纳米结构Co_3O_4电极的设计、制备与储锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池以其工作电压高、比能量大、放电电位平稳、循环寿命长和自放电小等优点,成为目前最为重要的二次电池,不仅广泛地应用于移动通讯、数码相机和笔记本电脑等便携式电子设备中,而且被认为是未来电动汽车用动力电池,太阳能、风能和潮汐能等可再生清洁能源存储用储能电池的首选。制备出具有高能量密度,高功率密度,长循环寿命和低成本的锂离子电池是实现其广泛应用的关键。
     本论文以提高锂离子电池的能量密度、循环性能和倍率性能为目标,围绕如何提高电极的面积比容量这一关键问题展开。一方面设计并制备了具有特殊形貌和结构的纳米Co3O4材料,对其结构、形貌及电极的储锂性能进行了比较系统的研究,探讨了集流体对活性材料承载量和电极面积比容量的影响;另一方面,尝试制备了具有三维互联导电网络结构的纳米集流体,并将其用于Co3O4纳米结构电极的制备,大幅提高了Co3O4电极的面积比容量。论文的主要研究内容及所获得的主要研究结果如下:
     1.采用水热生长和后热处理的方法在不锈钢片上直接制备了Co3O4纳米线阵列电极,Co3O4的平均面质量密度为0.36mg cm-2。纳米线为多孔结构,由大小为20-40nm的Co3O4颗粒构成。在充放电循环中该电极表现出卓越的循环稳定性和倍率性能。在1C的电流密度下具有1300mAh g-1的可逆容量,相应的面积比容量为0.47mAh cm-2,循环150次后可逆容量保持率达到99%以上;在6C的大电流密度下,电极在循环100次后的容量仍保持在1060mAh g-1;当电流密度为20C时,其可逆容量约为0.5C时的77%,高于目前文献报道的数值。
     2.采用水热生长和后热处理的方法在泡沫镍上直接制备了柠檬草状Co3O4纳米阵列电极,Co3O4的平均面质量密度为0.82mg cm-2。组成柠檬草状形貌的纳米线呈多孔结构,由直径仅为10-20nm的Co3O4颗粒构成,长度为2-3μm。在充放电循环中,该电极表现出了优异的循环稳定性和倍率性能。在0.5C的电流密度下循环100次后,可逆容量为981mAh g-1,相应的面积比容量达到0.8mAh cm-2;在电流密度为10C时,可逆容量约为0.5C的42%。
     3.应用简单、无模板、成本低廉且易于规模化生产的燃烧法制备出具有三维互联网状结构的纳米泡沫镍,并将其作为锂离子电池电极的集流体,用热氧化方法制备出纳米泡沫Ni/NiO核壳结构电极。该电极在0.5C的电流密度下具有940mAh g-1的可逆容量,循环200次后,可逆容量保持率高达91%以上,电极的面积比容量为2.3mAh cm-2,高于目前文献报道的数值。研究证实了以燃烧法制备的纳米泡沫镍有望可作为高性能电极的集流体
     4.在燃烧法制备的纳米泡沫镍上生长了Co3O4超薄多孔纳米片,纳米片厚度仅为8nm,孔径3-5nm,面质量密度达到了2.4mg cm-2.与平面不锈钢集流体上制备的Co3O4纳米线阵列相比,面质量密度提高了670%。Co3O4超薄多孔纳米片电极具有优异的循环稳定性,在0.5C的电流密度下,循环300次后可逆容量为912mAh g-1,面积比容量达到2.2mAh cm-2,是不锈钢片上生长Co3O4纳米线阵列电极的近5倍。纳米泡沫镍集流体的应用,在保证电极具有优异的循环稳定性和倍率性能的前提下,大幅提高了Co3O4电极的面积比容量。
Lithium ion batteries (LIB) become the most important secondary battery because of its high operating voltage, large capacity, stable discharge potential, long cycle life and low self-discharge, etc. LIB is considered to be the first choice for power battery of electric vehicles, solar and wind energy storage device in the future, not only widely used in mobile communications, laptop computers and other portable appliances. Synthesizing LIB with high energy density, high power density and long cycle life is the basis for its application in the power batteries.
