前B细胞集落促进因子诱导正常人及重型先天性中性粒细胞减少症患者髓系细胞分化功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究前B细胞集落促进因子(Pre-B-cell colony-enhancing factor,PBEF)诱导正常人以及重型先天性中性粒细胞减少症患者(severe congenital neutropenia,SCN)的CD34~+细胞向髓系细胞分化功能。
     方法:
     1、利用激光辅助骨髓涂片单个细胞采集技术及逆转录实时定量PCR方法检测正常人骨髓中不同分化阶段髓系细胞PBEF表达水平。
     2、用逆转录实时定量PCR及ELISA方法检测正常人的髓系细胞经粒细胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)体内、外刺激后PBEF mRNA表达水平、细胞培养液或血浆中PBEF蛋白质水平,同时检测细胞烟酰胺腺嘌呤二核苷酸(NAD~+)合成水平的变化,研究G-CSF刺激与PBEF表达、NAD~+合成的关系。
     3、用人类重组PBEF体外刺激正常人的CD34~+细胞后,通过光学显微镜观察细胞形态学的变化、流式细胞术检测表面抗原CD11b、CD15的表达以及逆转录实时定量PCR检测细胞C/EBPa、C/EBPe、PU.1和ELA2等基因mRNA的表达,研究PBEF胞外刺激与CD34~+细胞向髓系分化的关系。
     4、正常人的CD34~+细胞经由Lentivirus转导PBEF基因后,光学显微镜观察细胞形态学的变化、流式细胞术检测表面抗原CD11b、CD15的表达变化以及逆转录实时定量PCR检测细胞C/EBPa、C/EBPe、PU.1和ELA2等基因mRNA的表达变化,研究PBEF胞内过度表达与CD34~+细胞向髓系分化的关系。
     5、用逆转录实时定量PCR、ELISA方法以及共聚焦荧光显微镜断层扫描技术检测经长期G-CSF治疗的SCN病人髓系细胞的PBEF mRNA、胞内蛋白质水平以及血浆蛋白质水平的变化,研究G-CSF治疗后SCN病人髓系细胞“成熟障碍”的纠正与PBEF表达变化的关系
Objective:
    To investigate the function of PBEF induces myeloid differentiation of CD34+ cells from healthy individuals and patients with severe congenital neutropenia.
    Methods:
    1.Using laser-assisted single-cell picking and quantitative real-time PCR technique, we analyzed the expression of PBEF gene in different hierarchy myeloid cells (myeloblasts, promyelocytes, myelocytes,, metamyelocytes) and mature granulocytes from bone marrow of healthy individuals.
    2.To evaluate the relationship between PBEF production and the stimulation of G-CSF in healthy individuals . We analysed PBEF mRNA and protein (ELISA method) expression in CD33+ bone marrow myeloid progenitors and polymorphonuclear leucocyte(PMNs) from healthy volunteers treated with G-CSF or their cells treated in vitro experiments, and also measured NAD+ in the cells.
    3. The ability of PBEF to induce myeloid differentiation of healthy individuals was assessed by in vitro experiments:
    ①. Treatment of CD34+ bone marrow progenitors with recombinant human PBEF, FACS analysed CD11b and CD15 expression on the cells , quantitative real-time PCR analysed C/EBPa, C/EBPε, PU.1 and ELA2 mRNA expression of the cells, analysed cells morphology using cytospin's staining with hematoxilin-eosin, and also measured NAD+ in the cells.
    ②. After lentiviral transduction of CD34+ cells from the healthy individuals,
引文
1. Michael Heuser. Arnold Ganser. Colony-stimulating factors in the management of neutropenia and its complications. Ann Hematol, 2005, 84: 697-708
    2. Bensinger W, Appelbaum F, Rowley S, et al. Factors that in-uence collection and engraftment of autologous peripheral-blood stem cells. Journal of Clinical Oncology, 1995, 13: 2547-2555.
    3. Weaver C H, Hazelton B, Birch R, et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood, 1995, 86: 3961-3969.
    4. Zeidler C, Welte K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol. 2002; 39: 82-88.
    5. Lawrence J. Druhan, Jing Ai, Pam Massullo, et al. Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. BLOOD, 2005; 105(2): 584-591
    6. Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Molecular and Cellular Biology, 1994, 14: 1431-1437.
    7. Ognjanovic S. Bao S. Yamamoto S, et al. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J. Mol. Endocrinol, 2001, 26(2): 107-117
    8. Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol, 2002, 32: 3225-3234.
    9. Rongvaux A, Andris F, Van Gool F, et al. Reconstructing eukaryotic NAD metabolism. Bioessays, 2003,25: 683- 690.
    
