基于标准数字CMOS工艺的高精度基准电压源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基准电压源(Voltage Reference)是超大规模集成电路和系统的重要组成部分,应用于高精度比较器、A/D和D/A转换器、随机动态存取存储器、闪存电路等多种电路和电路单元,亦为系统集成芯片(SOC,System on a Chip)所广泛采用。设计构成可复用的与通用数字电路工艺兼容的高稳定度基准电压源具有重要意义。
     温度和电压稳定性是基准电压源的重要指标,直接影响电路和系统的稳定性及多项性能指标,亦是本文设计中关注解决的重点。
     基准电压源的构成形式繁多。其中,带隙基准电压源因其高稳定度、低温漂、低噪声且构成简单等优点而得到普遍重视,亦为本文所采用。论文详细描述了一个运用标准数字CMOS工艺实现的、采用MOS管的栅源电压差进行有效的温度曲率补偿的带隙基准电压源电路的设计。工作由电路的拓扑构成开始,直至其底层的物理设计,并转化成GDSII标准格式文件交由相关厂家进行流片验证。HSPICE仿真结果显示:该基准源在-40℃~100℃的温度变化范围内,具有11ppm/℃的低温度系数;当电源电压在8~18V变化时,输出电压变化量仅为1mV;并且电路结构简单,具有较小的芯片面积和功耗。
Voltage Reference is an essential subcircuitry in VLSI and lots of electronic systems. It is widely used in many circuits, such as high precise comparators, A/D and D/A converters, DRAMs, flash memory circuits, and other analog or mixed circuits. Therefore, it is significant to develop a voltage reference circuitry that is compatible with digital CMOS technology and can be integrated into a system on a chip (SOC).
    Low temperature drift and high stability of output voltage is of key importance to an ideal voltage reference. They are also the focus of this paper.
    So far, the bandgap reference is the most popular circuit, which successfully achieves the requirements mentioned above. It exhibits both high stability and low temperature coefficient, also has low noise and simple topology. In this paper, a precise CMOS bandgap voltage reference which uses the difference of MOS source-gate voltage to perform efficient curvature compensation is described in detail, which is compatible with standard digital CMOS process. The depiction is from topology to physical design. Finally, it has been transformed to standard CDS II format document to be implemented. The HSPICE simulation result shows a temperature coefficient of 11 ppm/"C from -40 癈 to 100'C and output voltage variation of 1mV for supply voltage range from 8 V to 18 V. Due to novel curvature compensation, the circuit structure of the proposed reference is simple and both chip area and power consumption are small.
引文
[01] 《CMOS集成电路设计》,陈贵灿、邵志标、程军、林长贵,西安交通大学出版社,2000
    [02] 《专用集成电路设计技术基础》,韩雁,电子科技大学出版社,2000
    [03] 《特种集成电源最新应用技术》,沙占有,人民邮电出版社,2000
    [04] 《用于VLSI模拟的小尺寸MOS器件模型》,N.艾罗拉著,张兴、李映雪 译,科学出版社,1999
    [05] 《电子技术基础》,康华光、陈大钦,高等教育出版社,1999
    [06] 《模拟电路的计算机分析与设计》,高文焕、汪蕙,清华大学出版社,1999
    [07] 《CMOS模拟电路设计》,P.E.艾伦、D.R.霍尔伯格著,王正华、叶小琳译,科学出版社,1995
    [08] 《集成稳压器》,曲学基、王增福、向政,电子工业出版社,1989
    [09] 《集成稳压电源及其应用》,陈景银、徐家权,浙江大学出版社,1987
    [10] 《模拟集成电路》,复旦大学微电子教研组,高等教育出版社,1983
    [11] 《高稳定度电源》,倪本来,人民邮电出版社,1982
    [12] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2001
    [13] S.M. Sze, Physics of semiconductor devices, 2nd edition, John Wiley, New York, 1981
    [14] Arne E. Buck, Charles L. McDonald, Stephen H. Lewis and T.R. Viswanathan,"A COMS Bandgap Reference Without Resistors," IEEE Journal of Solid-State Circuits, Vol. 37, No.1, pp. 81-83, Jan. 2002
    [15] Cheng Jun and Chen Guican, "A CMOS Bandgap Reference Circuit," ASIC, 2001. Proceedings, 4th International Conference on 2001, pp. 271-273
    [16] Van Staveren, V. and Verhoeven, C.J.M., "Structured Electronic Design of
    