     The aim in this thesis is to improve the energy density, cycle performance, and rate capability of LIB. The key point is to design the nano-micro-architectural of Co3O4active material and build a network structure of the nanostructured current collectors. Co3O4nanoarray in-situ growing in different current collectors was fabricated by a facile hydrothermal growth with subsequent calcinations. The application of nanostructured current collectors improves the areal capacity (2.1mAh cm-2) of Co3O4electrode. Compared with Ni foam current collectors, the areal capacity (0.8mAh cm-2) increases263%, compared with stainless steel current collectors, the areal capacity (0.47mAh cm-2) increases450%. The results will provide the experimental basis for future aplications in power batteries. The main contents of the paper and the corresponding results are summarized as follows:
     1. Free-standing Co3O4nanowire arrays have been fabricated on stainless steel by a hydrothermal growth with subsequent calcination. As an anode of LIBs, the unique architecture of Co3O4exhibits high capacity, excellent rate capability and cyclic stability. After several cycling, a very high stable capacity of1300mAh g-1can be obtained, delivering an areal capacity0.47mAh cm-2at a current density of1C, capacity retaining99%after150cycles. Significantly, the Co3O4anode cycled at a rate of6C exhibits stable capacity of1060mAh g-1after100cycles. Even at a rate as high as20C, the capacity retains77%of its capacity at the rate of0.5C. The Co3O4electrode maintains a high reversible capacity at the large current density.
     2. Self-supporting Co3O4with lemongrass-like morphology has been fabricated on Ni foam by in-situ growth. The lemongrass-like morphology is composed of small porous blades. As an anode of LIBs, the unique architecture of Co3O4exhibits high capacity, excellent rate capability and cyclic stability. High reversible capacity of981mAh g-1after100cycles at a rate of0.5C and high capacity of381mAh g-1(the capacity retains42%of its capacity at the rate of0.5C) at a rate as high as10C made the material a promising candidate for anode materials of high-power LIBs.
     3. We have developed a template-free method to fabricate the free-standing and ductile Ni nanofoams for application as nanostructured current collectors in LIBs. The approach was demonstrated to be facile, low cost, and large-scale produced and the prepared current collectors of the Ni nanofoams are compatible with various active materials. The Ni/NiO nanofoams electrodes with superior cycling stability and rate capability were prepared by in situ thermal oxidation of the resultant Ni nanofoams. A high reversible capacity of940mAh g-1(as high as2.3mAh cm-2in areal capacity) was obtained after200cycles at a current rate of0.5C. Since the Ni nanofoams skeletons show the excellent electrochemical stability in electrolytes, the prepared Ni nanofoams with highlights of interconnection, conductivity, and large surface area can be used as nanostructrued current collectors for high-performance electrochemical energy storage devices.
     4. Ultra-thin porous Co3O4nanosheet arrays have been synthesized on Ni nanofoam current collector. The thickness of nanosheet is8nm and the pore size is3-5nm. All the skeletons of Ni nanofoam were uniformly coated by nanosheets. The mass density of Co3O4active material is2.4mg cm-2, compared with the mass density (0.36mg cm-2) on the flat plate-type stainless steel current collector, which is improved670%. As an anode of LIBs, the ultra-thin porous Co3O4nanosheet arrays exhibits excellent rate capability and cyclic stability. The reversible capacity is912mAh g-1(as high as2.2mAh cm-2in areal capacity) after300cycles at a rate of0.5C.
引文
[1]J. M. Taraseon, M. Armand. Nature,2001,414,359-367.
    [2]K. park, Y. Cho, S. Lee, H. C. Yoo, H. K. Song, J. Cho. Energ. Environ. Sci.,2011,4, 1621-1633.
    [3]P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter. Energy Environ. Sci.,2010,3,1238-1251.
    [4]J. B. Goodenough, Y. Kim. Chem. Mater.,2010,22,587-603.
    [5]M. S. Whittingham. Chem. Rev,2004,104,4271-4301.
    [6]C. P. Grey, M. Dupre. Chem. Rev.,2004,104,4493-4512.
    [7]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业{版社,2002:1-369
    [8]M. S. Whittingham. Science,1976,192,1126-1127.
    [9]Y. Cohen, D. Aurbach, J. Phys. Chem. B 2000,104,12282-12291.
    [10]R. Bhattacharyya, B. Key, H. Chen, A. S. Best, A. F. Hollenkamp, C. P. Grey, Nat. Mater. 2010,9,504-510.
    [11]S. S. Zhang, T. R. Jow. J. Power Sources,2002,109,458-464.
