应用生物物理—动态植被耦合模型对典型生态系统二氧化碳和水热通量的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成生物圈模型(IBIS)是目前最复杂的基于动态植被模型的陆面生物物理模型之一,它集成了大范围的生物物理、生理以及生态过程,通过一种综合考虑各主要过程之间作用的模块化结构将陆地表面生物物理、陆地碳通量和全球植被动态表达出来,并且这种模式框架能够直接与大气环流模式(AGCMs)进行耦合。该模型从设计上就体现了植被既在分钟至世纪尺度上受到大气化学和气候变量的影响,同时也在同样时间尺度上反馈于大气化学和气候。
     本文选择IBIS模型作为研究对象,对模型的源程序进行编译和调试,并改进了模式的输入和输出格式,进而将模式分别应用于中国区域的不同类型典型生态系统,对模型模拟碳和水热通量的能力进行检验。
     首先,通过应用该模型对国际CEOP计划半干旱区基准站之一的吉林通榆观测站(44°25′N,122°52′E)草地和农田生态系统2003年全年的CO_2和水、热通量变化进行模拟,并将结果与涡度相关法测定的观测值进行了对比分析,以检验IBIS模型在半干旱区的模拟能力。对比结果表明:除CO_2通量模拟结果不够理想外,IBIS模型较好地模拟了通榆观测站的感热通量和潜热通量。在对草地的CO_2、感热和潜热通量模拟中,决定系数R~2分别为0.416、0.762和0.825;对农田的模拟中R~2分别为0.507、0.727和0.838(其中所有相关分析均通过了0.05以上显著水平的信度检验)。同时,经年变化分析得出,IBIS模型分别低估CO_2通量(偏低9.29%和3.73%)和潜热通量(偏低4.63%和3.48%),对感热通量则是高估(偏高9.90%和11.98%)。对照农田和草地,从总体上看,模型对通榆观测站农田生态系统的模拟效果要好于退化草地。
     在此基础上,运用中国陆地生态系统通量观测研究网络(ChinaFLUX)三处森林微气象站的数据资料对IBIS模型模拟CO_2和潜热通量的能力做进一步的检验,结果表明:IBIS模型对潜热通量的模拟效果要远远好于对CO_2通量的模拟,同时模型对两者在长白山等三处站点的模拟均要偏高。具体来讲,在长白山站的模拟情况较为理想,CO_2和潜热通量的模拟-观测决定系数分别为0.326和0.821,模拟的CO_2和潜热通量
The Integrated Biosphere Simulator (IBIS) is one of the most sophisticated models in simulating terrestrial biosphere processes based on dynamic vegetation schemes. IBIS is designed to integrate a variety of terrestrial ecosystem phenomena within a single, physically consistent model that can be directly incorporated within AGCMs. To facilitate this integration, the model is designed around a hierarchical, modular structure and uses a common state description throughout.
    For the purpose of validating IBIS in semi-arid region and eventually improving the model's capability for specific land cover types in China, a simulation for the whole 2003 year was conducted over cropland and degraded grassland underlying surfaces in Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province of China, which is one of the reference sites of international Coordinated Enhanced Observing Period (CEOP). Measurements of turbulent flux of latent and sensible heat, and NEE were performed using the eddy correlation technique (referred to from here on as EC). Model inputs include the site ecosystem characteristics and main meteorological variables. Comparisons between simulated land surface fluxes and observed EC measurements show that the model is capable of reproducing CO_2, sensible and latent heat fluxes indicated by correlation coefficients exceeding the significant level of 0.05. In general, CO_2 flux and sensible heat flux have obvious diurnal and seasonal variation both at the grassland and the cropland, while the latent heat flux, which is related to evapotranspiration, only has diurnal variation during the growing season. Meanwhile, all fluxes at the cropland are larger than those at the degraded grassland, especially in the growing season. The model generally estimates lower annual CO_2 (underestimating by 9.29% in the grassland and 3.73% in the cropland) and latent heat flux (with corresponding values 4.63% and 3.48%), and greater annual sensible heat flux (overestimating by 9.90% and 11.98%, respectively) than measured by EC. And the simulations for the cropland are better than those for the grassland, with more reasonable model-measurement agreements.
引文
1. Amthor J.S., Scaling CO_2-photosynthesis relationships from the leaf to the canopy. Photosynthesis Research, 1994a, 39: 321~350.