    10. Magni G, Amici A, Emanuelli M, et al. Enzymology of NAD homeostasis in man. Cell Mol Life Sci, 2004,61: 19-34.
    
    11. Kitani T, Okuno S, Fujisawa H, et al.Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett, 2003,544: 74-78
    
    12. Scherr M, Battmer K,Ulrike Blomer, et al. Lentiviral gene transfer into peripheral blood-derived CD34+ NOD/SCID-repopulating cells. Blood. 2002, 99: 709-712.
    
    13. Scherr, M., Battmer, K., Ganser, A. et al. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle. 2003, 2: 251-257.
    
    14. Savill J S, Wyllie A H, Henson J E et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 1989, 83: 865-875.
    
    15. Martin, P.R., Shea, R.J., and Mulks, M.H. Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J. Bacteriol. 2001,183:1168-1174.
    
    16. Subrahmanyam, Y.V.B.K., et al. RNA expression patterns change dramatically in human neutrophils exposed to bacteria. Blood. 2001,97:2457-2468.
    
    
    
    17. Nau, GJ., et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 2002,99:1503-1508.
    
    18. Xu, L.-G, Wu, M., Hu, J., Zhai, Z., and Shu, H.-B. Identification of downstream genes up-regulated by the tumor necrosis factor family member TALL-1. J. Leukoc. Biol. 2002,72:410-416.
    
    
    19. Ye S Q, Simon B, Maloney JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am. J. Respir. Crit. Care Med. 2005, 171 (4): 361-370.
    20. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest, 2004, 113: 1318-1327.
    21. Welte K, Platzer E, Lu L, et al. Purification and biochemical characterization of human pluripotent hematopoietic colonystimulating factor. Proc Natl Acad Sci USA. 1985, 82(5): 1526-30.
    22. Daniel R Barreda, Patrick C Hanington, Miodrag Belosevic. Regulation of myeloid development and function by colony stimulating factors. Developmental and Comparative Immunology. 2004, 28: 509-554
    23. Hammond WP, Csiba E, Canin A, et al. Chronic neutropenia. A new canine model induced by human granulocyte colonystimulating factor. J Clin Invest, 1991, 87(2): 704-10.
    24. Kerstin Mempel, Torsten Pietsch, Thomas Menzel, et al., Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood, 1991, 77: 1919-1922
    25. U Kyas, T Pietsch and K Welte. Expression of receptors for granulocyte colony-stimulating factor on neutrophils from patients with severe congenital neutropenia and cyclic neutropenia. Blood, 1992, 79: 1144-1147
    26. Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur. J. Biochem. 2000. 267: 1550-1564.
    27. D'Amours D, Desnoyers S, D'Silva I, et al. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 1999. 342: 249-268.
    28. Burkle A. Physiology and pathophysiology of poly(ADPribosyl)ation. Bioessays 2001.23: 795-806.
    29. Ziegler M and Oei S L. A cellular survival switch: poly(ADPribosyl)ation stimulates DNA repair and silences transcription. Bioessays 2001. 23: 543-548.
    
    30. Oliver F J, Menissier-de Murcia J, Nacci C, et al. Resistance to endotoxic shock as a consequence of defective NF-k B activation in poly (ADP-ribose)polymerase-1 deficient mice. EMBO J. 1999. 18: 4446-4454.
    
    31. Rusinko N and Lee H C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 1989. 264: 11725-11731.
    
    32. Lee HC and Aarhus RA. Derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADPribose. J. Biol. Chem. 1995. 270: 2152-2157.
    
    33. Guse A H, da Silva C P, Berg I, et al. Regulation of calcium signaling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 1999. 398: 70-73.
    
    34. Berg I, Potter B V, Mayr G W, et al. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+-signaling. J. Cell. Biol. 2000. 150:581-588.
    
    35. Eric van der Veer, Zengxuan Nong, Caroline O'Neil, et al. Pre-B-cell Colony-Enhancing Factor Regulates Vascular Smooth Muscle Maturation Through a NAD+-Dependent Mechanism: Recognition of a New Mechanism for Cell Diversity and Redox Regulation of Vascular Tone and Remodeling . Circ. Res., 2005,97(1): 4 - 7.
    
    36. Hug C & Lodish HF Visfatin: a new adipokine. Science , 2005, 307:366-367
    
    37. Simona Ognjanovic, Tercia L. Ku, Gillian D. Pre-B-cell colony-enhancing factor is a secreted cytokine-like protein from the human amniotic epithelium. American Journal of Obstetrics and Gynecology , 2005, 193 : 273-82.
    38. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005, 307 426-430
    
    39. Dale DC, Person RE, Bolyard AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000;96:2317-22.
    
    40. Person RE, Li FQ, Duan Z, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34:308-312.
    
    41. Koenraad Devriendt, Annette S. Kim, Gert Mathijs et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat. Genet, 2001, 27: 313-317.
    