    [12]Z. Shi, M. Liu, D. Naik, J. L. Gole. J. Power Sources,2001,92,70-80.
    [13]Lewandowski, A. S. Mocek.J. Power Sources,2009,92,601-609.
    [14]M. B.Armond, in Materials for Advanced Batteries,145-161 (Plenum, New York,1980).
    [15]T. Nagaura, K. Tozawa, Prog. Batteries Solar Cells 1990,9,209-217.
    [16]B. Scrosati. Electrochim. Acta,2000,45,2461-2466.
    [17]D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, Y. Cui. Nano Lett.,2008,8,3948-3952.
    [18]Y. H. Huang, J. B. Goodenough. Chem. Mater.,2008,20,7237-7241.
    [19]T. Zhang, J. Gao, L. J. Fu, L. C. Yang, Y. P. Wu, H. Q. Wu.J. Mater. Chem.2007,17, 1321-1325.
    [20]C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nano. 2008,3,31-35.
    [21]C. Li, W. Wei, S. Fang, H. Wang, Y. Zhang, Y. Gui, R. Chen, J. Power Sources,2010,195, 2939-2944.
    [22]J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang, S. J. Shi.J. Power Sources,2010,195 313-319.
    [23]B. Dunn, H. Kamath, J. M. Tarascon, Science,2011,334,928-935.
    [24]K. Mizushirna, K. C. Jones, P. J. Wiseman, J. B. Goodenough. Mater. Res. Bull.,1980,15, 783-789.
    [25]J. M. Paulsen, J. R. M. Nehaus, J. R. Dabn. J. Electrochem. Soc.,2000,147,508-516.
    [26]H. S. Kim, T. K. Ko, B. K. Na, W. I. Cho, B. W. Chao. J. Power Sources,2004,138, 232-239.
    [27]S. C. Gareia, A. C. Coueeiro, M. A. S. Rodriguez, F. Soulette, C. Julien. Solid State Ionics, 2003,156,15-26.
    [28]DePtula, W. Lada, T. Olezak, D. Wawszczak, B. Sartowska, K. C. Goretta. Ceram Int.,2007, 33(8):1617-622.
    [29]M. Julien, A. Amdouni, S. C. Gareia, A. Selmane, S. Rangan. Mater. Sci. Eng. B-Solid,2006, 128,138-150.
    [30]M. Y. Song, D. R. Mumm, C. K. Park, H. R. Park. Met. Mater. Int.,2012,18,465-472.
    [31]S. Valanarasu, R. Chandramohan, R. M. Somasundaram, S. R. Srikumar. J. Mater. Sci-Mater. El.,2011,22,151-157.
    [32]T. Ohzuku,A.Ueda, M. Nagayama, J. Electrochem. Soc.1993,140,1862-1870.
    [33]J. Cho, H. S. Jung, Y. C. Park, G. B. Kim, H. S. Lim, J. Electrochem. Soc.,2000,147,15-20.
    [34]H. Rim, H. R. Park, M. Y. Song. Ceram Int.,2012,38(7):5987-5991.
    [35]R. Sathiyamoorthi, T. Vasudevan. Mater. Res. Bull.,2007,42,1507-1517.
    [36]D. G. Tong, H. L. Cao, Q. Y. Lai, A. D. Tang, K. L. Huang, Y. He, X. Y. Ji. Mater. Chem. Phys.,2006,100(2-3):217-223.
    [37]G. T. K. Fey, J. G. Chen, V. Subramanian, T. Osaka. J. Power Sources,2002,112,384-394.
    [38]G. S. Rao, B. V. R. Chowdari, H. J. Lindner. J. Power Sources,2001,97,313-315.
    [39]M. Yoshio, H. Noguchi, J. Itoh, M. Okada, T. Mouri. J. Power Sources,2000,90,176-181.
    [40]E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou. Nano Lett.,2009,9,1045-1051.
    [41]Z. X. Yang, W. S. Yang, D. G. Evans, Y. Y. Zhao, X. Wei. J. Power Sources,2009,189, 1147-1153.
    [42]Y. Yang, C. Xie, D. R. Riccar, H. Peng, D. K. Kim, Y. Cui. Nano Lett.,2009,9,4109-4114.
    [43]J. T. Son, H. G. Kim. J. power Sources,2005,147:220-226.
    [44]J. M. Han, S. T. Myung, Y. K. Sun. J. Electrochem. Soc.,2006,153, A1290-A1295.
