon nitride." 2012.
    [39] V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson. "All-optical control of light on a silicon chip." Nature. 431(7012): 1081-1084, 2004.
    [40] J. Michel, J. Liu, L.C. Kimerling. "High-performance Ge-on-Si photodetectors." Nature Photonics. 4(8): 527-534, 2010.
    [1]徐亮. "光伏材料氢化纳米硅中成键氢对材料结构及缺陷的影响."上海交通大学硕士论文. 2012.
    [2]何伟强. "半导体碲化锌及氮化铟非线性光学特性研究",上海交通大学硕士论文. 2007.
    [3]张卓群. "半导体氮化铟薄膜非线性光学及发光特性研究",上海交通大学硕士学位论文. 2008.
    [4]刘锐. "碲化锌晶体中太赫兹辐射研究."上海交通大学硕士论文. 2004.
    [5] Y.R. Shen. "The principles of nonlinear optics." New York, Wiley-Interscience, 1984, 575 p. 11984.
    [6] M. Sheik-Bahae, M.P. Hasselbeck. "Third-order optical nonlinearities." OSA Handbook of Optics. 42000.
    [7] J. Leuthold, C. Koos, W. Freude. "Nonlinear silicon photonics." Nature Photonics. 4(8): 535-544, 2010.
    [8] M Sheik-Bahae, AA Said, EW Van Stryland. "High-sensitivity, single-beam n_2 measurements." Optics letters. 14(17): 955-957, 1989.
    [9] M Sheik-Bahae, AA Said, TH Wei, DJ Hagan, EW Van Stryland. "Sensitive measurement of optical nonlinearities using a single beam." IEEE Journal of Quantum Electronics. 26(4): 760-769, 1990.
    [1] S. Sriraman, S. Agarwal, E.S. Aydil, D. Maroudas. "Mechanism of hydrogen-induced crystallization of amorphous silicon." Nature. 418(6893): 62-65, 2002.
    [2] G. Conibeer, M. Green, R. Corkish, Y. Cho, E.C. Cho, C.W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer. "Silicon nanostructures for third generation photovoltaic solar cells." Thin Solid Films. 511654-662, 2006.
    [3] L. Bagolini, A. Mattoni, G. Fugallo, L. Colombo, E. Poliani, S. Sanguinetti, E. Grilli. "Quantum Confinement by an Order-Disorder Boundary in Nanocrystalline Silicon." Physical Review Letters. 104(17): -, Apr 30 2010.
    [4] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabb¨|, K. Chan. "A silicon nanocrystals based memory." Applied physics letters. 681377, 1996.
    [5] YT Tan, T. Kamiya, ZAK Durrani, H. Ahmed. "Room temperature nanocrystalline silicon single-electron transistors." Journal of Applied Physics. 94633, 2003.
    [6] B. Jalali, S. Fathpour. "Silicon photonics." Lightwave Technology, Journal of. 24(12): 4600-4615, 2006.
    [7] Q. Xu, M. Lipson. "All-optical logic based on silicon micro-ring resonators." Opt. Express. 15(3): 924¨C929, 2007.
    [8] A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Marti. "Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths (vol 10, pg 1506, 2010)." Nano Letters. 10(6): 2288-2288, Jun 2010.
    [9] K. Narayanan, S.F. Preble. "Optical nonlinearities in hydrogenated-amorphous silicon waveguides." Optics Express. 18(9): 8998-9005, 2010.
    [10] H. Chen, MH Gullanar, WZ Shen. "Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si: H thin films." Journal ofcrystal growth. 260(1-2): 91-101, 2004.
    [11] XY Chen, WZ Shen, H. Chen, R. Zhang, YL He. "High electron mobility in well ordered and lattice-strained hydrogenated nanocrystalline silicon." Nanotechnology. 17595, 2006.
    [12]戴茂. "纳米硅二极管低频噪声特性研究."上海交通大学硕士学位论文. 2012.
    [13] F.Z. Henari, K. Morgenstern, W.J. Blau, V.A. Karavanskii, V.S. Dneprovskii. "Third order optical nonlinearity and all optical switching in porous silicon." Applied physics letters. 67323, 1995.
    [14] Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, Y. Song. "Saturable absorption and reverse saturable absorption in platinum nanoparticles." Optics communications. 251(4-6): 429-433, 2005.
    [15] J. Wang, B. Gu, H.T. Wang, X.W. Ni. "Z-scan analytical theory for material with saturable absorption and two-photon absorption." Optics communications. 283(18): 3525-3528, 2010.
    [16] KH Li, WZ Shen. "Uniformity and bandgap engineering in hydrogenated nanocrystalline silicon thin films by phosphorus doping for solar cell application." Journal of Applied Physics. 106(6): 063505-063505-5, 2009.
    [17] R. Rangel-Rojo, S. Yamada, H. Matsuda, D. Yankelevich. "Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film." Applied physics letters. 721021, 1998.
    [18] KP Unnikrishnan, J. Thomas, VPN Nampoori, CPG Vallabhan. "Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique." Applied Physics B: Lasers and Optics. 75(8): 871-874, 2002.