    2. Amthor J.S., Goulden M.L., Munger J.W., et al., Testing a mechanistic model of forest-canopy mass and energy exchange using eddy correlation: carbon dioxide and ozone uptake by a mixed oak maple stand.Australian Journal of Plant Physiology, 1994b, 21: 623~651.
    3. Amthor J.S., Chert J.M., Clein J.S., et al., Boreal forest CO_2 exchange and evapotranspiration predicted by nine ecosystem process models: Inter-model comparisons and relationships to field measurements. Journal of Geophysical Research, 2001, 106(24): 33,623~33,648.
    4. Baldocchi D., Hicks B., Meyers T.P., Measuring biosphere-atmosphere exchange of biologically related gases with micrometeorological methods. Ecology, 1988, 69: 1331~1340.
    5. Baldocchi D., Valentini R., Oechel W., et al., Strategies for measuring and modeling carbon dioxide and water vapor fluxes over terrestrial ecosystems. Global Change Biology, 1996, 2: 159-168.
    6. Baldocchi D., Finnlgan J., Wilson K., et al., On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 2000, 96: 257~291.
    7. Baldocchi D., Falge E., Gu L.H., et al., FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 2001, 82 (11): 2415~2434.
    8. Baldoeehi D., Assessing the eddy covariance technique for evaluating carbon dioxide exchange of European forests: The EUROFLUX Methodology. Advances in Ecological Research, 2003, 9: 479~492.
    9. Berbigier P., Bonnefond J.M., Mellmann P., CO2 and water vapor fluxes for 2 years above EuroFlux forest Site, Agricultural and Forest Meteorology, 2001, 108: 183~197.
    10. Black T.A., Hartog G., Neumann H.H., et al., Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology, 1996, 2: 219~229.
    11. Bosilovich M.G. and Lawford R., Coordinated Enhanced Observation Period (CEOP) international workshop, Bulletin of American Meteorology Society, 2002, 83(10): 1495~1499.
    12. Collatz G J, Ball J T, Grivet C, et al., Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agriculture and Forest Meteorology, 1991, 54: 107~136.
    13. Cramer W., Bondeau A., Woodward F. I., et al., Global response of terrestrial ecosystem structure and function to CO_2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 2001, 7: 357~373.
    14. Dargaville R.J., Heimann M., McGuire A.D., et al., Evaluation of terrestrial carbon cycle models with atmospheric CO_2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects. Global Biogeochemical Cycles, 2002a, 16 (4): 39-1~39-15.
    15. Dargaville R.J., McGuire A.D., Rayner P., Estimates of large-scale fluxes in high latitudes from terrestrial biosphere models and an inversion of atmospheric CO_2 measurements. Climatic Change, 2002b, 55(2-3): 273~285.
    16. Delire C., Foley J.A., Evaluating the performance of a land surface/ecosystem model with biophysical measurements from contrasting environments, Journal of Geophysical Research, 1999, 104(D14): 16,895~16,909.
    17. Dickinson R.E., Sellers A.H., Kennedy P.J., et al., Biosphere Atmosphere Transfer Scheme (BATS) for the NCAR CCM, NCAR/TN-275-STR, National Center for Atmospheric Research, Boulder, Colorado, 1986.
    18. Falge E., Baldocchi D., Olson R., et al., Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107(1): 43~69.
    19. Farquhar G.D., Caemmerer S., Berry J.A., A biochemical model of photosynthetic CO_2 assimilation in leaves of C3 species. Planta, 1980, 149: 78~90.