    [45]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, D. K. Kim. Nano. Lett.,2010,10, 3852-3956.
    [46]K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. J. Electrochem. Soc.,1997,144, 1188-1194.
    [47]K. Striebel, J. Shim, V. Srinivasan, J. Newman.J. Electrochem. Soc.,2005,152, A664-A670.
    [48]P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, M. Pasquali.J. Electrochem. Soc.,2002,1149, A886-890.
    [49]M. R. Roberts, G. Vitins, J. R. Owen. J. Power Sources,2008,179,754-762.
    [50]M. Abbate, S. M. Lala, L. A. Montoro, J. Rosolen. Electrochem. Solid St.,2005,8, A228-A229.
    [51]C. S. Wang, J. Hong. Electrochem. Solid St.,2007,10, A65-A69.
    [52]K. T. Lee, K. S. Lee. J. Power Sources,2009,189,435-439.
    [53]Y. H. Nien, R. J. Carey, J. S. Chen. J. Power Sources,2009,193,822-827.
    [54]K. Yang, Z. Deng, J. Suo. J. Power Sources,2012,201:274-279.
    [55]C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou.J. Am. Chem. Soc.,2011,133, 2132-2135.
    [56]R. Malik, F. Zhou, G. Ceder. Nat. Mater.,2011,10,587-590.
    [57]J. Wang, I. D. Raistrick, R. A. Huggins.J.lectrochem. Soc.,1986,133,457-460.
    [58]J. O. Besenhard, J. Yang, M. Winter. J. Power Sources,1997,68,87-90.
    [59]S. S. Zhang, K. Xu, T. R. Jow. Eleclrochim. Acta,2002,48,241-246.
    [60]K. Sawai, T. Ohzuku.J. Electrochem. Soc.,2003,150, A674-A678
    [61]X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung. ACSNano,2011,5,8739-8749.
    [62]D. T. Welna, L. Qu, B. E. Taylor, L. Dai, M. F. Durstock.J. Power Sources,2011,196, 1455-1460.
    [63]N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen.J. Power Sources,2009,192, 644-651.
    [64]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, J. Power Sources,2001,97, 235-239.
    [65]S. Ohara, J. Suzuki, K. Sekine, T. Takamura. J. Power Sources,2003,119,591-596.
    [66]K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon, J. W. Park.J. Power Sources,2004,129, 270-274.
    [67]S. Ohara, J. Suzuki, K. Sekine, T. Takamura. J. Power Sources,2004,136,303-306.
    [68]C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, Y. Cui. Nat. Nano. 2008,3,31-35.
    [69]L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, Y. Cui. Nano Lett.2008,9,491-495.
    [70]X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, J. N. Culver. ACS Nano, 2010,4,5366-5372.
    [71]H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Leel, A. Jackson, Y. Yang, L. Hu, Y. Cui. Nat. Nanotechnol.,2012,7,310-315.
    [72]R. Krishnan, T. M. Lu, N. Koratkar. Nano Lett.2010,11,377-384.
    [73]X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung.Adv. Energy Mater.2011,1,1079-1084.
    [74]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature,2000,407,496.
    [75]Z. Y. Wang, L. Zhou, X. W. Lou, Adv. Mater.,2012,24,1903.
    [76]J. H Liu, X. W. Liu, Adv. Mater.,2012,24,4097-4111.
    [77]U. Ko, J. I. Lee, H. S. Yang, S. Park, U. Jeong. Adv. Mater.2012,24,4415-4456.
    [78]P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon. Nat. Mater.2006,5,567.
    [79]H. G. Zhang, X. D. Yu, P. V. Braun. Nat. Nanotechnol.2011,6,277.
    [80]W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. C. Lee, R. G. Yang. Nano Lett.2012, 12,655.
    [81]Y. Yu, L. Gu, X. Y. Lang, C. B. Zhu, T. Fujita, M. W. Chen, J. Maier.Adv. Mater.2011,23, 2443.
    [82]M. Tian, W. Wang, Y. Wei, R. Yang. J. Power Sources,2012,211,46.
    [83]Y. Liu, W. Zhang, Y. Zhu, Y. Luo, Y. Xu, A. Brown, J. N. Culver, C. A. Lundgren, K. Xu, Y. Wang, C. Wang. Nano Lett.2013,13,293.