    42. Dong F, Brynes RK, Tidow N, et al. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995;333:487-493.
    
    43. De Vries A, Peketh L, Joshua H. Leukaemia and agranulocytosis in a member of a family with hereditary leukopenia. Acta Med Orient 1958; 17: 26-32.
    
    44. Gilman PA, Jackson DP, Guild HG Congenital agranulocytosis: prolonged survival and terminal acute leukemia. Blood 1970;36:576-85.
    
    45. Rosen R, Kang S. Congenital agranulocytosis terminating in acute myelomonocytic leukemia. J Pediatr 1979;94: 406-8.
    
    46. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow- up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 2003 ;72:82-93.
    
    47. Freedman MH, Bonilla MA, Fier C, et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital. Acta Paediatr Scand 1956;45 Suppl 105:1.
    
    48. Germeshausen M, Ballmaier M, Schulze H, et al. Granulocyte colony- stimulating factor receptor mutations in a patient with acute lymphoblastic leukemia secondary to severe congenital neutropenia. Blood 2001;97:829-30.
    
    49. Nibu K, Yanai F, Hirota O, et al. Acute monocytic leukemia in a patient with severe congenital neutropenia after treatment with recombinant human granulocyte colony-stimulating factor. J Pediatr Hematol Oncol 1996;18:422-4.
    
    50. Weinblatt ME, Scimeca P, James-Herry A, et al. Transformation of congenital neutropenia into monosomy 7 and acute nonlymphoblastic leukemia in a child treated with granulocyte colony-stimulating factor. J Pediatr 1995;126:263-5.
    
    51. Wong WY, Williams D, Slovak ML, et al. Terminal acute myelogenous leukemia in a patient with congenital agranulocytosis. Am J Hematol 1993; 43:133-8.
    
    52. Smith OP, Reeves BR, Kempski HM, et al. Kostmann's disease, recombinant HuG-CSF, monosomy 7 and MDS/AML. Br J Haematol 1995; 91:150-3
    
    53. Bessho M, Hotta T, Ohyashiki K, et al. Multicenter prospective study of clonal complications in adult aplastic anemia patients following recombinant human granulocyte colony-stimulating factor (lenograstim) administration. Int J Hematol 2003;77:152-8.
    
    54. Relling MV, Boyett JM, Blanco JG, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 2003; 101:3862-7.
    
    55. Simon E. Hufton, Peter T. Moerkerk, Ricardo Brandwijk, et al. A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett, 1999,463(1-2):77-82.
    
    56. Judy R. van Beijnum, Peter T.M. Moerkerk, Andrea J. Gerbers, et al.Target validation for genomics using peptide-specific phage antibodies: A study of five gene products overexpressed in colorectal cancer. Int J Cancer, 2002, 101(2):118-27.
    
    57. Maria Aparecida Azevedo Koike Folgueira, Dirce Maria Carraro, Helena Brentani, et al. Gene Expression Profile Associated with Response to Doxorubicin-Based Therapy in Breast Cancer. Clin Cancer Res,2005,ll(20):7434-7443
    1. Akashi K, Traver D, Miyamoto T, et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000, 404: 193-197.
    2. Traver D, Miyamoto T, Christensen J, et al. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood. 2001, 98: 627-635.
    3. Lekstrom-Himes, JA. The role of C/EBP in the terminal stages of granulocyte differentiation. Stem Ceils. 2001, 19: 125-133.
    4. Bainton DF, Ullyot JL, Farquhar MG, et al. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J. Exp. Med. 1971, 134: 907-934.
    5. Borregaard Niels, Theilgaard-Monch Kim, Sorensen Ole E, et al. Regulation of human neutrophil granule protein expression. Ourr Opin Hematol. 2001, 8(1): 23-27
    6. Daniel R Barreda, Patrick C Hanington, Miodrag Belosevic. Regulation of myeloid development and function by colony stimulating factors. Developmental and Comparative Immunology. 2004, 28: 509-554
    7. Hickstein DD, Ozols J, Williams SA, et al. J. Biol. Chem. 1987, 262: 5576-5580.
    8. Hickstein DD, Hickey MJ, Ozols J, et al. Proc. Natl Acad Sci USA, 1989, 86: 257-261.
    9. Miller L J, Schwarting R, Springer T A. J Immunol, 1986, 137: 2891-2900.
    10. Welte K, Platzer E, Lu L, et al. Purification and biochemical characterization of human pluripotent hematopoietic colonystimulating factor. Proc Natl Acad Sci USA. 1985, 82(5): 1526-30.
    11. Nomura H, I Imazeki, M Oheda et al. Purification and characterization of human granulocyte colony-stimulating factor (G-CSF). EMBO J. 1986, 5: 871-876.
    12. Souza L M, T C Boone, J Gabrilove et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic cells. Science. 1986,232:61-65.
    