    20. Finnigan JJ., Clement R., Malhi Y., et al., A Re-Evaluation of LongTerm Flux Measurement Techniques Part Ⅰ: Averaging and Coordinate Rotation, Boundary-Layer Meteorology, 2002, 107: 1~48.
    21. Finnigan J.J., A re-evaluation of long-term flux measurement techniques, Part Ⅱ: Coordinate systems. Boundary-Layer Meteorology, 2004, 113: 1~41.
    22. Foley J.A., Prentice I.C., Ramankutty N., et al., An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochernical Cycles, 1996, 10(4): 603~628.
    23. Foley J.A., Levis S., Prentice I.C., et al., Coupling dynamic models of climate and vegetation, Global Change Biology, 1998, 4: 561~579.
    24. Friend A.D., Stevens A.K., Knox R.G., et al., A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modeling, 1997, 95: 249~287.
    25. Global Carbon Project.2003. Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No.1, Canberra.
    26. Goulden M.L., Munger J.W., Fan S.M., et al., Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 1996a, 2: 169~182.
    27. Goulden M.L., Munger J.W., Fan S.M., et al., Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability, Science, 1996b, 271: 1576~1578.
    28. Grace J., Lloyd J., Mclntyre J., et al., Carbon dioxide uptake by an undisturbed tropical rain in Southwest Amazon, 1992-1993, Science, 270: 778~780.
    29. Houghton R.A., Skole D.L., Nobre C.A., et al., Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 2000, 403: 301~304.
    30. IPCC, Climate Change 2001, Cambridge University Press, 2001: 12~14.
    31. Ji Jinjun, A climate-vegetation interaction model: simulating physical and biological processes at the surface. Journal of Biogeography, 1995, 22: 445~451.
    32. Ju W.M., CHEN J.M., BLACK T.A., et al., Hydrological effects on carbon cycles of Canada's forests and wetlands. Tellus, 2006, 58B (1): 16~30.
    33. Keeling C.D., Whorf T.P., 2000: Atmospheric CO_2 records from sites in the SIO air sampling network. In: Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA.
    34. Kell Wilson, Allen Goldstein, Eva Falge, et al., Energy Balance Closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113: 223~243.
    35. Kucharik C.J., Foley J.A., Delire C., et al., Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 2000, 14(3): 795~826.
    36. Lee X., On micrometcorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 1998, 91: 39~49.
    37. Li K.Y., Coe M.T., Ramankutty N., Regional Hydrological Modeling In Africa: Calibration and Performance Test of IBIS. Geophysical Research Abstracts, 2003, 5: 13006.
    38. Liu E, Yah X.D., Gao Z.Q., et al., Modeling of surface fluxes in Tongyu using the Simple Biosphere Model 2(SiB2), Journal of the meteorology society Japan (Submitted).
    39. Liu J., Chen J.M., Cihlar J., et al., A process-based Boreal Ecosystems Productivity Simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62: 158~175.
    40. Liu J., Chert J.M., Cihlar J., et al., Net primary productivity distribution in the BOREAS study region from a process model driven by satellite and surface data. Journal of Geophysical Research, 1999, 104(D22): 27,735~27,754.
    41. Lloyd J., Grace J., Wong S.C., et al., A simple calibrated model of Amazon rain forest productivity based on leaf biochemical properties. Plant, Cell and Environment, 1995,18:1129-1145.
    