    [84]D. Liu, Z. Yang, P. Wang, F. Li, D. Wang, D. He. Nanoscale,2013,5,1917.
    [85]Y. Lu, Y. Wang, Y. Q. Zou, Z. Jiao, B. Zhao, Y. Q He and M. H. Wu, Electrochem. Commun., 2010,12,101.
    [86]M. W. Xu, F. Wang, M. S. Zhao, S. Yang and X. P. Song, Electrochim. Acta,2011,56,4876.
    [87]Y. Sun, X. Y. Feng and C. H. Chen, J. Power Sources,2011,196,784.
    [88]Y. H. Ding, P. Zhang, Z. L. Long, Y. Jiang, J. N. Huang, W. J. Yan and G. Liu, Mater. Lett., 2008,62,3410.
    [89]L. Tian, H. L Zou, J. X. Fu, X. F. Yang, Y. Wang, H. L. Guo, X. H. Fu, C. L. Liang, M. M. Wu, P. K. Shen and Q.M. Gao, Adv. Fund. Mater,2010,20,617.
    [90]J. Liu, H. Xia, L. Lu and D. F. Xue. J. Mater. Chem.,2010,20,1506.
    [91]N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Y. Hu, X. K. Kong and Q. W. Chen, JPhys Chem C,2012,116,7227.
    [92]X. Wang, X. L. Wu, Y. G. Guo, Y. Zhong, X. Cao, Y. Ma, J. Yao, Adv. Funct. Mater.2010,20, 1680-1686.
    [93]H. W. Shim, Y. H. Jin, S. D. Seo, S. H. Lee, D. W. Kim, ACS Nano,2011,5,443-3449.
    [94]Y. G. Li, B. Tan, Y. Y. Wu, Nano Lett.,2008,8,265-270.
    [95]J. Jiang, J. P. Liu, X. T. Huang, Y. Y. Li, R. M. Ding, X. X. Ji, Y. Y. Hu, Q. B. Chi, Z. H. Zhu, Cryst. Growth Des.,2010,10,70-75.
    [96]Y. Wang, H. Xia, L. Lu, J. Y.Lin, ACS Nano,2010,4,1425-1432.
    [97]Y. Q. Fan, H. B. Shao, J. M. Wang, L. Liu, J. Q. Zhang, C. N. Cao, Chem. Commun.,2011, 47,3469.
    [98]D. H. Ha, M. A. Islam, R. D. Robinson, Nano Lett.,2012,12,5122-5130.
    [99]Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. M. Cheng, ACS Nano,2010,4,3187-3194.
    [100]L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, F. Zhao,J. Mater. Chem. A,2013, 1,1141.
    [1]F. I. Pines, E. Joanni, R. Saw, M. A. Zaghete, E. Longo, J. A. Varela. Mater. Lett.2008,62: 239-242.
    [2]S. D. Bhat, P S. Niphadkar, T. R. Gaydhankar, S. V Awate, A. A. Belhekar, P N.Joshi. Micropor. Mesopor. Mater.2004,76:81-89.
    [3]S. Jinawath, D. Polchai, M. Yoshimura. Mater. Sci. Eng. C 2002,22:35-39.
    [4]A. J. Ruys, M. Wei, B. K. Milthorpe, A. Brandwood, C. C. Sorrell. J. Australas.Ceram. Soc. 1993,29:51-56.
    [5]W. Bai, K. Yu, Q. Zhang, F. Xu, D. Peng, Z. Zhu. Mater. Lett.2007,61:3469-3472.
    [6]M. Femandon, E. Bjornbom. J. Catal.2001,200:148-159.
    [7]Z. T Zhang, D. A. Blom, Z. Gai, J. R. Thompson, J. Shen, S. Dai. J. Am. Chem. Soc.2003, 125:7528-7529.
    [8]G. X. Wang, B. Wang, J. Park, J. Yang, X. P. Shen, J. Yao. Carbon.2009,47:68-72.
    [9]L. Q. Jiang, L. Gao. Chem. Mater.2003,15:2848-2853.
    [10]X. Wang, X. L. Wu, Y. G. Guo, Y. T. Zhong, X. Q. Cao, Y. Ma, J. N. Yao. Adv. Funct. Mater. 2010,20:1680-1686.
    [11]李树棠.晶体X射线衍射学基础.北京:冶金工业出版社.1990.
    [12]张建中,传铮.晶体的射线衍射基础.南京:南京大学出版社.1992.