    [19] Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, S. P. DenBaars. "Femtosecond Z-scan measurement of GaN." Applied physics letters. 75(22): 3524-3526, Nov 29 1999.
    [20] SB Korovin, AN Orlov, AM Prokhorov, VI Pustovoi, M. Konstantaki, S. Couris, E. Koudoumas. "Nonlinear absorption in silicon nanocrystals." Quantum Electronics. 31817, 2001.
    [21] K. Wang, H. Long, M. Fu, G. Yang, P. Lu. "Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array." Optics letters. 35(10): 1560-1562, 2010.
    [22] L. Chen, J. Tauc, Z. Vardeny. "Transient photomodulation spectroscopy of nanocrystalline hydrogenated silicon." Physical Review B. 39(8): 5121, 1989.
    [23] A.F. Halverson, J.J. Gutierrez, J.D. Cohen, B. Yan, J. Yang, S. Guha. "Electronic characterization and effects of light-induced degradation on hydrogenated nanocrystalline silicon." Applied physics letters. 88071920, 2006.
    [24] N. Kamaraju, S. Kumar, AK Sood, S. Guha, S. Krishnamurthy, CNR Rao. "Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements." Applied physics letters. 91(25): 251103-251103-3, 2007.
    [25]段雨. "氢化纳米硅薄膜的拉曼光谱研究:量子限制与激光加热效应."上海交通大学硕士学位论文. 2012.
    [26]陈红. "氢化纳米硅薄膜的光学常数和室温可见发光研究."上海交通大学博士学位论文. 2007.
    [1] SJ Pearton, DP Norton, K. Ip, YW Heo, T. Steiner. "Recent progress in processing and properties of ZnO." Progress in Materials Science. 50(3): 293-340, 2005.
    [2]ü. ?zgür, Y.I. Alivov, C. Liu, A. Teke, MA Reshchikov, S. Do?an, V. Avrutin, S.J. Cho, H. Morkoc. "A comprehensive review of ZnO materials and devices." Journal of Applied Physics. 98041301, 2005.
    [3] CH Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma. "Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells." Applied physics letters. 82(12): 1848-1850, 2003.
    [4] F. Robert. "Will UV lasers beat the blues?" Science. 276(5314): 895-896, 1997.
    [5] C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, M. Grundmann. "Whispering gallery mode lasing in zinc oxide microwires." Applied physics letters. 92241102, 2008.
    [6] J. Liu, Q.M. Ngo, K.H. Park, S. Kim, Y.H. Ahn, J.Y. Park, K.H. Koh, S. Lee. "Optical waveguide and cavity effects on whispering-gallery mode resonances in a ZnO nanonail." Applied physics letters. 95221105, 2009.
    [7] D. Wang, HW Seo, C.C. Tin, MJ Bozack, JR Williams, M. Park, Y. Tzeng. "Lasing in whispering gallery mode in ZnO nanonails." Journal of Applied Physics. 99093112, 2006.
    [8] T. Nobis, E.M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann. "Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section." Physical Review Letters. 93(10): 103903, 2004.
    [9] T. Nobis, M. Grundmann. "Low-order optical whispering-gallery modes in hexagonal nanocavities." Physical Review A. 72(6): 063806, 2005.
    [10] C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zú?iga‐Pérez, C. Sturm, R. Schmidt‐Grund, M. Lorenz, M. Grundmann. "Whispering gallery modes in zinc oxide micro‐and nanowires." physica status solidi (b). 247(6): 1282-1293, 2010.
    [11] R. Chen, B. Ling, X.W. Sun, H.D. Sun. "Room Temperature Excitonic Whispering Gallery Mode Lasing from High‐ Quality Hexagonal ZnO Microdisks." Advanced Materials.2011.
    [12] YH Yang, Y. Zhang, NW Wang, CX Wang, BJ Li, GW Yang. "ZnO nanocone: Application in fabrication of the smallest whispering gallery optical resonator." Nanoscale.2010.
    [13] J. Dai, CX Xu, XW Sun. "Single-photon and three-photon absorption induced whispering-gallery mode lasing in ZnO micronails." Optics communications.2011.
    [14] D.J. Gargas, M.C. Moore, A. Ni, S.W. Chang, Z. Zhang, S.L. Chuang, P. Yang. "Whispering gallery mode lasing from zinc oxide hexagonal nanodisks." ACS nano. 4(6): 3270-3276, 2010.
    [15] L. Sun, H. Dong, W. Xie, Z. An, X. Shen, Z. Chen. "Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod." Optics Express. 18(15): 15371-15376, 2010.
    [16] Wolf Born, Ed.,光学原理上册(第七版).电子工业出版社, 2007.
    [17] YS Park, JR Schneider. "Index of refraction of ZnO." Journal of Applied Physics. 39(7): 3049-3052, 1968.
    [18] H. Cao. "Random Lasers: development, features and applications." Optics and photonics news. 16(1): 24-29, 2005.
    [19] H. Cao, YG Zhao, ST Ho, EW Seelig, QH Wang, RPH Chang. "Random laser action in semiconductor powder." Physical Review Letters. 82(11): 2278-2281, 1999.
    [20] D.S. Wiersma. "Laser physics: Random lasers explained?" Nature Photonics. 3(5): 246-248, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700