运用IBIS模型估测东北东部森林生态系统碳动态的模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成生物圈模型(Integrated Biosphere Simulator, IBIS)属于陆面生物圈-动态植被耦合模型。集成了大范围的生物物理、生理以及生态学过程,并且与大气环流模式(AGCMs)进行耦合,能够模拟变化复杂的、时间跨度从秒到数百年的生物圈过程,属于新一代全球生物圈模型DGVMs (Dynamic Global Vegetation Models),代表着全球碳循环模拟的研究方向。
     本文在IBIS原有模型的基础上,对帽儿山生态站不同植被类型净第一性生产力(NPP)、土壤呼吸(Rs)和气象条件(温度temperature和降水precipitation),进行IBIS的初步运行和调试,应用生态站多年的研究成果为模型提供参数,进行修改和验证。继而从点到面,针对东北东部地区研究现状,利用修正后的IBIS模型对当地气候条件和碳动态进行模拟,分析该研究地区森林生态系统碳动态的时间和空间规律。并根据政府间气候变化专门委员会(IPCC)第3次评估报告的权威预测,确定本研究未来气候情景,分析碳通量对气候变化和植被参数(LAI)的敏感性。通过研究,所得主要结论如下:
     1.模型修正方面:结合我国东北地区情况,保留了原模型中12种植物功能型其中的8种,15种植物群落类型其中的7种。不考虑土壤加速程序,凋落物碳库直接赋值,使模型得以简化,并更加符合土壤达到平衡状态时的实际情况。
     2.模型验证方面:IBIS模型能够较好的模拟生长季温度和降水,但对非生长季尤其是初春和冬季温度和降雨(雪)模拟不足。对不同植被类型年均NPP、GPP和土壤呼吸季节动态变化的模拟误差均小于众文献。因此,IBIS模型的模拟结果总体上反映了东北东部森林生态系统的NPP、GPP和土壤呼吸的实际情况,表明了该模型在本区域内的适用性。
     3.Rs模拟方面:受大气温度和降水的共同影响,土壤呼吸表现出比较明显的季节变化特征。夏季是土壤呼吸最为强烈的时期也是全年土壤呼吸变异率最大的季节,平均占全年Rs52-57%,是冬季土壤呼吸值的十几倍-几十倍。随着季节的变化,根系呼吸贡献率也呈现出季节动态,变化曲线趋向于复合函数,最小值出现在4月和5月间,最大值出现在10月份。本研究的根系自养呼吸贡献率高于Raich分析假定的30%贡献率。根系自养呼吸是土壤呼吸的主要部分,高于异养呼吸。自养呼吸模拟值均处于大部分温带森林研究结果0.122-0.663kg Cm-2a-1之内,异养呼吸的模拟值低于大部分温带森林Rh研究结果0.31-0.692kg Cm-2a-1,这可能是造成土壤呼吸低估的主要原因。不同植被类型2年间的土壤呼吸平均取值及变化范围存在较大差异,除常绿针叶林2005年土壤呼吸低于2004年3.1%外,其余土壤呼吸值均高于前一年。不同生态系统之间的Rs存在显著性差异,针阔叶混交林土壤呼吸是所有植被类型中呼吸值最高的,约为最低值兴安落叶松林的2倍多。土壤Rs空间分布随降水量与温度分布呈现区域异质性。降雨量低于465mm或年平均气温低于-3℃成为生态系统呼吸的限制性因子。
     4.NPP模拟方面:在本研究中,运用IBIS模拟了2004和2005年2年间的NPP变化情况,结果表明NPP具有比较明显的季节变化特征。夏季NPP是全年最高的季节,平均占全年NPP的53%-70%,最低值出现在冬季,春季NPP变化最剧烈。2005年NPP较2004年有不同程度的升高,变化幅度因植被类型而有所差异,2年间NPP的平均水平来看,以针阔叶混交林NPP最高,达0.89kg Cm-2a-1,杂木林最低,为0.68kg C m-2a-1。2年间针叶林NPP与GPP比值介于0.36-0.56,阔叶林0.25-0.56,介于Waring et al.1998数据之内。NPP空间分布随降水量与温度分布呈现区域异质性。总体上研究区域中部植被NPP较高,南北差异较大。年均温度低于-3℃或降水量低于465mm成为该地区植被生长的限制性因子。不同森林植被由于NPP以及异养呼吸差异,NEP也存在很大变化,以针阔叶混交林为之最,NEP平均值介于0.72-0.74kg Cm-2a-1,硬阔叶林最小,平均值为0.47-0.53kg Cm-2a-1。
     5.敏感性研究方面:1)LAI。不同植被类型,不论LAI如何增减变化,NPP均降低,Rs及其分量Ra、Rh反之。所有植被类型NPP、Rs、Ra和Rh对LAI变化5%最敏感,敏感性指数均高于0.2;2)温度。升温促进NPP增长,但不是无限制的增长,存在升温阈值,本研究的阈值温度为3℃,NPP对温度升高并不敏感,敏感性指数低于0.1,土壤呼吸和根系呼吸对温度变化中度敏感,敏感性指数介于0.1-0.2,并随温度升高幅度加大,敏感性增强,对升温3℃最为敏感。异养呼吸对温度变化很敏感,敏感性指数先降低,后升高,介于2.07-2.61。3)降水量。与NPP成正相关,对比降水量增加和降低的不同情况,NPP对降水量降低更为敏感(常绿针叶林和落叶松林除外),敏感性指数大多在0.2以上。不同植被类型土壤呼吸都对降雨增加10%和降低5%反应更为敏感,其中针叶林对降雨量变化敏感性高于阔叶混交林。自养呼吸对降水变化的敏感指数不如异养呼吸高,但也大多超过0.1,甚至在0.2以上达到中度敏感或极敏感程度,自养呼吸与异养呼吸随降雨量的不同变化,说明两种呼吸方式对水分要求的差异,这也为土壤呼吸大区域范围内的估算提出了难题。
     6.未来气候情景下森林碳通量的模拟研究:1)升温降水量减少。NPP值均降低。2)升温降水量增加,大部分绿色植被NPP升高(常绿针叶,针阔叶混交林和兴安落叶松林除外)。土壤呼吸在各个气候情境下均表现出升高的趋势,气候变化对土壤呼吸作用更明显,这与Griffis等研究结果相同。
Integrated Biosphere Simulator (IBIS) is designed to integrate a variety of terrestrial ecosystem phenomena within a single, physically consistent model that can be directly incorporated within AGCMs. It belongs to a new generation of dynamic global vegetation models (DGVMs), which can simulate complexity and long time biosphere processes. Also IBIS represents the future trends of carbon model development.
     Based on original IBIS framework, we simulated net primary production (NPP), soil respiration (Rs) and climate conditions (temperature and precipitation) in Maoer Mountain Natural Reservoir Station and compared these simulations with observed data set, thus parameters and biogeochemical processes in IBIS were modified. Scaling-up from point scale to regional scale, forest ecosystem carbon dynamics and climate conditions were simulated in Northeast China by the modified IBIS, also temporal and spatial distribution variations were evaluated. Under model sensitivity analysis, climate scenarios were set here to evaluate effect of climate change and vegetation cover (LAI) on carbon balance according to the third authority report of IPCC. Main results are listed as below:
     1. Model modification. Eight plant functional types were derived form the original twelve, as well as seven vegetation types from fifteen according to the vegetation characteristics of our study area. Soil spin-up procedure in belowground carbon&nitrogen cycling module is not considered in this modified IBIS. Litter carbon pools were evaluated directly to make a model simplification and totally accorded with the real conditions of soil balance.