    13. Nagata S, M Tsuchiya, S Asano et al. The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor.EMBO J, 1986,5:575-581.
    
    14. Orstyn G, G J Lieschke, W Sheridan, et al. Pharmacology of the colony- stimulating factors. Trends Pharmacol. Sci. 1989,10:154-159.
    
    16. Demetri GD, Griffin JD. Granulocyte colonystimulating factor and its receptor. Blood. 1991,78:2791-2808.
    
    17. Akbarzadeh S, Layton JE. Granulocyte colony-stimulating factor receptor: structure and function. Vitam Horm. 2001 ;63:159-94.
    
    18. Uzumaki H, Okabe T, Sasaki N, et al. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proc Natl Acad Sci USA. 1989,86(23):9323-6.
    
    19. Steinman RA, Tweardy DJ. Granulocyte colony-stimulating factor receptor mRNA upregulation is an immediate early marker of myeloid differentiation and exhibits dysfunctional regulation in leukemic cells. Blood. 1994; 83(1): 119-27.
    
    20. Tkatch LS, Rubin KA, Ziegler SF, et al. Modulation of human G-CSF receptor mRNA and protein in normal and leukemic myeloid cells by G-CSF and retinoic acid. J Leukoc Biol.1995,57(6):964-71.
    
    21. Avalos BR, Gasson JC, Hedvat C, et al. Human granulocyte colony-stimulating factor: biologic activities and receptor characterization on hematopoietic cells and small cell lung cancer cell lines. Blood. 1990;75(4):851-7.
    
    22. Budel LM, Touw IP, Delwel R, et al. Granulocyte colonystimulating factor receptors in human acute myelocytic leukemia. Blood. 1989;74(8):2668-73.
    
    23. Hanazono Y, Hosoi T, Kuwaki T, et al. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils. Exp Hematol. 1990; 18(10): 1097-103.
    24. Smith LT, Hohaus S, Gonzalez DA, et al. PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood. 1996, 88(4): 1234-47.
    25. Seto Y, Fukunaga R, Nagata S. Chromosomal gene organization of the human granulocyte colony-stimulating factor receptor. J Immunol. 1992, 148(1): 259-66
    26. Inazawa J, Fukunaga R, Seto Y, et al. Assignment of the human granulocyte colony-stimulating factor receptor gene (CSF3R) to chromosome 1 at region p35-p34.3. Genomics. 1991, 10(4): 1075-8.
    27. Hammond WP, Csiba E, Canin A, et al. Chronic neutropenia. A new canine model induced by human granulocyte colonystimulating factor. J Clin Invest, 1991, 87(2): 704-10.
    28. Watari K, Asano S, Shirafuji N, et al. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood. 1989, 73(1): 117-22
    29. Daniel R Barreda, Patrick C Hanington, Miodrag Belosevic. Regulation of myeloid development and function by colony stimulating factors. Developmental and Comparative Immunology. 2004, 28: 509-554
    30. Platzer E, Welte K, Gabrilove JL, et al. Biological activities of a human pluripotent hemopoietic colony stimulating factor on normal and leukemic cells. J Exp Med. 1985, 162(6): 1788-801.
    31. Sato N, Asano S, Koeffler HP, et al. Identiflcation of neutrophil alkaline phosphatase-inducing factor in cystic fluid of a human squamous cell carcinoma as granulocyte colony-stimulating factor. J Cell Physiol. 1988, 137(2): 272-6.
    32. Morishita K, Tsuchiya M, Asano S, et al. Chromosomal gene structure of human myeloperoxidase and regulation of its expression by granulocyte colony-stimulating factor. J Biol Chem, 1987, 262(31): 15208-13.
    33. Teshima T, Shibuya T, Harada M, et al. Effects of G-CSF,GM-CSF, and IL-5 on nuclear segmentation of neutrophils and eosinophils in congenital or acquired Pelger-Huet anomaly. Exp Hematol. 1991,19(5):322-5.
    
    34. Michael Heuser, Arnold Ganser. Colony-stimulating factors in the management of neutropenia and its complications. Ann Hematol.2005,84: 697-708
    
    35. Weaver CH, Hazelton B, Birch R, et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood,1995, 86: 3961-3969.
    
    36. Bensinger W, Appelbaum F, Rowley S, et al.Factors that influence collection and engraftment of autologous peripheral-blood stem cells. Journal of Clinical Oncology. 1995,13: 2547-2555.
    