    Bandgap References, " Circuits and Systems, 2001,pp. 6. 2. 1-6. 2. 8
    [17] Cosmin Popa and Octavian Mitrea, "Micropower CMOS Bandgap Voltage Reference, " Image and Signal Processing and Analysis, 2001, pp. 502-506
    [18] Yueming Jiang and Edward K. F. Lee, "A 1. 2V Bandgap Reference Based on Trans impedance Amplifier, " IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switaerland, pp. IV-261-264
    [19] I. M. Filanovsky, "Voltage Reference Using Mutual Compensation of Mobility and Threshold Voltage Temperature Effects, " IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland, pp. V-197-200
    [20] Hironori banba, Hitoshi Shiga, Akira Umezawa, Takeshi Miyaba, Toru Tanzawa, Shigeru Atsumi and Koji Sakui, "A COMS Bandgap Reference Circuit with Sub-1-V Operation, " IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, pp. 670-674, May 1999
    [21] Anne-Johan Annama, "Low Power Bandgap References Featuring DTMOST's, " IEEE Journal of Solid-State Circuits, Vol. 34, pp. 949-955, Jul. 1999
    [22] W. Timothy Holman, "A New Temperature Compensation Technique For Bandgap Voltage References, " Circuits and Systems, vol. 1, pp. 385-388, 1996
    [23] Tham K-M and K. Nagaraj, "A Low Supply Voltage High PSRR Voltage Reference in CMOS Process," IEEE Journal of Solid-State Circuits, Vol. 30, No. 5, pp. 586-590, 1995
    [24] Inyeol Lee, Gyudong Kim and Wonchan Kim, "Exponential Curvature-Compensated BiCMOS Bandgap References," IEEE Journal of Solid-State Circuits, Vol.29, No. 11, pp. 1396-1403, Nov. 1994
    [25] Todd L. Brooks and Alan L. Westwick, "A Low-Power Differential COMS Bandgap Refernece, " IEEE International Solid-State Circuits Conference, pp. 248-249, 1994
    [26] Made gunawan, Gerard C. M. Meijer, Jeroen Fonderie and Johan H. Huijsing, "A
    
    Curvature-Corrected Low-Voltage Bandgap Reference, " IEEE Journal of Solid-State Circuits,Vol.28,, No. 6, pp. 667-670, June 1993
    [27] O. Salminen and K. Halonen, "The Higher Order Temperature Compensation of Bandgap Voltage References, " Circuits and Systems, vol. 3, pp. 1385-1391, 1992
    [28] Germano Nicollini and Daniel Senderowicz, "A COMS Bandgap Reference for Differential Signal Processing, " IEEE Journal of Solid-State Circuits, Vol. 26, NO. 1, pp. 41-50, Jan.-1991
    [29] Shu-Yuan Chin and Chung-Yu Wu, "A New Type of Curvature-Com-pensated CMOS Bandgap Voltage References, " VLSITSA, pp. 398-402, 1991
    [30] S.L. Lin and C. A. T. Salama, "A VBE(T) Model with Application to Bandgap Reference Design, " IEEE Journal of Solid-State Circuits, vol. SC-20,pp. 1283-1285, Dec. 1985
    [31] M. G. R. Degrauwe et al., "CMOS Voltage References Using Ateral Bipolar Transistors, " IEEE Journal of Solid-State Circuits, Vol. SC-20, pp. 1151-1157,Dec. 1985
    [32] J. Michejda and S. K. Kim, "A Precision CMOS Bandgap Reference, " IEEE Journal of Solid-State Circuits, vol. SC-19, pp. 1014-1021, Dec. 1984
    [33] B. S. Song and P. R. Gray, "A Precision Curvature-Compensated CMOS Bandgap Reference," IEEE Journal of Solid-State Circuits, Vol. SC-18, pp. 634-643, Dec. 1983
    [34] G. C. M. Mei jer, P. C. Schmale and K. van Zalinge, "A New Curvature-Corrected Bandgap Reference," IEEE Journal of Solid-State Circuits, vol. 17, pp. 1139-1143,Dec. 1982
    [35] Y. P. Tsividis, "Accurate Analysis of Temperature Effects in Ic-VBE Characteristics with Application to Bandgap Reference Sources, " IEEE Journal of Solid-State Circuits, vol. 15, pp. 1076-1084, Dec. 1980
    [36] R. J. Widlar, "New Developments in IC Voltage Regulators, " IEEE Journal of Solid-State Circuits, Vol. SC-6, pp. 2-7, Feb. 1971
    
    
    [37] 何捷、朱臻、王涛、李梦雄、洪志良,“一种具有温度补偿的带隙基准电压源及其输出缓冲器”,微电子学,2001年4月,第31卷第2期,107-111页
    [38] 刘韬、徐志伟,“一种高电源抑制比CMOS能隙基准电压源”,微电子学,1994年4月,第29卷第2期,128-131页
    [39] 弓小武、刘玉书,“低温漂CMOS基准电压源的设计与试制”,微电子学与计算机,1994年,第六期,11-14页
    [40] 罗福明、沈延钊、南德恒,“高精密CMOS能隙基准源的研究”,微电子学,1992年8月,第22卷第4期,39-43页
    [41] 朱秉晨,“ASIC设计中的新型CMOS基准电压组态”,微处理机,1991年,第二期,33-34页
    [42] 石寅,“模拟IC发展新趋势”,电子产品世界,2000年,第十期,18-19页
    [43] TI公司Perry Miller,Thaler公司Doug Moore,彭京湘译,“精密电压基准”,电子产品世界,2000年,第九期,29-30页
    [44] 高工、许刚,“精密基准电压源的设计思路与应用考虑”,电子产品世界,1999年,第六期,9-11页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700