     2. Model validation. IBIS simulated well with the precipitation and temperature in growing season, but little agreement with climate variety in late spring and winter. Modeled errors of NPP, GPP and soil respiration in seasonal dynamics were smaller than these reported literatures. Overall, modified IBIS can represent the real dynamics of NPP, GPP and soil respiration in Northeast China and applied carbon simulation in the study area.
     3. Rs. Two years of Rs variation in2004and2005were simulated, results showed that:Rs had a great seasonal pattern since the highest Rs in summer, persisting52-57%of the total yearly Rs value, the lowest in winter. Contribution ratio (RC) of autotrophic respiration (Ra) showed a clear seasonal patterns also, which can be expressed by a compound function. RCmin occured in April and May, while RCmax in October. RC was much higher than30%reported by Raich. Compared to heterotrophic respiration (Rh), Ra persisted a higher value. Simulated Ra falls in0.122-0.663kg Cm-2a-1conducted by a lot of temperate forests, Rh, was much lower compared to0.31-0.692kg Cm-2a-1, which maybe the reason for low soil respiration simulation. Rs in different ecosystems showed a great variation, broadleaf-conifer mixed forest persisted the highest value of Rs, while larch forest the lowest. Rs spatial pattern was dependent on the spatial variations in T and P. When P was less than465mm, and T was less than-3℃, ecosystem respiration was restricted.
     4.NPP. Two years of NPP variation in2004and2005were simulated, results showed that: NPP had a great seasonal pattern since the highest NPP in summer, persisting53-70%of the total yearly NPP, the lowest in winter and the most obvious change in spring. NPP values in2005were much higher than that in2004, with different changing expend in various vegetation types. Broadleaf-conifer mixed forest had the highest NPP,0.89kg C m-2a-1, mixed forest the lowest,0.68kg C m-a-1. NPP to GPP ratio for evergreen coniferous forest fell in0.36-0.56, broadleaf in0.25-0.56, which accorded well with Waring et al.1998. NPP spatial pattern was dependent on the spatial variations in T and P. When P was less than460mm, and T was less than-3℃, vegetation growth was restricted. Broadneadle leaf mixed forest maintained the biggest NEP, with the avegrage ranging from0.72to0.74kg C m-2a-1, while hardleaf forest the least, ranging from0.47-0.53kg C m-2a-1
     5. Sensitivity analysis.1) LAI. Responses of NPP, Rs, Ra, Rh, to the variations of LAI input showed that NPP decreased with LAI increasing or decreasing, as Rs, Ra, and Rh, on the contrary.2) Temperature. Vegetation growth can be accelerated by temperature increasing, but exhibit a threshold (+3℃observed in our research). NPP was not sensitive to temperature various, with sensitivity index (SI) less than0.1. Responses of Rs, and Ra to temperature were mediate with SI between0.1and0.2. Rh was very sensitive to temperature variations with SI increasing first and then decreasing, SI were between2.07-2.61.3) Precipitation. NPP was more sensitivity to precipitation decreasing than to increasing, with SI more than0.2. Rs in different species was more sensitive to precipitation various with+10%and-5%, with higher SI in coniferous forest than in broadleaf forest. Response of Ra to precipitation variations was less than Rh, but SI degree reached media or maximum. The different responses of Ra and Rh to precipitation, explained a diverse requirement of Ra and Rh to precipitation, which gives a big challenge in regional soil respiration simulation.
     6. Carbon dynamic simulating under the future climate scenarios.1) Temperature increased with precipitation decreased. NPP decreased under this climate scenario.2) Both temperature and precipitation increased, NPP for most vegetation types were increased, with evergreen conifer, broadleaf-conifer and larch forest except. Rs increased under both of the above climate scenarios. Climate change had more effect on Rs than on NPP, this agreed well with the result of Griffis et al.
引文
[1]Keeling, D. Climate Change and Carbon Dioxide:An Introduction. National Academy of Science,1997,94:8273-8274
    [2]Petit, R., J. Jouzel, and D. Raynaud. Climate and Atmospheric History of the Past 420000 Years from the Vostok Ice Core, Antarctic. Nature,1999,399:429-436
    [3]NOAA/CMDL.Climate Monitoring and Diagonstics Laboratory Summary Report 2002 [cited2003-03-27];Available from:http://wwwcmdl.noaa.gov/publications/annrpt 26/ index.htm.
    [4]李克让.全球气候变化及其影响的研究进展和未来展望.地理学报,1996,51(增刊):1-14
    [5]曲建升,孙成权,张志强,高峰.全球变化科学中的碳循环研究进展与趋向地球科学进展,2003,18(6):980-987
    [6]Redhe, A. Comparison of the Contribution of Various Gases to the Greenhouse Effect. Science,1990,248:1217-1219
    [7]Melillo, M., Q. Tian, and W. Kicklighter. Climatic and Biotic Controls on Annual Carbon Storage in Amazonian Ecosystems. Global Ecology and Biogeography,2000,9:315-336
    [8]葛全胜,陶波,李克让,邵雪梅.陆地生态系统碳循环研究进展.地理研究,2001,20(5):555-575
    [9]张志强,孙成权.全球变化研究十年新进展.科学通报,1999,44(5):464-477
    [10]孙媛媛,季宏兵,罗建美,李甜甜,江用彬.气候驱动的中国陆地生态系统碳循环研究进展.首都师范大学学报(自然科学版),2006,27(5):90-95
    [11]Canadell, G., A. Mooney, D. Baldoeehi, A. Beny, R. Ehleringe, B. Field, T. Gower, Y. Hollinger, E. Hunt, B. Jaekson, W. Running, R. Shaver, W. Steffen, E. Trtllllbore, R. Valentlnl, and Y. Bond. Carbon Metabolism of the Terrestrial Biosphere:A Multi-technique Approach for Improved Understanding. Ecosystem,2000,3:115-130
    [12]赵敏.中国主要森林生态系统碳储量和碳收支评估.中国科学院博士学位论文.2004:8-13
    [13]李正才,傅懋毅,杨校生.经营干扰对森林土壤有机碳的影响研究概述.浙江林学院学报,2005,22:469-474
    [14]方运霆,莫江明,B. Sandra.鼎湖山自然保护区土坡有机碳贮量和分配特征.生态学报,2004,24(1):135-142
    [15]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5):733-740
    [16]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和破密度研究.应用生 态学报,2001,12(1):13-16
    [17]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮盘和碳平衡.植物生态学报,2000,24(5):518-522