    37. Zeidler C, Welte K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol. 2002, 39: 82-88.
    1. Kostman R. Infantile genetic agranulocytosis. Acta Paediatr Scand. 1956; Suppl 105:1-78
    
    2. Kostmann R. Infantile genetic agranulocytosis .Acta Paediatr Scand 1975; 64: 362-268
    
    3. Briar GL, Parry HF, Ansari BM. Dominantly inherited severe congenital neutropenia. J Infect. 1996;33:123-6.
    
    4. Jeha S, Chan KW, Aprikyan AG, et al. Spontaneous remission of granulocyte-colony stimulating factor associated leukemia in a child with severe congenital neutropenia. Blood 2000;96:3647-9.
    
    5. Welte K, Boxer LA. Severe chronic neutropenia: pathophysiology and therapy. Semin Hematol 1997;34:267-78.
    
    6. Dale DC, Person RE, Bolyard AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000;96:2317-22.
    
    7. Zeidler C, L. Boxer, D. C. Dale, et al. Management of kostmann syndrome in the g-csf era. British Journal of Haematology. 2000;109(3):490
    
    8. Zeidler C, Welte K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol. 2002;39:82-88
    
    9. Rossman PL, Hummer GJ. Chronic neutropenia in siblings. The effect of steroids. Ann Intern Med 1960;52:242-253.
    
    10. Deinhard AS, Page AR. A study of steroid induced granulocytosis in a patient with chronic benign neutropenia of childhood. Br J Haematol 1974;28:333-345.
    
    11. Barrett AJ, Griscelli C, Buriot D, et al.Lithium therapy in congenital neutropenia. Lancet 1977;2:1357-1358.
    
    12. Chan HSL, Freedman MH, Saunders EF. Lithium therapy of children with chronic neutropenia. Am J Med 1981;70:1073-1077.
    
    
    13. Nagata S, Tsuchiya M, Asano S, et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature, 1986, 319, 415-418.
    14. Souza L, Boone T, Gabrilove J, et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science, 1986, 232, 61-65.
    15. Dale D, Bonilla M, Davis M, et al: A randomized controlled phase Ⅲ trial of recombinant human granulocyte colonystimulating factor (Filgrastim) for treatment of severe chronic neutropenia. Blood, 1993, 81: 2496-2502
    16. Bonilla M, Dale D, Zeidler C, et al: Long-term safety of treatment with recombinant human granulocyte colonystimulating factor (r-metHuG-CSF) in patients with severe congenital neutropenias. Br J Hematol., 1994, 88: 723-730
    17. Welte, K. & Dale, D. Pathophysiology and treatment of severe chronic neutropenia. Annals of Hematology, 1996, 72: 158-165.
    18. Freedman, M. H. Safety of long-term administration of granulocyte colony-stimulating factor for severe chronic neutropenia. Current Opinion in Hematology, 1997, 4: 217-224.
    19. Zeidler C, Vogel R, Wyres M, et al: Beneficial effects of stem cell factor (SCF) in children with severe congenital neutropenias refractory to G-CSF. Blood, 1998, 92: 380a, (suppl 1, abstr)
    20. Welte K, Zeidler C, Reiter A, et al: Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia. Blood, 1990, 75: 1056-1063,
    21. Zeidler C, Welte K, Barak Y, et al: Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood, 2000, 95: 1195-8,
    22. Lawrence J. Druhan, Jing Ai, Pam Massullo, et al. Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. Blood, 2005; 105(2): 584-591
    23. De Vries A, Peketh L, Joshua H. Leukaemia and agranulocytosis in a member of a family with hereditary leukopenia. Acta Med Orient 1958; 17: 26-32.
    24. Gilman PA, Jackson DP, Guild HG. Congenital agranulocytosis: prolonged survival and terminal acute leukemia. Blood 1970; 36: 576-85.
    25. Rosen R, Kang S. Congenital agranulocytosis terminating in acute myelomonocytic leukemia. J Pediatr 1979; 94: 406-8.
    26. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow- up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 2003; 72: 82-93.
    27. Freedman MH, Bonilla MA, Fier C, et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital. Acta Paediatr Stand 1956; 45 Suppl 105: 1.
    28. Germeshausen M, Ballmaier M, Schulze H, et al. Granulocyte colonystimulating factor receptor mutations in a patient with acute lymphoblastic leukemia secondary to severe congenital neutropenia. Blood 2001; 97: 829-30.
    29. Nibu K, Yanai F, Hirota O, et al. Acute monocytic leukemia in a patient with severe congenital neutropenia after treatment with recombinant human granulocyte colony-stimulating factor. J Pediatr Hematol Oncol 1996; 18: 422-4.
    30. Weinblatt ME, Scimeca P, James-Herry A, et al. Transformation of congenital neutropenia into monosomy 7 and acute nonlymphoblastic leukemia in a child treated with granulocyte colony-stimulating factor. J Pediatr 1995; 126: 263-5.
    31. Wong WY, Williams D, Slovak ML, et al. Terminal acute myelogenous leukemia in a patient with congenital agranulocytosis. Am J Hematol 1993; 43: 133-8.
    32. Smith OP, Reeves BR, Kempski HM, et al. Kostmann's disease, recombinant HuG-CSF, monosomy 7 and MDS/AML. Br J Haematol 1995; 91:150-3
    
