船舶结构疲劳评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳破坏是船体结构主要的失效模式之一,因此,国内外的船舶结构研究人员和机构都十分重视船体结构的疲劳问题。目前,世界上各主要的船级社均发布了自己的结构疲劳评估规范,作为船舶疲劳评估的指导性文件。但是,由于影响结构疲劳性能的因素十分复杂,如波浪载荷和局部的货物压力,各种应力成分的组合,结构的局部细节应力集中,平均应力的影响,结构分身所处的腐蚀环境等等,所以各个船级社有关的规定也不一样,这样必然造成各个评估方法之间的差异。本文以DNV疲劳评估规范为指导,以12300吨滚装船为依托,探讨了DNV疲劳评估规范中不同方法之间的差异,其主要内容包括:
     1、对DNV疲劳评估方法的要点做以说明,利用DNV疲劳评估文献提供的简化方法对感兴趣的节点进行疲劳评估。并计算和讨论了简化算法中计入平均应力和不计入平均应力对疲劳寿命的影响水平。
     2、参考船体的结构图,对船体结构进行合理的模型化,建立整船的有限元模型。针对谱分析方法中需要求得响应幅值的特点,给出了一种简化分析过程的方法。
     3、由于向有限元模型施加压力的时候,船体湿表面的压力不尽相同,并且没有规律可循,如果单元很多,那么手工加载的效率就很低,本文开发了基于PCL的自动加载程序,提高了工作效率。
     4、按照谱分析方法,对线性波浪载荷下结构的疲劳寿命进行了计算。并讨论了计入平均应力影响和不计入平均应力影响的差别。由于在谱分析方法中考虑到了由波高、特征周期及浪向确定的不同海况,所以本文也分析了各海况对疲劳寿命的影响。
Fatigue and fracture have been an important issue for ship and offshore structures for a long time. Growing attention has been paid to it from researchers and institutes in this field. Until now, the major classification societies have already released their fatigue assessments notes. But due to the complexity of factors influencing fatigue performance, such as wave load and pressure from cargo, the combination of different stress components, stress concentration of local structure details, mean stress and the corrosive environments, etc, there are different specifications with varying classification societies, so it will lead to the diversity of results from different fatigue assessment methods. The prime goal of this paper is to conduct the fatigue analysis for certain type of structural details of 12300T Ro/Ro vessel by means of three different approaches stated in DNV classification notes "the fatigue assessment for ship structures" and contrast the results from the three different methods.
    Firstly, the key points of DNV fatigue assessment are addressed, and then the fatigue strength of some nodes concerned is conducted using the simplified analysis provided by DNV fatigue assessment rules.. And the key the influence of mean stress for fatigue strength is computed and discussed when the mean stress is accounted for or not.
    Secondly, the molded lines and structural alignment should be referenced rationally in the process of the finite element modeling, but structural idealization should be based on the stiffness and anticipated response of the ship structure. And an approach is given to seek the response amplitude needed by spectral analysis method aiming at simplified the response amplitude seeking procedure.
    Thirdly, imposing pressure load on the wetted surface is a hard job because the pressure value is various and there is no regularity to fellow especially when the model is large. So it's very important to find a feasible automated loading approach that can be used in the FEM analysis of ship structure. This paper proposes an automated loading approach based on Patran command language that will enhance the efficiency of loading.
    Finally, the spectral fatigue analysis has been conducted under linear wave load and ship motion. In this analysis procedure, the mean stress is accounted for by obtaining the equivalent stress derived from Goodman formula or not and the difference between the two cases are discussed. At the same time, the contribution of each sea state to the fatigue damage is dissertated.
引文
[1] Report of the specialist committee on Fatigue And Fracture, 14th International Ship and Offshore Structures Congress, Nagasaki, Japan, 2000
    [2] DNV. Fatigue assessment of ship structure, Det Norske Veritas Classification Notes No. 30.7, JANUARY 2001
    [3] 中国船级社,船体结构疲劳强度指南,2001
    [4] 胡毓仁、陈伯真,船舶及海洋工程结构疲劳可靠性分析.人民交通出版社,1996年12月第一版
    [5] 徐灏,疲劳强度.高等教育出版社,1988年8月第一版
    [6] Munse, W. H., Wilbur, T. W., Tellalian, M. L., Nicoll, K. and Wilson, k., Fatigue characterization of fabricated ship details for design, SSC-318, U. S. Coast Guard, Washington DC, 1982
    [7] Guedes Soares, C. and Moan, T., Model uncertainty in the long-term distribution of wave-induced bending moments for fatigue design of ship structures, Marine structures, No. 4,1991
    [8] W. Fricke, W. Cui, H. Kierkegaard, D. Kihl, M. Koval, T. Mikkola, G. Parmentier, M. Toyosada, J. -H. Yoon, Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies. Marine Structures 15(2002) 1-13
    [9] Jordan C. R. & Cochran C. S., In-Service Performance of Structural Details. SSC-272, 1978
    [10] Jordan C. R. & Knight L. T., Further Survey of In-Service Performance of Structural Details. SSC-294, 1980
    