    
    42. Maayar M.E., Price D.T., Delire C, et al., Validation of the Integrated Biosphere Simulator over Canadian deciduous and coniferous boreal forest stands. Journal of Geophysical Research-Atmosphere, 2001,106 (D13): 14,339-14,355.
    
    43. Maayar M.E., Price D.T., Black T.A., et al., Sensitivity Tests of the Integrated Biosphere Simulator to Soil and Vegetation Characteristics in a Pacific Coastal Coniferous Forest. Atmosphere-Ocean, 2002,40 (3): 313-332.
    
    44. Maayar M.E., Kucharik C, Simulation of the Seasonal and Interannual Variability of Carbon and Water Cycles Within Three Mid-latitude Forests Using a Dynamic Global Vegetation Model, paper presented at the annual meeting of the American Geophysical Union (AGU), San Francisco, CA, December 2003.
    
    45. Malhi Y., Baldocchi D. D., Jarvis P. G, The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 1999,22: 715-740.
    
    46. Massman W.J., Lee X., Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy exchanges, Agricultural and Forest Meteorology, 2002,113:121-144.
    
    47. McGuire A.D., Mellio J.M., Kicklighter D.W., et al., Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration. Global Biogeochemical Cycles, 1997,11:173-189.
    
    48. McGuire A.D., Mellio J.M., Randerson J.T., et al., Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes. Biogeochemistry, 2000,48: 91-114.
    
    49. Moncrieff J.B., Mahli Y., Leuning R., The propagation of errors in long term measurements of land atmosphere fluxes of carbon and water. Global Change Biology, 1996,2: 231-240.
    
    50. Neilson R.P. and Marks D., A global perspective of regional vegetation and hydrologic sensitivities and risks from climatic change. Journal of Vegetation Science, 1994, 5: 715-730.
    
    51. Parton W.J., Schimel D.S., Cole C.V., et al., Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 1987, 51:1173-1179.
    
    52. Peter van der Keur, Kirsten Schelde, et al., Modification of DAISY SVAT model for potential use of remotely sensed data. Agricultural and Forest Meteorology, 2001,106: 215-231.
    