    33. Bessho M, Hotta T, Ohyashiki K, et al. Multicenter prospective study of clonal complications in adult aplastic anemia patients following recombinant human granulocyte colony-stimulating factor (lenograstim) administration. Int J Hematol 2003 ;77:152-8.
    
    34. Relling MV, Boyett JM, Blanco JG, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 2003; 101:3862-7.
    
    35. Donadieu J, Leblanc T, Bader Meunier B, et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica. 2005 90(1):45-53
    
    36. Yakisan E, Schirg E, Zeidler C, et al: High incidence of significant bone loss in patients with severe congenital neutropenia (Kostmann's syndrome). J Pediatr. 1997,131:592-597
    
    37. Leale M. Recurrent furunculosis in an infant showing an unusual blood picture JAMA 1910;54:1854-8.
    
    38. Reiman HA, de Berardinis CT. Periodic (cyclic) neutropenia, an entity: a collection of sixteen cases. Blood 1949;4:1109-1113.
    
    39. Morley AA, Carew JP, Baikie AG Familial cyclical neutropenia. Br J Haematol 1967;13:719-738
    
    40. Nancy Berliner, Marshall Horwitz and Thomas P. Loughran J .Congenital and Acquired Neutropenia. Hematology. 2004,62-77
    
    41. Palmer SE, Stephens K, Dale DC. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis. Am J Med Genet 1996;66:413-422.
    
    
    42. Wright DG, Dale DC, Fauci AS, Wolff SM. Human cyclic neutropenia: clinical review and long-term follow-up of patients. Medicine (Baltimore) 1981; 60:1-13.
    
    43. Dale DC, Hammond WP 4th. Cyclic neutropenia: a clinical review. Blood Rev 1988;2:178-85.
    
    44. Hammond WP 4th, Price TH, Souza LM, et al. Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N Engl J Med 1989; 320: 1306-11.
    
    45. Dale DC, Bolyard AA, Aprikyan A. Cyclic neutropenia. Semin Hematol 2002;39:89-94
    
    46. Horwitz M, Benson KF, Person RE, et al. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 1999;23:433-6.
    
    47. Dale DC, Person RE, Bolyard AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000; 96:2317-22.
    
    48. Ancliff PJ, Gale RE, Liesner R, et al. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease. Blood 2001 ;98:2645-50.
    
    49. Germeshausen M, Schulze H, Ballmaier M, , et al. Mutations in the gene encoding neutrophil elastase (ELA2) are not sufficient to cause the phenotype of congenital neutropenia. Br J Haematol 2001; 115:222-4.
    
    50. Ancliff PJ, Gale RE, Watts MJ, , et al. Paternal mosaicism proves the pathogenic nature of mutations in neutrophil elastase in severe congenital neutropenia. Blood 2002; 100:707-9.
    
    
    
    51. Glader BE, Guinan E, Lipton JM, ,et al. Congenital bone marrow failure syndromes: Diagnosis and therapeutic strategies. In: McArthur JR, Schechter GP, Schrier SL, eds. American Society of Hematology Education Program Book. Washington DC: American Society of Hematology 1998:384-403.
    52. Horwitz M, Li F-Q, Albani D, et al. Leukemia in severe ongenital neutropenia: defective proteolysis suggests new athways to malignancy and opportunities for therapy. Cancer Invest. 2003;21:577-585.
    
    53. Melvin H. Freedman, Mary Ann Bonilla, Carol Fier, et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood.2000;96:429-436.
    
    54. Dror Y, Freedman MH. Shwachman-Diamond syndrome marrow cells show abnormally increased apoptosis mediated through the Fas pathway. Blood 2001;97:3011-3016
    
    55. Smith, O.P., Hann, I.M., Chessels, J.M., et al. Haematological abnormalities in Shwachman-Diamond syndrome. British Journal of Haematology, 1996, 94: 279-284.
    
    56. Aggett, P.J., Cavanagh, N.P.C., Matthew, D. J., et al. Shwachman's syndrome. Archives of Diseases in Childhood, 19801,55 : 331-347
    
    57. Ginzberg, H., Shin, J., Ellis, L. , et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. Journal of Pediatrics, 1999,135: 81-88.
    