    [18]王绍强,周成虎,刘纪远.东北地区陆地碳循环平衡模拟分析.地理学报,2001,56:390-400
    [19]Woodward, I., M. Smith, and R. Emanuel. A Global Land Primary Productivity and Phytogeography Model. Global Biogeochemical Cycles,1995,9:471-490
    [20]Chen, M., J. Liu, J. Cihlar, and M. Park. A Process-based Boreal Ecosystem Productivity Simulator Using Remote Sensing Inputs. Remote Sensing of Environment,1997,62:158-175
    [21]Churkina, G., and W. Running. Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes. Ecosystems,1998,1:206-215
    [22]Cramer, W., W. Kicklighter, A. Bondeau, B. Moore, C. Churkina, B. Nemry, A. Ruimy, and L. Schloss. Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Overview and Key Results. Global Change Biology,1999,5:1-15
    [23]Alexandrov, A., T. Oikawa, and G. Esser. Estimating Terrestrial NPP:What the Data Say and How They May Be Interpreted? Ecological Modelling,1999,117:361-369
    [24]Ludeke, B., and O. Moldenhauer. Climate Sensitivity of Global Terrestrial Net Primary Production (NPP) Calculated Using the Reduced-form Model. Climate Research,2002,21: 43-57
    [25]Goetz, J., D. Prince, J. Small, and R. Gleason. Interannual Variability of Global Terrestrial Primary Production:Results of a Model Driven with Satellite Observations. Journal of Geophysical Research,2000,105(D15):20077-20091
    [26]Ruimy, A., L. Kergoat, and A. Bondeau. Comparing Global Models of Terrestrial Net Primary Productivity (NPP):Analysis of Differences in Light Absorption and Light-use Efficiency. Global Change Biology,1999,5:56-64
    [27]Knorr, W. Annual and Interannual CO2 Exchanges of the Terrestrial Biosphere:Process-based Simulations and Uncertainties. Global Ecological Biogeography,2000,9:225-252
    [28]姜纪峰.应用生物物理-动态植被耦合模型对典型生态系统二氧化碳和水热通量的模拟.南京农业大学硕士学位论文.2006:8-13
    [29]王绍刚,何国金,刘定生,汪小钦.森林碳循环模型方法研究进展.科技导报,2008,26(9):72-77
    [30]McGuire, D., Y. Pan, and M. Melillo. A Biogeochemistry-based Successional Model and its Application along a Moisture Gradient in the Continental United States. Jouranl of Vegetation Science,2002,13:369-382
    [31]毛留喜,孙艳玲,延晓东.陆地生态系统碳循环模型研究概述.应用生态学报,2006, 17(11):2189-2195
    [32]Siddiqi, A.亚洲化石燃料利用所产生的二氧化碳排放AMBIO (中文版),1996,25(4):228-231
    [33]Schimel, D., J. Melillo, and H. Tian. Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science,2000,287:2004-2006
    [34]聂逆平,徐德应,王兵.全球碳循环与森林关系的研究-问题与进展.世界林业研究,1997,5:33-40
    [35]江东,王礼茂.森林碳循环研究中的空间信息技术.甘肃科学学报,2005,17(2):88-92
    [36]钟华平,樊江文,于贵瑞,韩彬,胡中民,岳燕珍,梁飚.草地生态系统碳循环研究进展.草地学报,2005,13(增刊):67-73
    [37]Malhi, Y., D. Baldocchi, and G. Jarvis. The Carbon Balance of Tropical, Temperate and Boreal Forests. Plant, Cell and Environment,1999,22:715-740
    [38]Jarvis, G., M. Massheder, E. Hale, B. Moncrieff, M. Rayment, and L. Scott. Seasonal Variation of Carbon Dioxide, Water Vapor and Energy Exchanges of a Boreal Black Spruce Forest. Journal of Geophysical Research,1997,102:28953-28966
    [39]Lee, X. On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology,1998,91:39-49
    [40]Schulze, D., J. Lloyd, J. Kelliher, M. Wirth, C. Reb-mann, C. Luhker, B. Mund, M. Knohl, A. Milyukova, M. Schulze, W. Ziegler, W.Varlagin, B. Sogachev, F. Calentini, R. Dore, S. Grigoriev, S. Kolle, O. Panfyorov, I. Tchebakova, and N. Vygodskaya. Productivity of Forests in the Eurosiberia Boreal Region and their Potential to Act as a Carbon Sink Synthesis. Global Change Biology,1999,5:703-722
    [41]Black, A., G. Hartog, and H. Neumann. Annual Cycles of Water Vapor and Carbon Dioxide Fluxes in and Above a Boreal Aspen Forest. Global Change Biology,1996,2: 219-232
    [42]Lindroth, A., A. Grelle, and S. Moren. Long-term Measurements of Boreal Forest Carbon Balance Reveal Large Temperature Sensitivity. Global Change Biology,1998,4:443-450
    [43]Goulden, L., W.Munger, and M.Fan. Exchange of Carbon Dioxide by a Deciduous Forest: Response to Interannual Climate Variability. Science,1996b,271:1576-1578
    [44]Yamamoto, S. Seasonal and Interannual Variation of CO2 Flux between Temperate Forest and Atmosphere in Japan. Tellus,1999,51b:401-413
    [45]Grace, J., J. Lloy, and C. Miranda. The Use of Eddy Covarian to Infer the Net Carbon Dioxide uptake of Brazilian Rain Forest. Global Change Biology,1996,2:209-217
    [46]Lindroth, A., A. Grelle, and S. Moren. Longterm Measurements of Boreal Forest Carbon Balance Reveal Large Temperature Sensitivity. Global Change Biology,1998,4:443-450
    [47]Valentini, R. Respiration as the Main Determinant of Carbon Balance in European Forests. Nature,2000,404:861-865
    [48]李意德.海南岛热带山地雨林林分生物量估测方法比较分析.生态学报,1993,13:313-320
    [49]李意德,吴仲民,曾庆波,周光益,陈步峰,方精云.尖峰岭热带山地雨林群落呼吸量初步测定.林业科学研究,1997,10:348-355
    [50]李意德,吴仲民,曾庆波,周光益,陈步峰,方精云.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究.植物生态学报,1998,(22):127-134
    [51]李意德,吴仲民,曾庆波,周光益,陈步峰,方精云.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报,1998,18:371-378
    [52]Dixon, K., S. Brown, A. Houghton, M. Solomon, C. Trexler, and J. Wisniewski. Carbon Pools and Flux of Global Forest Ecosystems. Science,1994,263:185-190
    [53]方精云,朴世龙,赵淑清.北半球中高纬度陆地生态系统碳汇估算研究.植物生态学报,2001,25:594-602
    [54]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20:733-740
    [55]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12:13-16
    [56]延晓冬.地球系统碳循环的基本模型.北京:科学出版社,2004:38-40
    [57]汪业勖,赵士洞.陆地碳循环研究中的模型方法.应用生态学报,1998,9:658-664
    [58]张海清,刘琪璟,陆佩玲,于强.陆地生态系统碳循环模型概述.中国科技信息,2005,13:25-26
    [59]毛留喜,孙艳玲,延晓东.陆地生态系统他循环模型研究概述.应用生态学报,2006,17:2189-2195
    [60]Haxeltine, A., and C. Prentice. Biome 3:An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability and Competition among Plant Functional Types. Global Biogeochemical Cycles,1996,10:693-709
    [61]Brugnach, M. Process Level Sensitivity Analysis for Complex Ecological Models. Ecological Modeling,2005,187:99-120
    [62]王绍刚,何国金,刘定生,汪小钦.森林碳循环模型方法研究进展.科技导报,2008,26(9):72-77
    [63]Bachelet, D., M. Brugnach, and Neilson P. Sensitivity of a Biogeography Model to Soil Properties. Ecological Modeling,1998,109:77-98