    [13]郑顺旋.激光喇曼光谱学.上海:上海科学技术出版社.1985.
    [14]周维列,王中林.扫描电子显微学及在纳米技术中的应用.北京:高等教育出版社.2007.
    [15]付洪兰.实用电子显微镜技术.北京:高等教育出版社.2004.
    [16]孟庆昌.透射电子显微学.哈尔滨:哈尔滨工业大学.1998.
    [17]章晓中.电子显微分析.北京:清华大学出版社.2006.
    [18]赵藻藩,周性尧等.仪器分析.北京:高等教育出版社.1990.
    [19]庄全超,徐守冬,邱祥云,崔永丽,方亮,孙世刚,化学进展,2010,22,1044.
    [1]L. Qiao, X.Wang, L. Qiao, X. Sun, X. Li, Y. Zheng, D.Y. He, Nanoscale,2013,5,3037.
    [2]X. L. Sun, X. H. Wang, N. Feng, L. Qiao, X. W. Li, D. Y. He, J. Anal. Appl. Pyrol.,2013, 100,181.
    [3]L. Qiao, X. L. Sun, Z. B. Yang, X. H. Wang, Q.Wang, D. Y. He, Carbon,2013,54,29.
    [4]D. Q. Liu, Z. B. Yang, P. Wang, F. Li, D. S. Wang, D. Y. He, Nanoscale,2013,5,1917.
    [5]X. H. Wang, L. Qiao, X. L. Sun, X. W. Li, D. K. Hu, Q. Zhang, D. Y. He, J. Mater. Chem. A, 2013,1,4173.
    [6]Z. B. Yang, D. S.Wang, F. Li, D. Q. Liu, P. Wang, X. W. Li, H. W. Yue, S. L. Peng, D. Y. He, Mater. Lett.,2013,90,4.
    [7]X. W. Li, D. Li, L. Qiao, X. H. Wang, X. L. Sun, P. Wang, D. Y. He, J. Mater. Chem.,2012, 22,9189.
    [8]V. G. Hadjiev, M. N. Iliev, I. V. Vergilov, J. Phys. C:Solid State Phys.,1988,21 L199.
    [9]Y. G. Li, B. Tan and Y. Y. Wu, Nano Lett.,2008,8,265.
    [10]C. Wang, D. L Wang, Q. M. Wang and L. Wang, Electrochim. Acta,2010,55,6420.
    [11]R. Poizot, S. Laruelle, S. Gmgeon, J. Power Sources,2001,97-98:235.
    [12]R. Dedryvere, S. Laruelle, S. Grugeon, J. Electrochem. Soc.,2005,152, A689.
    [13]J. Q. Wang, G. D. Du, R. Zeng, B. Niu, Z. X. Chen, Z. P. Guo and S. X. Dou, Electrochim. Acta,2010,55,4805.
    [14]Y. Yu, Y. Shi, C. H. Chen, Nanotechnology,2007,18,055706.
    [15]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui and D. K. Kim, Nano. Lett.,2010, 10,3852.
    [16]J. Liu, H. Xia, L. Lu and D. F. Xue. J. Mater. Chem.,2010,20,1506.
    [17]N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Y. Hu, X. K. Kong and Q. W. Chen, J Phys Chem C,2012,116,7227.
    [18]Y. G. Li, B. Tan and Y. Y. Wu, Nano Lett.,2008,8,265.
    [19]Y. Q. Fan, H. B. Shao, J. M. Wang, L. Liu, J. Q. Zhang and C. N. Cao, Chem. Commun.,2011, 47,3469.
    [20]Y. Wang, H. Xia, L. Lu and J. Y. Lin, ACS Nano,2010,4,1425.
    [21]C. C. Li, Q. H. Li, L. B. Chen and T. H. Wang, J. Mater. Chem.,2011,21,11867.
    [22]C. Wang, D. L Wang, Q. M. Wang and L. Wang, Electrochim. Acta,2010,55,6420.
    [23]J. Q. Wang, G. D. Du, R. Zeng, B. Niu, Z. X. Chen, Z. P. Guo and S. X. Dou, Electrochim. Acta,2010,55,4805.
    [24]S. L. Xiong, J. S. Chen, X. W. Lou and H. C. Zeng, Adv. Fund. Mater,2012,22,861.
    [25]R. Tummala, R. K. Guduru and P. S. Mohanty, J. Power Sources,2012,199,270.