    53. PILPS-C1 Workshop Report, Report of the workshop held at CNRS Gif-sur-Yvette, May 6-7 2003.
    
    54. Rawls W.J., Ahuja L.R., Brakensiek D.L. 1992. Estimating soil hydraulic properties from soils data, p. 329-340. In M. Th. van Genuchten et al. (ed.). Indirect methods for estimating the hydraulic properties of unsaturated soils. Proc. Int. Workshop. Riverside, CA.11.C13 Oct. 1989. Univ. of California, Riverside.
    55. Running S.W., Coughlan J.C., A general model of forest ecosystem processes for regional applications. I. Hydrological balance, canopy gas exchange and primary production processes. Ecological modeling, 1988, 42: 125~154.
    56. Running S.W., Hunt E.R., Generalization of a forest ecosystem process model for other biomes, BIOME-BGC and an application for global-scale models. In: Ehleringer J.R., Field C B (eds.), Scaling Physiological Processes: Leaf to Globe. San Diego: Academic Press Inc. 1993, 141~158.
    57. Schimel D., Melillo J., Tian H., et al., Contribution of increasing CO_2 and climate to carbon storage by ecosystems in the United States, Science, 2000, 287: 2004~2006.
    58. Sellers P.J., Mintz Y., Sud Y.C.et al., A simple biosphere model (SiB) for use within general circulation models. Journal of Atmospheric Sciences, 1986, 43: 505-531.
    59. Sellers P.J., Randall D.A., Collatz G.J., et al., A revised land surface parameterization (SiB2) for atmospheric GCMs. Part Ⅰ: Model formulation. Journal of Climate, 1996, 9 (4): 676~705.
    60. Snyder P.K., Foley J.A., Hitchman M.H., et al., Analyzing the effects of complete tropical forest removal on the regional climate using a detailed three-dimensional energy budget: An application to Africa. Journal of Geophysical Research, 2004, 109 (D21), D21102, DOI: 10. 1029/2003JD004462.
    61. Swinbank W.C., The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Meteorology, 1951, 8: 135~145.
    62. Thompson S.L., Pollard D., A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part 1: Present-day climate. Journal of Climate, 1995a, 8: 732~761.
    63. Thompson S.L, Pollard D., A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part 2:CO_2 sensitivity.Journal of Climate, 1995b, 8: 1104~1121.
    64. Viovy N., Descriptio n of the PILPSC-1 experiment. February 19, 2002.
    65. Wesfall J. and Stumm W., 1980. The hydrosphere. In: ed. O. Hutzinger, The handbook of Environmental Chemistry, Vol. 1.Springer-Verlag, New York.
    66. Woodward F.I., Smith T.M., Emanuel W.R., A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 1995, 9: 471~490.
    67. Wofsy S.C., Goulden M.L., Munger J.W., et al., Net exchange of CO_2 in a mid-latitude forest, Science, 1993, 260: 1314~1317.
    68. Yi C., Davis K. J., Bakwin P. S., et al., Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO_2 from a very tall tower. Journal of Geophysical Research, 2000, 105D: 9991~9999.
    69.陈永瑞、林耀明、李家永,等,千烟洲试验区人工林养分循环的研究,江西科学,2001,19(3):147~152.