    [64]赵茂盛,P. Neilson,延晓东,董文杰.气候变化条件下中国植被动态的模拟.土壤学报,2002,57:28-38
    [65]王效科,白艳莹,欧阳志云,苗鸿.陆地生物地球化学模型的应用与进展.应用生态学报,2002,13:1703-1706
    [66]宋燕燕,王敬国,齐鑫,金红岩.陆地碳循环模型的比较研究.甘肃农业,2006,238:291-292
    [67]Kelly, H., J. Parton, J. Crocker, R. Grace, J. Klir, M. Korschens, R. Poluton, and D. Richter. Simulating Trends in Soil Organic Carbon in Long-term Experiments Using the Century Model. Geoderma,1997,81:75-90
    [68]Smith, P., U. Smith, S. Powlson, B. Mcgill, M. Arah, G. Chertov, K. Coleman, U. Franko, S. Frolking, S. Jenkinson, S. Jensen, H. Kelly, K. Gunnewiek, S. Komarov, C. Li, E. Molina, T. Mueller, J. Parton, M. Thornley, and P. Whitmore. A Comparison of the Performance of Nine Soil Organic Matter Models Using Datasets from Seven Long-term Experiments. Geoderma,1997,81:153-225
    [69]肖向明,王义凤,陈佐忠.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应.植物学报,1996,38:45-52
    [70]李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环的研究.植物学报,1996,40:955-961
    [71]黄忠良.运用Century模型模拟管理对鼎湖山森林生产力的影响.植物生态学报,2000.24:175-179
    [72]申卫军,彭少麟,邬建国,林永标.南亚热带鹤山主要人工林生态系统C、N累积及分配格局的模拟研究.植物生态学报,2003,27:690-699
    [73]高鲁鹏,梁文举,姜勇,闻大中.利用Century研究东北黑土有机碳的动态变化Ⅰ.自然状态下土壤有机碳的积累.应用生态学报,2004,15:772-776
    [74]方华军,杨学明,张晓平,梁爱珍,申艳.耕作及水蚀影响下坡耕地土壤有机碳动态模拟.土壤学报,2006,43:730-735
    [75]Coops, C., H. Waring, R. Brown, and W. Running. Comparisons of Predictions of Net Primary Production and Seasonal Patterns in Water Use Derived with two Forest Growth Models in Southwestern Oregon. Ecological Modeling,2001,142:61-81
    [76]Chiesi, M., F. Maselli, M. Morinondo, L. Fibbi, M. Binsi, and W. Running. Application of BIOME-BGC to Simulate Mediterranean Forest Processes. Ecological Modeling,2007, 206:170-190
    [77]董文娟,齐晔,李惠民,周文杰.植被生产力的空间分布研究-以黄河小花间卢氏以上流域为例.地理与地理信息科学,2005,21:105-108
    [78]王超,延晓冬,黄耀,刘辉志.应用BIOME-BGC模型研究典型生态系统的潜热通量-半干旱地区吉林通榆的模拟.气候与环境研究,2006,11:404-412
    [79]苏宏新.全球气候变化条件下新疆天山云杉林生长的分析与模拟.中国科学院博士学位论文.2005
    [80]Friend, D., K. Stevens, G. Knox, and R. Cannel. A Process-based, Terrestrial Biosphere Model of Ecosystem Dynamics (Hybrid v3.0). Ecological Modeling,1997,95:249-287
    [81]Delier, C., and A. Foley. Evaluating the Performance of a Land Surface/Ecosystem Model with Biophysical Measurements from Contrasting Environments. Journal of Geophysical Research,1997,104:16895-16909
    [82]Maayar, E., T. Priee, and C. Delire. Validation of the Integrated Bbiosphere Simulator over Canadian Deciduous and Coniferous Boreal Forest Stands. Journal of Geophysical Research-Atmosphere,2001,106:14335-14339
    [83]Maayar, E., T. Priec, and A. Blaek. Sensitivity Tests of the Integrated Biosphere Simulator to Soil and Vegetation Characteristics in a Pacific Coastal Coniferous Forests. Atmosphere-Ocean,2002,40:313-332
    [84]Li, Y., T. Coe, and N. Ramankutty. Regional Hydrological Modeling in Africa: Calibration and Performance Test of IBIS. Geophysical Research Abstracts,2003,5: 13006
    [85]Maayar, E., and C. Kucharik. Simulation of the Seasonal and Interannual Variability of Carbon and Water Cycles within Three Mid-latitude Forests Using a Dynamic Global Vegetation Model. In American Geophysical Union(AGU). San Francisco:2003.
    [86]Liu, X., T. Price, and J. M. Chen. Nitrogen Controls on Ecosystem Carbon Sequestration: A Model Implementation and Application to Saskatchewan, Canada. Ecological Modeling, 2005,186:178-195
    [87]Kucharik, J., C. Barford, E. Maayar, C. Wofsy, K. Monson, and D. Baldocchi. A Multiyear Evaluation of a Dynamic Global Vegetation Model at Three Ameriflux Forest Sites:Vegetation Structure, Phenology, Soil temperature, and CO2 and H2O Vapor exchange. Ecological Modeling,2006,196:1-31
    [88]Dgaravlle, J., M. Heimann, and D. McGuire. Evaluation of Terrestrial Carbon Cycle Models with Atmosphere CO2 Measurements:Results from Transient Simulations Considering Increasing CO, Climate, and Land-use Effects. Global Biogeochemical Cycles,2002a,16:1-15
    [89]Dargaville, J., D. McGuire, and P. Rayner. Estimates of Large-scale Fluxes in High Latitudes from Terrestrial Biosphere Models and an Inversion of Atmospheric CO2 Measurements. Climatic Change,2002b,55:273-285
    [90]Pollard, D., and L. Thompson. Using of a Land-Surface-Transfer Scheme (LSX) in a Global Climate Model:The Response to Doubling Stomatal Resistence. Global Planet Change,1995,10:129-161
    [91]Clapp, B., and M. Hornberger. Empirical Equations for Some Soil Hydraulic Properties. Water Recource Research,1978,14:601-604
    [92]Bonan, B. Land-atmosphere Interactions for Climate System Models:Coupling Biophysical, Biogeochemical, and Ecosystem Dynamical Processes. Remote Sensing of Environment,1995,51:57-73
    [93]Farquhar, D., S. Caemmerer, and A. Berry. A Biogeochemical Model of Photosynthesis CO2 Assimilation in Leaves of C3 Species. Planta,1980,149:78-90
    [94]Farquhar, D., and D. Sharkey. Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology,1982,33:317-345
    [95]Lloyd, J., and D. Farquhar. 13C Discrimination during CO2 Assimilation by the Terrestrial Biosphere. Oecologia,1994,99:201-215
    [96]Lloyd, J. Modelling Stomatal Responses to Environment in Macadamia Integrifloia. Australia Journal of Plant Physiology,1991,18:649-660
    [97]Friend, D. An Integrated Model of Photosynthesis, Transpiration and Conductance. Ecological modeling,1995,77:233-255
    [98]Leuning, R. A Critical Appraisal of a Combined Stomatal-photosynthesis Model for C3 Plants. Plant Cell and Environment,1995,18:339-355
    [99]Norman, M. Scaling Processes between Leaf and Canopy Levels. San Diego:Academic Press,1993:
    [100]Field, B. Allocating Leaf Nitrogen for the Maxmization of Carbon Gain:Leaf Ages as a Control on the Allocation Program. Oecologia,1983,56:341-347
    [101]Evans, R. Partitioning of Nitrogen between and within Leaves Grown under Different Irridatiances. Australia Journal of Plant Physiology,1989,16:533-548