    [1]P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater.2006,5,567.
    [2]H. G. Zhang, X. D.Yu, P. V. Braun, Nat. Nanotechnol.2011,6,277.
    [3]W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. C. Lee, R. G. Yang, Nano Lett.2012, 12,655.
    [4]Y. Yu, L. Gu, X. Y. Lang, C. B. Zhu, T. Fujita, M. W. Chen, J. Maier, Adv. Mater.2011,23, 2443.
    [5]S. R. Gowda, A. L. M. Reddy, X. Zhan, H. R. Jafry, P. M. Ajayan, Nano Lett.2012,12, 1198.
    [6]M. Tian, W. Wang, Y. Wei, R. Yang, J. Power Sources 2012,211,46.
    [7]Y. Liu, W. Zhang, Y. Zhu, Y. Luo, Y. Xu, A. Brown, J. N. Culver, C. A. Lundgren, K. Xu, Y. Wang, C. Wang, Nano Lett.2013,13,293.
    [8]L. P. Ma, X. F. Li, Y. W. Lou, B. J. Xia, J. Fund. Mater.2004,35,1891.
    [9]Y. J. Fu, X. W Li, X. L. Sun, X. H. Wang, D. Q. Liu, D. Y. He, J. Mater. Chem.22,17429 (2012).
    [10]V. G. Hadjiev, M. N. Iliev, I. V. Vergilov,J. Phys. C:Solid State Phys.,1988,21 L199.
    [11]Y. G. Li, B. Tan and Y. Y. Wu, Nano Lett.,2008,8,265.
    [12]C. Wang, D. L Wang, Q. M. Wang and L. Wang, Electrochim. Acta,2010,55,6420.
    [13]J. Q. Wang, G. D. Du, R. Zeng, B. Niu, Z. X. Chen, Z. P. Guo and S. X. Dou, Electrochim. Acta,2010,55,4805.
    [14]M. W. Xu, F. Wang, M. S. Zhao, S. Yang and X. P. Song, Electrochim. Acta,2011,56,4876.
    [15]X. W. Li, D. Li, L. Qiao, X. H. Wang, X. L. Sun, P. Wang and D. Y. He,J. Mater. Chem., 2012,22,9189.
    [16]X. H. Wang, X. W. Li, X. L. Sun, F. Li, Q. M. Liu, Q. Wang and D.Y. He, J. Mater. Chem., 2011,21,3571.
    [17]L. M. Li, X. M. Yin, S. Liu, Y. G. Wang, L. B. Chen and T. H. Wang, Electrochem. Commun., 2010,12,1383.
    [18]X. H. Wang, Z. B. Yang, X. L. Sun, X. W. Li, D. S. Wang, P. Wang and D.Y. He, J. Mater. Chem.,2011,21,9988.
    [19]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui and D. K. Kim, Nano. Lett.,2010, 10,3852.
    [20]J. Liu, H. Xia, L. Lu and D. F. Xue. J. Mater. Chem.,2010,20,1506.
    [21]N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Y. Hu, X. K. Kong and Q. W. Chen, J Phys Chem C,2012,116,7227.
    [22]Y. G. Li, B. Tan and Y. Y. Wu, Nano Lett.,2008,8,265.
    [23]Y. Q. Fan, H. B. Shao, J. M. Wang, L. Liu, J. Q. Zhang and C. N. Cao, Chem. Commun.,2011, 47,3469.
    [24]Y. Wang, H. Xia, L. Lu and J. Y. Lin, ACS Nano,2010,4,1425.
    [25]C. C. Li, Q. H. Li, L. B. Chen and T. H. Wang, J. Mater. Chem.,2011,21,11867.
    [26]C. Wang, D. L Wang, Q. M. Wang and L. Wang, Electrochim. Acta,2010,55,6420.
    [27]J. Q. Wang, G. D. Du, R. Zeng, B. Niu, Z. X. Chen, Z. P. Guo and S. X. Dou, Electrochim. Acta,2010,55,4805.
    [28]S. L. Xiong, J. S. Chen, X. W. Lou and H. C. Zeng, Adv. Funct. Mater.,2012,22,861.
    [29]R. Tummala, R. K. Guduru and P. S. Mohanty, J. Power Sources,2012,199,270.