    
    [11] Kai-tung Ma & Robert G. Bea, A Repair Management System for Fatigue Cracks in Ship. SNAME Transactions. Vol.103,1995, pp343-369
    [12] J. J. W. Nibbering, Structural Safety and Fatigue of Ships. Int. Shipbuild. Progr. 39, No. 420(1991), pp423-435
    [13] Tao Xu, Fatigue of ship structural details-Technical Development and Problems. Journal of Ship Research, Vol. 4, No. 4, Dec. 1997, pp318-331
    [14] Paul H. Wirsching & Y. -N. Chen, Considerations of Probability-Based Fatigue Design for Marine Structures. Marine Structures. 1(1988), pp23-45
    [15] 崔维成,蔡新刚,冷建兴,船舶结构疲劳强度校核研究现状及我国的进展.船舶力学,1998年8月第2卷第4期,63-80页
    [16] 杨代盛、桑国光、李维扬、戴仰山,船舶强度的概率方法.哈尔滨工程大学出版社,1994年12月第一版
    [17] 杨代盛,船舶强度与结构设计.上海交通大学出版社,1988年
    [18] 陈铁云、陈伯真,船舶结构力学.国防工业出版社,1980年
    [19] 张海彬,船舶运动与波浪载荷三维计算方法研究.哈尔滨工程大学硕士学位论文,2001年1月
    [20] 王东海,船体总纵弯曲时的疲劳强度分析.哈尔滨工程大学学位论文,1998年9月
    [21] Folso R. Spectral fatigue damage calculation in the side shells of ships, with due account taken of the effect of alternating wet and dry area. Marine Structure 1998; 11:319-43
    [22] Fukasawa T., Shinohara T., Yamazaki M., On the stress response function for fatigue strength of a ship caused by hydrodynamic sea pressure. Proceedings of the Tenth Asian Technical Exchange
    
    and Advisory Meeting on Marine Structures, Pusan National University, Pusan, Korea 1-4 July 1996
    [23] Ying-Ru Liu, Ya-Jung Lee, Chung-Hung Lin, The Spectral Fatigue Analysis of the Bulk Carrier. Proceedings of the 15th Asian Technical Exchange and Advisory Meeting on Marine Structures, 15-18 October, 2001, Jochtown, Korea
    [24] T. Fukasawa, Y. Hattori, M. Oji, H. morota, Hydrodynamic Pressure Distribution for Fatigue Analysis of Large ships in Wave. J. SNAJ, Vol. 174, 1993
    [25] T. I. Liu, National Taiwan University, A study on the Fatigue Strength of the Containership, 1984
    [26] C. R. Lin, National raiwan University, A study on the Fatigue Strength of the Double Hull VLCC, 1999
    [27] A. Fatemi and L. Yang, Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int. J. Fatigue Vol. 20. NO.l pp9-34, 1999
    [28] WAN Zheng-quan, XU Bing-han, Stress Concentration Factors of Cutout for Longitudinal. Vol. 6 No. 3 Jun. 2002
    [29] 乐京霞、孙海虹,浮式生产储油船局部节点疲劳强度计算和分析.武汉理工大学学报,2002年8月第4期488-491页
    [30] 白建伟、李润培、顾永宁、胡志强,集装箱船整船有限元结构分析.船舶工程,2000年第5期8-11页
    [31] 刘建成、顾永宁、王自力、马延德、刘文民,浮式生产储油船船体疲劳计算.海洋工程,2001年5月,第19卷第2期50-55页
    [32] 谢里阳、林文强、徐灏、王德俊,复杂载荷情况下平均应力修正方法.航空学报,1993年12月,第14卷第2期
    [33] 谢里阳、林晨、平安,疲劳过程中强度退化与平均应力修正.机械强
    