    [102]Hirose, T., and A. Werger. Maximizing Daily Canopy Photosynthesis with Respect to the Leaf Nitrogen Allocation Pattern in the Canopy. Oecologia,1987,72:520-526
    [103]Kull, O., and G. Jarvis. The Role of Nitrogen in a Sample Scheme to Scale up Photosynthesis from Leaf to Canopy. Plant Cell and Environment,1995,18:1174-1182
    [104]Sands, J. Modelling Carbon Production I:Optimal Distribbution of Photo synthetic Resources. Australia Journal of Plant Physiology,1995,22:593-601
    [105]Collatz, J., T. Ball, C. Grivet, and A. Berry. Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration:A Model that includes a Laminar Boundary Layer. Agricultural Forest Meteorology,1991,57:107-136
    [106]Ball, T., E. Wooddrow, A. Berry. A Model Predicting Stomatal Conductance and its Contribution to the Contrl of Photosynthesis under Different Environmental Conditions. Netherland:Dordercht,1986:221-224
    [107]Dewar, C. Interpretation of an Empirical Model for Stomatal Conductance in Terms of Guard Cell Function. Plant Cell and Environment,1995,18:365-372
    [108]Collatz, J., C. Ribas, and A. Berry. Coupled Photosynhesis-stomatal Conductance Model for Leaves of C4 Plants. Journal of Plant Physiology,1992,19:519-538
    [109]Leuning, R. A Critical Appraisal of a Combined Stomatal Photosynthesis Model for C3 Plants. Plant Cell and Environment,1995,18:339-355
    [110]Ehleringer, R., and O. Bjorkman. Quantum Yiels for CO2 Uptake in C3 and C4 Plants. Plant Physiology,1977,31:471-505
    [111]Cerling, E., and R. Ehleringer. Atomosphereic CO2 and the Ratio of Intercellular to Ambient CO2 Concentrations in Plants. Tree Physiology,1995,15:105-111
    [112]Long, P., and R. Hutchin. Primary Production in Grasslands and Coniferous Forests with Climate Change:An overview. Ecological Appliment,1991,1:139-156
    [113]Poorter, H., and D. Farquhar. Transpiration, Intercellular Carbon Dioxide Concentration and Carbon-isotope Discrimination of 24 Wild Species Differing in Relative Growh Rate. Agricultural and Forest Meteorological,1994,21:507-516
    [114]Wong, C., R. Crowan, and D. Farquhar. Stomatal Conductance Correlates with Photosynthesis Capacity. Nature,1979,282:424-426
    [115]Crowan, R., C. Wong, and D. Farquhar. Leaf Conductance in Relation to Rate of CO2 Assimilation:Influence of Nitrogen Nutrition, Phosphorus Nutrition, Photon Flux Density, and Ambient Partial Pressure of CO2 during Ontogeny. Plant Physiology,1985,71:821-825
    [116]Sage, F. Acclimation of Photosynthesis to Increasing Atmospheric CO2:The Gas Change Perspective. Photosynthesis Research,1994,39:351-368
    [117]Amthor, S. The Role of Maintenance Respiration in Plant Growth. Plant Cell Environment,1984,7:561-569
    [118]Gower, T., J. Kucharik, and M. Norman. Dierect and Indirect Estimation of Leaf Area Index, FAPAR and Net Primary Prodction in Terrestrial Ecosystems. Remote Sensing of Environment,1999,70:29-51
    [119]Verberne, L., J. Hassink, D. Willigen, R.Groot, and A. Vanveen. Modeling Organic Matter Dynamics in Different Soils. Netherland Journal of Agricultural Science,1990,38: 221-238
    [120]Parton, J., S. Schimel, V. Cole, and S. Ojima. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plans Grasslands. Soil Science Society of America,1987, 51:1173-1179
    [121]Whitemore, P., K. Gunnewiek, J. Crocker, J. Klir, M. Korshens, and R. Poulton. Simulating Trends in Soil Organic Carbon in Long-term Experiments Using the Verberne/Motor Model. Geoderma,1997,81:137-151
    [122]罗天祥.中国主要森林类型净初级生产力分布及模型估算.中国科学院博士学位论文.1996
    [123]Foley, A., C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine. An Integrated Biosphere Model of Land Surface Process, Terrestrial Carbon Balance, and Vegetation Dynamics. Global Biogeochemical Cycles,1996,10:603-628
    [124]Kucharik, J., A. Foley, C. Delire, A. Fisher, T. Coe, D. Lenters, Y. Molling, and N. R amankutty. Testing the Performance of a Dynamic Global Ecosystem Model:Water Balance, Carbon Balance, and Vegetation Structure. Global Change Biology,2000,14: 796-825
    [125]林祥磊,许振柱,王玉辉,周广胜.羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟.生态学报,2008,10:4718-4724
    [126]曾伟,蒋延玲,李峰,周广胜.蒙古栎(Quercus mongolica)光合参数对水分胁迫的响应机理.生态学报,2008,28:2504-2510
    [127]周玉梅,韩士杰,胡艳玲,张海森,郑俊强.高浓度CO2对红松(pinus koraiensis)针叶光合生理参数的影响.生态学报,2008,28:424-429
    [128]喻梅,高琼,许红梅.中国陆地生态系统植被结构和净第性生产力对未来气候变化响应.第四纪研究,2001,21:281-293
    [129]延晓冬,赵俊芳.基于个体的中国森林生态系统碳收支模型FORCCNN及模型验证.生态学报,2007,27:2684-2694
    [130]周春华,郝占庆,贺红士,周丹卉.阔叶红松林净初级生产力模型参数的敏感性.应用生态学报,2008,19:929-935
    [131]Fried, D., H. Shugart, and W. Running. A Physiology Based Gap Model of Forest Dynamics. Ecology,1993,74:792-797
    [132]Esprey, J., J. Sands, and W. Smith. Understanding 3-PG Using a Sensitivity Analysis. Forest Ecology and Management,2004,193:235-250
    [133]Saltelli, A., S. Tarantola, and K. Chan. A Quantitative Model Independent Method for Global Sensitivity Analysis of Model Output. Technometrics,1999,49:39-56
    [134]Tatarinov, A., and E. Cienciala. Application of BIO-BGC Model to Managed Forests I. Sensitivity Analysis. Forest Ecology and Management,2006,237:267-279
    [135]Salter, G., A. Franklin, and C. Whitelam. Gating of the Rapid Shade Avoidance Response by the Circadian Clock in Plants. Nature,2003,426:680-683
    [136]Shinozak, K., K. Yoda, K. Hozum, and T. Kira. A Quantitative Analysis of Plant form the Pipemodel Theory:Basic Analysis. Jouranl of Ecology,1964,14:97-105
    [137]李凌浩,邢雪荣,杨晶.全球碳循环.北京:高等教育出版社,1999:168-196
    [138]Schlesinger, H. Carbon Balance in Terrestrial Detritus. Annual Review of Ecology and Systematics,1977,851-81
    [139]Raich, W., and S. Potter. Global Patterns of Carbon Dioxide Emissions from Soils. Global Biochemical Cycles,1995,9:23-36
    [140]杨金艳,王传宽.东北东部森林生态系统土壤呼吸组分的分离量化.生态学报,2006,26:1640-1647
    [141]杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.生态学报,2005,25:2875-2882