    58. Visser G, Rake JP, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type 1b: results of the European Study on Glycogen Storage Disease type I. J Pediatr, 2000; 173:187-191.
    
    59. Veiga-da-Cunha M, Gerin I, Chen YT, et al. The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. Eur J Hum Genet 1999;7:717-723.
    
    60. Schroten, H., Roesler, J., Breidenbach, T.,, et al. () G-CSF and GM-CSF for treatment of neutropenia in glycogen storage disease type lb. Journal of Pediatrics, 1991,119: 748-754.
    
    61. McCawley, L.J., Korchak, H.M., Douglas, S.D , et al. In vitro and in vivo effects of granulocyte-stimulating factor on neutrophils in glycogen storage disease type 1b: granulocyte colony-stimulating factor therapy corrects the neutropenia and the defects in respiratory burst activity and Ca~(2+) mobilization. Pediatrics Research, 1994,35: 84-90.
    
    62. Aprikyan AA, Liles WC, Park JR, et al. Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood 2000;95:320-327.
    
    63. Bux, J., Behrens, G, Jaeger, G, et al. () Diagnosis and clinical course of autoimmune neutropenia in infancy: analysis of 240 cases. Blood, 1998, 91: 181-186.
    
    64. Mempel K, Pietsch T, Menzel T,et al. Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood, 1991, 77:1919-1922.
    
    65. Kyas U, Pietsch T, Welte K. Expression of receptors for granulocyte-colony stimulating factor on neutrophils from patients with severe congenital neutropenia and cyclic neutropenia. Blood, 1992, 79: 1144-1147.
    
    66. Aprikyan AAG, Liles WC, Person RE, et al. Accelerated apoptosis of bone marrow progenitor cells in severe congenital neutropenia . Blood, 2000, 94:482-486
    
    67. Goran Carlsson, Andrew A G Aprikyan, Ramin Tehranchi, et al. Kostmann syndrome: severe congenital neutropenia associated with defective expression of Bcl-2, constitutive mitochondrial release of cytochrome c, and excessive apoptosis of myeloid progenitor cells. Blood, 2004, 103:3355-3361
    
    68. Carlsson G, Aprikyan AA, Tehranchi R, et al. Kostmann syndrome: severe congenital neutropenia associated with defective expression of Bcl-2, constitutive mitochondrial release of cytochrome c, and excessive apoptosis of myeloid progenitor cells. Blood, 2004,103, 3355-3361.
    
    69. Cario G, Skokowa J, Wang Z, et al. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factor. Br J Haematol, 2005,129(2):275-8
    
    70. Larsen A, Davis T, Curtis BM, et al. Expression cloning of a human granulocyte colony-stimulating factor receptor: a structural mosaic of hematopoietin receptor, immunoglobulin, and fibronectin domains. J Exp Med. 1990;172:1559-1570.
    
    71. Fukunaga R, Ishizaka-Ikeda E, Pan CX, et al. Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J.1991;10:2855-2865.
    
    72. Hammacher A, Wijdenes J, Hilton DJ, et al. Ligand-specific utilization of the extracellular membrane-proximal region of the gp130-related signalling receptors. Biochem J. 2000;345(Pt 1):25-32.
    
    73. Dong F, van Buitenen C, Pouwels K, et al. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol. 1993; 13: 7774-7781.
    
    74. Ziegler SF, Bird TA, Morella KK, et al. Distinct regions of the human granulocyte-colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Mol Cell Biol. 1993;13:2384-2390.
    
    75. Baumann H, Gearing D, Ziegler SF. Signaling by the cytoplasmic domain of hematopoietin receptors involves two distinguishable mechanisms in hepatic cells. J Biol Chem. 1994;269:16297-16304.
    
    76. Hunter MG, Avalos BR. Deletion of a critical internalization domain in the G-CSFR in acute myelogenous leukemia preceded by severe congenital neutropenia. Blood. 1999;93.440-446.
    
    
    77. Dong F, Brynes RK, Tidow N, et al. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995;333:487-493.
    
    78. Hermans MH, Ward AC, Antonissen C, et al. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood. 1998;92:32-39.
    
    79. McLemore ML, Poursine-Laurent J, Link DC. Increased granulocyte colony- stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colonystimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest. 1998;102:483-492.
    
    80. Horwitz M, Benson KF, Duan Z, Li F-Q, Person R. Hereditary neutropenia: dogs explain human neutrophil elastase mutations. Trends Mol Med. 2004;10:163-170.
    
    81. Ancliff PJ, Gale RE, Liesner R, Hann I, Linch DC. Long-term follow-up of granulocyte colony-stimulating factor receptor mutations in patients with severe congenital neutropenia: implications for leukaemogenesis and therapy. Br J Haematol. 2003; 120:685-690.
    