    度,1996年9月,第18卷第3期第41-44页
    [34] 丁遂栋、张晓慧,结构钢平均应力影响系数研究.机械强度,1997年9月,第19卷第3期
    [35] 王东海、任慧龙、邹勇,平均应力对船体结构疲劳损伤计算的影响.哈尔滨工程大学学报,1998年2月,第19卷第1期1-7页
    [36] D. Kujawski & F. Ellyin, A United Approach to Mean Stress effect on Fatigue Threshold Conditions. Int. J. Fatigue, Vol. 17, No. 2, pp101-106, 1995
    [37] Cui Weicheng, Apreliminary review of recent developments in life prediction methods of marine structures. Journal of Ship Mechanics, Vol. 3 No. 6, Dec. 1999
    [38] Martin Fahy, Stephen Tiernan, Finite element analysis of ISO tank containers. Journal of Materials Proceessing Technology 119(2001) 293-298
    [39] 李洪升、陈浩然、黄永林,结构疲劳寿命可靠性的计算机模拟.大连理工大学学报,1991年1月,第31卷第1期第13-18页
    [40] 刘红、陈建元、范祖尧,P-S-N曲线的一种新表达法.上海交通大学学报,1994年月,第28卷第5期
    [41] 张朋,二维概率模型 P-S-N 曲线的多元回归解法.北京建筑工程学院学报,2002年6月,第18卷第2期
    [42] 傅惠民、高镇同,二维疲劳强度分布函数.航空学报,1988年12月,第9卷增刊
    [43] 凌静、高镇同,P-S_a-S_m-N曲面的求法.航空学报,1991年7月,第12卷第7期
    [44] 徐灏,概率疲劳.东北大学出版社,1994年10月第一版
    [45] 郑学祥,船舶及海洋工程结构的断裂与疲劳分析.海洋出版社,1988年5月第一版
    
    
    [46] Yung-Kuang Chen, Jeng-Wen Chiou & Anil Kumar Thayamballi, Validation of Fatigue Life Prediction Using Containership Hatch-Coner Strain Measurements. SNAME Transaction, Vol.94, 1986, pp255-282
    [47] A.E. Mansour & L. Hovem, Probability-Based Ship Structural Safety Analysis. Journal of Ship Research, Vol. 38, No. 4, Dec. 1994, pp329-339
    [48] P. Friis Hansen & S.R. Winterstein, Fatigue Damage in the Side Shells of Ships. Marine Structures, 8(1995), pp631-655
    [49] Jiao Guoyang, Probabilistic prediction of extreme stress and fatigue damage for ships in slamming condition. Marine Structures, 1996,9
    [50] Tomita Y, Matoba M, Kawabe H, Fatigue Crack Growth Behavior under Random Loading Model Simulating Real Encountered Wave Condition. Marine Structures, 8,1995
    [51] MSC/PATRAN VERSION 8, User's Guide Volume 4, Part9: PCL and Customization, Part10: Example Problems
    [52] MSC/PATRAN VERSION 8, PCL Reference Manual Volume 1, Function Descriptions
    [53] MSC/PATRAN VERSION 8, PCL Reference Manual Volume 2, Code Examples
    [54] ABS, Containership FEA GUIDE, American Bureau of Shipping, 1997
    [55] 徐士良,FORTRAN常用算法程序集.清华大学出版社,1995年第2版
    [56] 邵文蛟,船舶结构疲劳强度分析研究进展.上海造船,2000年第1期37-40页
    [57] 崔维成、刘涛、祁恩荣、徐向东,散货船疲劳强度校核的确定性方法.船舶力学,2000年2月第4卷第1期36-49页
    [58] 王然章、彭文科、詹志鹄、胡毓仁、陈伯真,采用简化方法的船体结
    
    构疲劳强度校核.中国造船,1999年5月第2期59-69页
    [59]孙久龙、陈伯真、胡毓仁,采用谱分析法的大型散货船结构疲劳可靠性分析.上海交通大学学报,1997年第31卷第2期40-44页
    [60]顾学康、沈进威,非线性波浪载荷作用下的船体结构疲劳损伤.船舶力学,2000年10月,第4卷第5期22-35页
    [61]崔维成、刘涛等,散货船疲劳强度校核中Weibull形状参数的确定.中国船舶科学研究中心科技报告,1997年
    [62]崔维成等,名义应力法与热点应力法的比较.中国船舶科学研究中心科技报告,1997年
    [63]于德欣、李东鹏、李忠刚、林立,12300DWT滚装船设计.船舶,2002年4月第2期33-39页
    [64]郭爱宾、邵文蛟,船舶结构疲劳强度分析中的几个问题.中国造船,2000年3月第41卷第1期52-59页
    [65]王宽福,焊接结构的疲劳断裂失效与防治.石油工程建设,1996年第6期1-6页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700