    [142]Fang, C., B. Monerieff, L. Gholz, and L. Clark. Soil CO2 Efflux and its Variation in Florida Slash Pine Plantation. Functional Ecology,1998,205:135-146
    [143]Schlesinger, S., and K. Cleve. Relationships between CO2 Evolution from Soil, Substrate Temperature, and Substrate Moisture in Four Mature Forest Types in Interior Alaska. Canadian Journal of Forest Research,1985,15:97-106
    [144]Thierron, V., and H. Laudelout. Contribution of Root Respiration to Total CO2 Efflux from the Soil of a Deciduous Forest. Canadian Joural of Forest Research,1996,26:1142-1148
    [145]Rustad, L., T. Huntington, and D. Boone. Controls on Soil Respiration:Implications for Climate Change. Biogeochemistry,2000,48:1-6
    [146]Boone, D., J. Nadelhoer, D. Canary, and P. Kaye. Roots Exert a Strong Influence on the Temperature Sensitivity of Soil Respiration. Nature,1998,396:570-572
    [147]Buchmann, N. Biotic and Abiotic Factors Controlling Soil Respiration Rates in Picea Abies Stands. Soil Biology and Biochemistry,2000,32:1625-1635
    [148]Fang, C., and B. Moncrieff. The Dependence of Soil CO2 Efflux on Temperature. Soil Biology and Biochemistry,2001,33:155-165
    149] Sanchez, L., I. Ozores, J. Lopez, R. Colle, B. De, A. Garcia, and I. Perez. Soil CO2 Fluxes Beneath Barley on the Central Spanish Plateau. Agricultral and Forest Meteorology,2003, 118:85-95
    [150]Dilustro, J., B. Collins, L. Duncan, and C. Crawford. Moisture and Soil Texture Effects on Soil CO2 Efflux Components in Southeastern Mixed Pine Forests. Foreat Ecology and Management,2005,204:85-95
    [151]林丽莎,韩士杰,王跃思.长白山阔叶红松林土壤CO2:释放通量.东北林业大学学报,2005,33:11-13
    [152]蒋延玲,周广胜,赵敏.长白山阔叶红松林生态系统土壤呼吸作用研究.植物生态学报,2005,29(3):411-414
    [153]王旭,周广胜,蒋延玲.山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较.植物生态学报,2007,31(3):348-354
    [154]杨金艳.东北天然次生林生态系统地下碳动态研究.东北林业大学博士学位论文.2005
    [155]Flanagan, B., A. Wever, and J. Carson. Seasonal and Interannual Variation in Carbon Dioxide Exchage and Carbon Balance in a Northern Temperate Grassland. Global and Planetary Change,2002,8:599-615
    [156]Xu, K., and D. Baldocchi. Seasonal Variations in Carbon Dioxide Exchange over a Mediterranean Annual Grassland in Califorian. Agricultral and Forest Meteorology,2004, 123:79-96
    [157]Bowling, R., D. Baldocchi, and L. Xu. Tree Photosynthesis Modulars Soil Respiration on a Diurnal Time Scale. Global and Planetary Change,2005,11:1298-1304
    [158]严俊霞,李洪建,汤亿,张义辉.小尺度范围内植被类型对土壤呼吸的影响.环境科学,2009,30:3121-3129
    [159]Khomik, M., M. Arain, and H. McCaughey. Temporal and Spatial Variability of Soil Respiration in a Boreal Mixedwood Forest. Agricultural and Forest Meteorology,2006, 140:244-256
    [160]陈泮勤.地球系统碳循环.北京:中国科学出版社,2004:266-268
    [161]韩广轩,朱波,江长胜.川中丘陵水稻田土壤呼吸及其影响因素.植物生态学报,2006,30:450-456
    [162]Trumbore, S. Age of Soil Organic Matter and Soil Respiration:Radiocarbon Constraints on Below Ground C Dynamics. Ecological Appliment,2000,10:399-411
    [163]Hanson, J., T. Edwards, R. Garten, and A. Andrews. Separating Root and Soil Microbial Contributions to Soil Respiration:A Review of Methods and Observations. Biogeochemistry,2000,48:115-146
    [164]Ekblad, A., and P. Hogberg. Natural Abundance of 13C in CO2 Respired from Forest Soils Reveals Speed of Link between Tree Photosynthesis and Root Respiration. Oecologia, 2001,127:305-308
    [165]Giardina, P., G. Ryan, D. Binkley, and H. Fownes. Primary Production and Carbon Allocation in Relation to Nutrient Supply in a Tropical Experimental Forest. Global Change Biology,2003,9:1438-1450
    [166]Ryan, G., D. Binkley, H. Fownes, P. Giardina, and S. Senock. An Experimental Test of the Causes of Forest Growth Decline with Stand Age. Ecological Appliment,2004,74: 393-414
    [167]Bowling, R., B. Mcdowell, J. Bond, E. Law, and R. Ehleringer.13C Content of Ecosystem Respiration is Linked to Precipitation and Vapor Pressure Deficit. Oecologia, 2002,131:113-124
    [168]米娜.中亚热带人工针叶林生态系统碳水通量的观测和模拟研究.南京信息工程大学博士学位论文.2007
    [169]Berg, B., P. Berg, and P. Bottner. Litter Mass Loss Rates in Pine Forests of Europe and Eastern United States:Some Relationships with Climate and Litter Quality. Biogeochemistry,1993,20:127-153
    [170]Berg, B., B. Johnson, and V. Meentemeyer. Litter Secomposition in Transect of Norway Spruce Forests:Subsrtate Quality and Climate Conrtol. Canadian Jounral of Forest Research,2000,30:1136-1147
    [171]Raich, W., and A. Tufekcioglu. A Vegetation and Soil Respiration:Correlation and Controls. Biogeochemistry,2000,48:71-90
    [172]Landsberg, J., and H. Waring. A Generalised Model of Forest Productivity Using Simplified Concepts of Radiation-use Efficiency, Carbon Balance and Partitioning. Foreat Ecology and Management,1997,95:209-228
    [173]Helal, M., and D. Sauerbeck. Short Term Determination of the Actual Respiration Rate of Intact Plant Roots. Plant Roots and Their Environment,1991,22:88-92
    [174]Thierron V., and H. Laudelout. Contribution of Root Respiration to Total CO2 Efflux from the Soil of a Deciduous Forest. Canadian Journal of Forest Research,1996,26: 1142-1148
    [175]Vanhala, P., K. Karhu, M. Tuomi, K. Bjoklof, H. Fritze, and J. Liski. Temperature Sensitivity of Soil Organic Matter Decomposition in Southern and Northern Areas for the Boreal Forest Zone. Soil Biology and Biochemistry,2008,40:1758-1764
    [176]Borken, W., Y. Xu, A. Davidson, and F. Beese. Site and Temporal Variation of Soil Respiration in European Beech, Norway Spruce, and Scots Pine Forests. Global Change Biology,2002,8:1025-1216
    [177]Law, E., M. Kirkham, D. Baldocchi, M. Anthoni, J. Irvine, D. Moore, and S. VanTuyl. Spatial and Temporal Variation in Respiration in a Young Ponderosa Pine Forest during a Summer Drought. Agricultural and Forest Meteorology,2001,110:27-41
    [178]Saiz, G., C. Green, K. Butterbach-Bahl, R. Kiese, V. Avitabile, and P. Farrell. Seasonal and Spatial Variability of Soil Respiration in Four Sitka Spruce Stands. Plant and Soil, 2006,287:161-176