    70.杜晓军、刘常富、金罡,等,长白山主要森林生态系统根系生物量研究,沈阳农业大学学报,1998,29(3):229~232.
    71.关德新、吴家兵、于贵瑞,等,主要气象条件对长白山阔叶红松林CO_2通量的影响,中国科学,D辑,2004,34(增刊Ⅱ):103~107.
    72.郝占庆、郭水良,长白山北坡草本植物分布与环境关系的典范对应分析,生态学报,2003,23(10):2000~2008.
    73.胡隐樵、高由禧,黑河实验(HEIFE)——对干旱区陆面过程的一些新认识,气象学报,1994,52(3):285~296.
    74.黄忠良、蒙满林、张佑昌,鼎湖山生物圈保护区的气候.热带亚热带森林生态系统研究,1998,8:134~139.
    75.黄忠良,运用Century模型模拟管理对鼎湖山森林生产力的影响,植物生态学报,2000,24(2):175~179.
    76.李家永、袁小华,红壤丘陵区不同土地资源利用方式下有机碳储量的比较研究,资源科学,2001,23(5):73~76.
    77.李建东、杨允菲,松嫩平原羊草草甸植物的生态及分布区型结构分析,草业学报,2002,11(4):10~20.
    78.李忠佩、王效举,小区域水平土壤有机质动态变化的评价与分析,地理科学,2000,20(2):182~188.
    79.刘辉志、董文杰、符淙斌,等,半干旱地区吉林通榆“干旱化和有序人类活动”长期观测实验,气候与环境研究,2004,9(2):378~389.
    80.刘晶淼、周秀骥、余锦华,等,长江三角洲地区水和热通量的时空变化特征及影响因子,气象学报,2002,60(2):139~146.
    81.刘允芬、宋霞、孙晓敏,等,千烟洲人工针叶林CO_2通量季节变化及其环境因子的影响,中国科学,D辑,2004,34(增刊Ⅱ):109~117.
    82.刘志良,通榆干旱气候分析,吉林气象,2002,4:20~21.
    83.陆龙骅、程彦杰、卞林根,等,长江三角洲典型稻作区近地层二氧化碳等湍流通量的观测研究,地球物理学报,2003,46(6):751~759.
    84.罗毅、欧阳竹、于强,等,SPAC系统中水热CO_2通量与光合作用的综合模型(Ⅰ):模型建立,水利学报,2001,2:90~97.
    85.罗毅、欧阳竹、于强,等,SPAC系统中水热CO_2通量与光合作用的综合模型(Ⅱ):模型验证,水利学报,2001,3:58~63.
    86.吕达仁、陈佐忠、陈家宜等,内蒙古半干旱草地土壤—植被—大气相互作用(IMGRASS)综合研究,地学前缘,2002,9(2),295~306.
    87.莫江明、方运霆、彭少麟,等,鼎湖山南亚热带常绿阔叶林碳素积累和分配特征,生态学报,2003,23(10):1970~1976.
    88.莫兴国、陈丹、林忠辉,等,不同水分条件麦田能量和CO_2通量变化特征研究,中国生态农业学报,2003,11(4):77~81.
    89.秦钟、于强、许守华,等,华北平原农田水热通量与作物水分利用效率的特征与模拟,中国科学D辑,地球科学,2004,34:183~192.
    90.孙志刚、王勤学、欧阳竹,等,MODIS水汽通量估算方法在华北平原农田的适应性验证,地理学报,2004,59(1):49~55.
    91.唐旭利、温达志、周国逸,等,鼎湖山南亚热带常绿阔叶林植被C贮量及其动态特征,热带亚热带森林生态系统研究,2002,9:55~63.
    92.汪业勖,陆地碳循环研究中的模型方法,应用生态学报,1998,12(6):658~664.
    93.王秋风、牛栋、于贵瑞,等,长白山森林生态系统CO_2和水热通量的模拟研究,中国科学,D辑,2004,34(增刊Ⅱ):131~140.
    94.温学发、于贵瑞、孙晓敏,基于涡度相关技术估算植被/大气间净CO_2交换量中的不确定性,地球科学进展,2004,19(4):658~663.
    95.温学发、于贵瑞、孙晓敏,等,复杂地形条件下森林植被湍流通量测定分析,中国科学,D辑,2004,34(增刊Ⅱ):57~66.
    96.吴家兵、张玉书、关德新,森林生态系统CO_2通量研究方法与进展,东北林业大学学报,2003,31(6):49~51.
    97.徐振邦、代力民,长白山红松阔叶混交林森林天然更新条件的研究,生态学报,2001,21(9):1413~1420.
    98.延晓冬,地球系统碳循环的基本模型,见:陈泮勤、黄耀、于贵瑞主编,地球系统碳循环,北京:科学出版社,2004:357~386.
    99.杨晓光、于沪宁,农田生态系统二氧化碳通量与群体水分利用率研究,地理科学进展,1998,17(4):16~24.
    100.余锦华、刘晶淼、丁裕国,青藏高原西部地表通量的年、日变化特征,高原气象,2004,23(3):353~359.
    101.于贵瑞、孙晓敏、温学发,碳通量的微气象学测定,见:陈泮勤、黄耀、于贵瑞主编,地球系统碳循环,北京:科学出版社,2004a:103~126.
    102.于贵瑞、张雷明、孙晓敏,等,亚洲区域陆地生态系统碳通量观测研究进展,中国科学D辑,2004b,34(增刊Ⅱ):15~29.
    103.于贵瑞,温学发,李庆康,等,中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征,中国科学,D辑,2004c,34(增刊Ⅱ):84~94.
    104.张永强、沈彦俊、刘昌明,等,华北平原典型农田水、热与CO_2通量的测定,地理学报,2002,57(3):332~342.
    105.张娜、于贵瑞、于振良,等,基于景观尺度过程模型的长白山地表径流量时空变化特征的模拟,应用生态学报,2003a,14(5):653~658.
    106.张娜、于贵瑞、于振良,等,基于景观尺度过程模型的长白山净初级生产力空间分布影响因素分析,应用生态学报,2003b,14(5):659~664.
    107.张娜、于贵瑞、赵士洞,等,长白山自然保护区生态系统碳平衡研究,环境科学,2003c,24(1):24~32.
    108.张祝平、丁明懋,鼎湖山亚热带季风常绿阔叶林的生物量和光能利用效率,生态学报,1996,16(5):525~534.
    109.赵茂盛、Neilson R P、延晓冬,等,气候变化对中国植被可能影响的模拟,地理学报,2002,57(1):28~38.
    110.周存宇、周国逸、张德强,等,鼎湖山森林地表CO_2通量及其影响因子的研究,中国科学,D辑,2004a,34(增刊Ⅱ):175~182.
    111.周存宇、张德强、王跃思,等,鼎湖山针阔叶混交林地表温室气体排放的日变化,生态学报,2004b,24(8):1741~1745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700