    [1]X. H. Wang, L. Qiao, X. L. Sun, X.W.Li, D. K. Hu, Q. Zhang and Deyan He,J. Mater. Chem. A,2013,1,4173.
    [2]P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M Tarascon, Nat. Mater.2006,5,567.
    [3]H. G. Zhang, X. D. Yu, P. V. Braun, Nat. Nanotechnol.2011,6,277.
    [4]W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. C. Lee, R. G. Yang, Nano Lett.2012,12, 655.
    [5]X. Li, A. Dhanabalan, K. Bechtold, C. Wang, Electrochem. Commun.2010,12,1222.
    [6]R. E. Dietz, G. I. Parisot, A. E. Meixner, Phys. Rev. B 1971,4,2302.
    [7]B. Varghese, M. V. Reddy, Z. Yanwu; C. S. Lit, T. C. Hoong, G. V. S. Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim, C. H. Sow, Chem. Mater.2008,20,3360.
    [8]X. H. Huang, J. P. Tu, B. Zhang, C. Q. Zhang, Y. Li, Y. F. Yuan, H. M. Wu,J. Power Sources, 2006,161,541.
    [9]S. G. Hwang, G. O. Kim, S. R. Yun, K. S. Ryu, Eleclrochim. Acta,2012,78,406.
    [10]Y. J. Mai, J. P. Tu, X. H. Xia, C. D. Gu, X. L. Wang, J. Power Sources,2011,196,6388.
    [11]Y. Xia, W. Zhang, Z. Xiao, H. Huang, H. Zeng, X. Chen, F. Chen, Y. Gan, X. Tao,J. Mater. Chem.2012,22,9209.
    [12]J. Maier, Nat. Mater.2005,4,805.
    [13]W. Ni, H. B. Wu, B. Wang, R. Xu, X. W. Lou, Small 2012,8,3432.
    [14]Y. Yu, Y. Shi, C. H. Chen, Nanotechnology,2007,18,055706.
    [15]S. B. Ni, T. Li, X. Lv, X. Yang, L. Zhang, Electrochim. Acta,2013,91,267.
    [16]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui and D. K. Kim, Nano. Lett.,2010, 10,3852.
    [1]X. Y. Xue, S. Yuan, L. L. Xing, Z. H. Chen, B. Hea, Y. J. Chen, Chem. Commun.,2011,47, 4718.
    [2]Y. G. Li, B. Tan and Y. Y. Wu, Nano Lett.,2008,8,265.
    [3]C. Wang, D. L Wang, Q. M. Wang and L. Wang, Electrochim. Acta,2010,55,6420.
    [4]R. Poizot, S. Laruelle, S. Gmgeon, J. Power Sources,2001,97-98:235.
    [5]J. Q. Wang, G. D. Du, R. Zeng, B. Niu, Z. X. Chen, Z. P. Guo and S. X. Dou, Electrochim. Acta,2010,55,4805.
    [6]J. Liu, H. Xia, L. Lu and D. F. Xue. J. Mater. Chem.,2010,20,1506.
    [7]N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Y. Hu, X. K. Kong and Q. W. Chen, J Phys Chem C,2012,116,7227.
    [8]Y. G. Li, B. Tan and Y. Y. Wu, Nano Lett.,2008,8,265.
    [9]Y. Q. Fan, H. B. Shao, J. M. Wang, L. Liu, J. Q. Zhang and C. N. Cao, Chem. Commun.,2011, 47,3469.
    [10]Y. Wang, H. Xia, L. Lu and J. Y. Lin, ACS Nano,2010,4,1425.
    [11]C. C. Li, Q. H. Li, L. B. Chen and T. H. Wang, J. Mater. Chem.,2011,21,11867.
    [12]C. Wang, D. L Wang, Q. M. Wang and L. Wang, Electrochim. Acta,2010,55,6420.
    [13]J. Q. Wang, G. D. Du, R. Zeng, B. Niu, Z. X. Chen, Z. P. Guo and S. X. Dou, Electrochim. Acta,2010,55,4805.
    [14]S. L. Xiong, J. S. Chen, X. W. Lou and H. C. Zeng, Adv. Funct. Mater.,2012,22,861.
    [15]R. Tummala, R. K. Guduru and P. S. Mohanty, J. Power Sources,2012,199,270.
    [16]Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. M. Cheng, Nano Lett., 2010,4,3187-3194.
    [17]L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, F. Zhao, J. Mater. Chem. A,2013,1, 1141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700