    [179]Tang, J., and D. Baldocchi. Spatial-temporal Variation in Soil Respiration in an Oak Grass Savanna Ecosystem in California and its Partitioning into Autotrophic and Heterotrophic Components. Biogeochemistry,2005,173:183-207
    [180]Vincent, G., R. Shahriari, E. Lucot, P. Badot, and D. Epron. Spatial and Seasonal Variations in Soil Respiration in a Temperate Deciduous Forest with Fluctuating Water Table. Soil Biology and Biochemistry,2006,38:2527-2535
    [181]Frank, B., A. Liebig, and D. Hanson. Soil Carbon Dioxide Fluxes in Northern Semiarid Grasslands. Soil Biology and Biochemistry,2002,34:1235-1241
    [182]Maestre, T., and J. Corona. Small-scale Spatial Variation in Soil CO2 Efflux in a Mediterranean Semiarid Steppe. Applied Soil Ecology,2003,23:99-209
    [183]Xu, M., and Y. Qi. Soil-surface CO2 Efflux and its Spatial and Temporal Variation in a Young Ponderosa Pine Plantation in Northern California. Global Change Biology,2001a, 7:667-677
    [184]Xu, M., and Y. Qi. Spatial and Seasonal Variations of Q10 Determined by Soil Respiration Measurements at a Sierranevadan Forest. Global Biogeochemical Cycles, 2001b,15:687-696
    [185]李洪建.不同生态系统土壤呼吸与环境因子关系的研究.山西大学博士学位论文.2008
    [186]Lohila, A., M. Aurela, K. Regina, and T. Laurila. Soil and Total Ecosystem Respiration in Agricultural Fields:Effect of Soil and Crop Type. Plant and Soil,2003,251:303-317
    [187]Rochette, P., and B. Flanagan. Quantifying Rhizosphere Respiration in a Corn Crop under Field Conditions. Soil Science Society of American Journal,1997,61:466-474
    [188]Yuste, C., A. Janssens, A. Carrara, and R. Ceulemans. Annual Q10 of Soil Respiration Reflects Plant Phonological Patterns as well as Temperature Sensitivity. Global Change Biology,2004,10:161-169
    [189]Kirschbaum, F. The Temperature Dependence of Soil Organic Matter Decomposition and the Effect of Global Warming on Soil Organic C Storage. Soil Biology and Biochemistry, 1995,27:753-760
    [190]Raich, W., and H. Schlesinger. The Global Carbon Dioxide Flux in Soil Respiration and its Relationship to Vegetation and Climate. Tellus,1992,44B:81-99
    [191]Davidson, A., E. Belk, and D. Boone. Soil Water Content and Temperature as Independent or Confounded Factors Controlling Soil Respiration in a Temperate Mixed Hardwood Forest. Global Change Biology,1998,4:217-227
    [192]Melling, L., R. Hatano, and J. Goh. Soil CO2 Flux from Three Ecosystems in Tropical Peatland of Sarawak, Malaysia. Tellus,2005,57B:1-11
    [193]Susan. Rapid Exchange between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change. Science,1996,272(19):393-396
    [194]唐英平.土壤呼吸温度敏感性及土壤有机碳分解速率的研究.福建师范大学硕士学位论文.2008
    [195]Gupta, R., and S. Singh. Soil Respiration in a Tropical Grassland. Soil Biology and Biochemistry,1981,13:261-268
    [196]Singh, S., and R. Gupta. Plant Decomposition and Soil Respiration in Terrestrial Ecosystems. The Botanical Review,1977,43:449-528
    [197]Linn, M., and W. Doran. Effect of Water-filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Science Society of American Journal,1984,48:1267-1272
    [198]Skopp, J., M. Jawson, and W. Doran. Steady-state Aerobic Microbial Activity as a Function of Soil Water Content. Soil Science Society of American Journal,1990,54: 1619-1625
    [199]Papendick R. I., Campbell G. S. Theory and measurement of water potential. Madison: Soil Science Society of America Special Publications,1981:1-22
    [200]Hanson, J., T. Edwards, T. Garten, and A. Andrews Separating Root and Soil Microbial Contributions to Soil Respiration:A Review of Methods and Observations. Biogeochemistry,2000,48:115-146
    [201]Savage, E., and A. Davidson. Interannual Variation of Soil Respiration in Two New England Forests. Global Biogeochemical Cycles,2001,15:337-350
    [202]Sims, L., and A. Bradford. Carbon Dioxide Fluxes in a Southern Plains Prairie. Agricultural and Forest Meteorology,2001,109:117-134
    [203]Zhang, W., M. Parker, and Y. Luo. Soil Microbial Responses to Experimental Warming and Clipping in a Tall Grass Prairie. Global Change Biology,2005,11(2):266-277
    [204]Griffis, J., R. Rouse, and M. Waddington. Interannual Variability in Net Ecosystem CO2 Exchange at a Subarctic Fen. Global Biogeochemistry Cycles,2000a,14:1109-1121
    [205]Griffis, J., R. Rouse, and M. Waddington.Scaling Net Ecosystem CO2 Exchange from the Community to Landscape-level at a Subarctic Fen. Global Change Biology,2000b,6: 459-473
    [206]Griffis, J., A. Black, K. Morgenstern, A. Barr, Z. Nesic, G. Drewitt, D. Gaumont-Guay, H. McCaughey, J. Hanson, T. Edwards, T. Garten, and A. Andrews. Ecophysiological Controls on the Carbon Balances of Three Southern Boreal Forests. Agricultural Forest and Meteorology,2003,117:53-71
    [207]Field, B., J. Behrenfeld, and T. Randerson. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science,1998,281:237-240
    [208]张冬有.黑龙江省森林植被净初级生产力遥感估算研究.北京林业大学博士学位论文.2009
    [209]Jiang, H., J. Apps, Y. Zhang, C. Peng, M. Woodward. Modelling the Spatial Pattern of Net Primary Productivity in Chinese Forests. Ecological Modelling,1999,122:275-288
    [210]Lieth, H. Modeling the Primary Productivity of the World. New York:Springer,1975: 237-263
    [211]Matsushita, B., and M. Tamura. Integrating Remotely Sensed Data with an Ecosystem Model to Estimate Net Primary Productivity in East Asia. Remote Sensing of Environment,2002,81:58-66
    [212]李慧.福建省森林生态系统NPP和NEP时空模拟研究.福建师范大学博士学位论文.2008
    [213]Thornton, E., E. Law, and L. Gholz. Modeling and Measuring the Effects of Disturbance History and Climate on Carbon and Water Budgets in Evergreen Needle-leaf Forests. Agricultural and Forest Meteorological,2002,113:185-222
    [214]Laurent, M., L. Francois, and B. Hen. European Bioclimatic Affinity Groups:Data-model Comparisons. Global and Planetary Change,2008,61:28-40.