    82. Ward AC, van Aesch YM, Gits J, et al. Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment. J Exp Med. 1999; 190: 497-507.
    
    83. Sinha S, Zhu QS, Romero G, et al. Deletional mutation of the external domain of the human granulocyte colony-stimulating factor receptor in a patient with severe chronic neutropenia refractory to granulocyte colony-stimulating factor. J Pediatr Hematol Oncol. 2003;25:791-796.
    
    84. Berliner N, Hsing A, Graubert T, et al. Granulocyte colony-stimulating factor induction of normal human bone marrow progenitors results in neutrophilspecific gene expression. Blood, 1995, 85:799.
    
    85. Borregaard N, Cowland J. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 1997, 89:3503.
    
    86. Haurie C, Dale DC, Rudnicki R, Mackey MC. Modeling complex neutrophil dynamics in the grey collie. J Theor Biol, 2000, 204:505-519.
    
    87. Aprikyan AG, Liles WC, Rodger E, et al. Impaired survival of bone marrow hematopoietic progenitor cells in cyclic neutropenia. Blood, 2001, 97:147-153.
    
    
    88. Aprikyan AG, Germeshausen M, Rodger E, et al. The diversity of neutrophilelastase mutations in congenital neutropenia. Blood, 2000, 96(suppl):706.
    
    89. Bellanne-Chantelot C, Clauin S, Leblanc T, et al. Mutations in the ELA2 gene correlate with more severe expression of neutropenia: a study of 81 patients from the French Neutropenia Register. Blood. 2004; 103:4119-412
    
    90. Person RE, Li FQ, Duan Z, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34:308-312.
    
    91. Koenraad Devriendt, Annette S. Kim, Gert Mathijs et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat. Genet, 2001,27: 313-317.
    1. Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Molecular and Cellular Biology, 1994, 14: 1431-1437.
    2. Ognjanovic S. Bao S. Yamamoto S, et al. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J. Mol. Endocrinol, 2001, 26(2): 107-117.
    3. Kitani T, Okuno S, Fujisawa H, et al. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett, 2003, 544: 74-78
    4. Eric van der Veer, Zengxuan Nong, Caroline O'Neil, et al. Pre-B-cell Colony-Enhancing Factor Regulates Vascular Smooth Muscle Maturation Through a NAD~+-Dependent Mechanism: Recognition of a New Mechanism for Cell Diversity and Redox Regulation of Vascular Tone and Remodeling. Circ Res, 2005, 97(1): 4-7
    5. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005, 307 426-430
    6. Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol, 2002, 32: 3225-3234.
    7. Rongvaux A, Andris F, Van Gool F, et al. Reconstructing eukaryotic NAD metabolism. Bioessays, 2003, 25: 683-690.
    8. Magni G, Amici A, Emanuelli M, et al. Enzymology of NAD homeostasis in man. Cell Mol Life Sci, 2004, 61: 19-34.
    9. Nemeth E. Tashima L S. Yu Z. et al. Fetal membrane distention: I. Differentially expressed genes regulated by acute distention in amniotic epithelial (WISH) cells. Am J Obstet Gynecol, 2000, 182(1 Pt. 1), 50- 59.
    
    10. Marvin K W, Keelan J A, Eykholt R L, et al. Use of cDNA arrays to generate differential expression profiles for inflammatory genes in human gestational membranes delivered at term and preterm. Mol Hum Reprod , 2002,8 (4), 399-408.
    
    11. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest, 2004, 113:1318 -1327.
    
    12. Shui Q. Ye, Brett A. Simon, James P. Maloney, et al. Pre-B-Cell Colony- enhancing Factor as a Potential Novel Biomarker in Acute Lung Injury Am J Respir Crit Care Med. 2005 Feb 15;171(4):361-70.
    
    13 . Jaswinder K S, Antonio V P. Visfatin: the missing . link between intra-abdominal obesity and diabetes? Trends in Molecular Medicine, 2005,11(8), 344-347
    
    14. Simon E. Hufton, Peter T. Moerkerk, Ricardo Brandwijk, et al. A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett, 1999,463(l-2):77-82.
    
    15. Judy R. van Beijnum, Peter T.M. Moerkerk, Andrea J. Gerbers, et al. Target validation for genomics using peptide-specific phage antibodies: A study of five gene products overexpressed in colorectal cancer. Int J Cancer, 2002,101(2):118-27.
    
    
    16. Maria Aparecida Azevedo Koike Folgueira, Dirce Maria Carraro, Helena Brentani, et al. Gene Expression Profile Associated with Response to Doxorubicin-Based Therapy in Breast Cancer. Clin Cancer Res, 2005, 11(20):7434-7443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700