    [215]Bonan, B., D. Pollard, and L. Thompson. Influence of Subgrid-scale Heterogeneity in Leaf Area Index, Stomatal Resistance, and Soil Moisture on Grid-scale Land-atmosphere Interactions. Journal of Climate,1993,6:1882-1897
    [216]Mohamed, A., S. Babiker, M. Chen, K. Ikeda, K. Ohta, and K. Kato. The Role of Climate Variability in the Inter-annual Variation of Terrestrial Net Primary Production (NPP). Science of the Total Environment,2004,332:123-137
    [217]Braswell, H., S. Schimel, E. Linder, and B. Moore. The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability.Science,1997,278:870-872
    [218]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究.地理学报,2000,55(1):36-45
    [219]Goudriaan, J. Global Carbon Cycle and Carbon Sequestration. Berlin Heidelberg: Springer-Verlag,1995:3-18
    [220]Goldewijk, K., and R. Leemans. Systems Models of Terrestrial Carbon Cycling. Berlin Heidelberg:Springer-Verlag,1995:129-151
    [221]Cramer, W., W. Kicklighter, A. Bondeau, B. Moore, G. Churkina, B. Nemry, A. Ruimy,and L. Schloss. Participants of the Potsdam NPP Model Intercomparison. Comparing Global Models of Terrestrial Net Primary Productivity NPP:Overview and Key results. Global Change Biology,1999,5 (Supplement 1):1-15
    [222]Maisongrande, P., A. Ruimy, G. Dedieu, and B. Saugier. Monitoring Seasonal and Interannual Variations of Gross Primary Productivity Using a Diagnostic Model and Remote-sensed Data. Tellus Bullitine,1995,47:178-190
    [223]Kindermann, J., G. Wurth, H. Kohlmaier, and W. Badeck. Interannual Variation of Carbon Exchange Fluxes in Terrestrial Ecosystems. Global Biogeochemistry Cycle,1996, 10:737-755
    [224]Malmstrom, M., V. Thompson, P. Juday, O. Los, T. Randerson, and B. Field. Interannual Variation in Global-scale Net Primary Production:Testing Model Estimates. Global Biogeochemistry Cycle,1997,11:367-392
    [225]Holdridge, R. Determination of World Plant Formations From Simple Climatic Data. Science,1947,105:367-368
    [226]Rosenzweig, L. Net Primary Productivity of Terrestrial Communities:Prediction from Climatological Data. Amercian Nature,1968,102(923):67-74
    [227]Prince, D., and N. Goward. Transient Effects of Climate on Vegetation Dynamics: Satellite Observations. Journal of Biogeography,1995,22:549-563
    [228]Knapp, K., and D. Smith. Variation among Biomes in Temporal Dynamics of aboveground Primary Production. Science,2001,291:481-484
    [229]Waring, H., J. Landsberg, and M. Williams. Net Primary Production of Forests:A Constant Fraction of Gross Primary Production?. Tree Physiology,1998,18:129-134
    [230]Battaglia, M., and P. Sands. Modelling Site Productivity of Eucalyptus Globulus in Response of Climatic and Site Factors. Australia Journal of Plant Physiology,1997,24: 831-850
    [231]Makela, A., and T. Valentine. The Ratio of NPP to GPP:Evidence of Change over the Course of Stand Development. Tree Physiology,2001,21:1015-1030
    [232]Thornley, M., and R. Cannell. Modelling the Components of Plant Respiration. Annual Botany,2000,85:55-67
    [233]Miklos, N., J. Ivan, Y. Jorge, C. Arnaud, and C. Reinhart. Footprint-adjusted Net Ecosystem CO2 Exchange and Carbon Balance Components of a Temperate Forest. Agricultral and Forest Meteorology.2006,139:344-360
    [234]Falge, E., D. Baldocchi, J. Tenhunen, M. Aubinet, P. Bakwin, P. Berbigier, C. Bernhofer, G. Burba, R. Clement, J. Davis, A. Elbers, H. Goldstein, A. Grelle, A. Granier, J. Guomundsson, D. Hollinger, S. Kowalski, G. Katul, E. Law, Y. Malhi, T. Meyers, K. Monson, W. Munger, W. Oechel, T. Paw, K. Pilegaard, U. Rannik, C. Rebmann, A. Suyker, R. Valentini, K. Wilson, and S. Wofsy. Seasonality of Ecosystem Respiration and Gross Primary Production a3 Derived from Fluxnet Measurements. Agricultral and Forest Meteorology,2002,113:53-74
    [235]杨亚梅.贵州省植被净初级生产力时空变化与气象因子相关性分析.西南大学硕士学位论文.2009
    [236]Eamus, D., and G. Jarvis. The Direct Effects of Increase in Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and Forests. Advantage of Ecological Research,1989,19:1-55
    [237]McGuire, D., A. Joyce, W. Kicklighter, M. Melillo, G. Esser, and J. Vorosmarty. Productivity Responses of Climax Temperate Forests to Elevated Temperature and Carbon Dioxide:A North American Comparison between Two Global Models. Climatic Change,1993,24:287-310
    [238]Melillo, M., D. McGuire, W. Kicklighter, B. Moore, J. Vorosmarty, and L. Schloss. Global Climate Change and Terrestrial Net Primary Production. Nature,1993,363:234-240
    [239]Neilson, P. Vegetation Redistribution:A Possible Biosphere Source of CO2 during Climatic Change. Water Air Soil Poll,1993,70(1-4):659-673
    [240]Smith, M., and H. Shugart. The Transient Response of Terrestrial Carbon Storage to a Perturbed Climate. Nature,1993,361:523-526
    [241]Braswell, H., S. Schimel, E. Linder, and B. Moore. The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability. Science,1997,278:870-872
    [242]Goward, N., and D. Prince. Transient Effects of Climate on Vegetation Dynamics: Satellite Observations. Journal of Biogeography,1995,22:549-563
    [243]Cramer, W., A. Bondeau, I. Woodward, C. Prentice, A. Berts, V. Brovkin, M. Cox, V. Fisher, A. Foley, D. Friend, C. Kucharik, R. Lamos, N. Ramankutty, S. Sitch, B. Smith, A. White, C.Young-Molling. Global Response of Terrestrial Ecosystem Structure and Function to CO2 and Climate Change:Results from Six Dynamic Global Vegetation Models. Global Change Biolology,2001,7:357-373
    [244]Mitchel, W., and F. Csillag. Assessing the Stability and Uncertainty of Predicted Vegetation Growth under Climatic Variability:Northern Mixed Grass Prairie. Ecological Modelling,2001,139(2-3):101-121
    [245]许红梅.黄土高原丘陵沟壑区小流域植被净第一性生产过程模拟研究.北京师范大学博士学位论文.2003
    [246]McGuire, D., A. Joyce, and W. Kicklighter. Productivity Response of Climate Temperate Forests to Elevated Temperature and Carbon Dioxide:A North American Comparison between Two Global Models. Climate Change,1993,24:286-310
    [247]王军邦.中国陆地净生态系统生产力遥感模型研究.浙江大学博士学位论文.2004
    [248]Xie, D. H., P. J. Wang, J. H. Zhang, and Q. J. Zhu. Sensitivity Analysis for Primary Factors of the Forest Net Primary Productivity in Changbaishan Natural Reserve Based on Process Model. Geographical Research,2008,27 (2):323-331
    [249]王培娟,谢东辉,张佳华,朱启疆.长白山森林植被NPP主要影响因子的敏感性分析.地理研究,2008,27(2):323-331
    [250]Pan, Y., D. McGuire, W. Kicklighter, M. Melillo. The Importance of Climate and Soils for Estimates of Net Primary Production:A Sensitivity Analysis with the Terrestrial Ecosystem Model. Global Change Biology,1996,2:5-23
    [251]Piao, S. L., J. Y. Fang, and L. M. Zhou. Interannual Variations of Monthly and Seasonal Normalized Difference Vegetation Index (NDVI) in China froml982 to 1999. Journal of Geophysical Research,2003,1084401
    [252]Piao, S. L., J. Y.Fang, L. M. hou, B. Zhu, K. Tan, and S. Tao. Changes in Vegetation Net Primary Productivity from 1982 to 1999 in China. Global Biogeochemistry Cycles,2005, 19:1029
    [253]Kicklighter, W., L. Schloss, J. Kaduk, and U. Wittenberg. Comparison of NPP to Climate and the Normalized Difference Vegetation Index. Global Change Biology,1999,5 (Suppl. 1):25-34
    [254]Nalder, A., and W. Wein. A Model for the Investigation of Long-term Carbon Dynamics in Boreal Forests of Western Canada I. Model Development and Validation. Ecological Modelling,2006,192:37-66
    [255]Fyodor, T., and C. Emil. Application of BIOME-BGC Model to Managed Forests I. Sensitivity Analysis. Foreat Ecology and Management,2006,237:267-279
    [256]Kaduk, J., and M. Heimann. The Climate Sensitivity of the Osnabruck Biosphere Model on the Enso Time Scale. Ecological Modelling,1994,75:239-256
    [257]Dai, A., and I.Y. Fung. Can Climate Variability Contribute to the'Missing'CO2 Sink? Global Biogeochemical Cycles,1993,7:599-609
    [258]Brugnach, M. Process Level Sensitivity Analysis for Complex Ecological Models. Ecological Modelling,2005,187:99-120
    [259]Xu, C. G., Y. M. Hu, Y. Chang, Y. Jiang, X. Z. Li, R. C. Bu, and H. S. He. Sensitivity Analysis in Ecological Modeling. Chinese Journal of Applied Ecology,2004,15 (6): 1056-1062
    [260]刘国华,傅伯杰.全球气候变化对森林生态系统的影响.自然资源学报,2001,16(1):71-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700