棕色田鼠(Microtus mandarinus)和沼泽田鼠(M.fostis)性激素及其受体和Fos在脑内的表达与社会行为的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠类的社会行为主要受神经内分泌的调节,其中性激素起重要的作用,动物的生存环境、婚配制度和遗传等均为重要的影响因素。因而,研究鼠类的社会行为和激素的关系,不仅能探讨社会行为发生的神经内分泌机制,而且通过研究不同物种不同社会行为发生中激素的调节作用,还能揭示婚配制度及相关社会行为的内在机制、进化机制和适应功能。
     田鼠属动物虽然亲缘关系很近,但它们的社会组织和婚配制度却有明显差异。本研究以单配制的棕色田鼠和繁殖特征呈现多配制的沼泽田鼠为研究对象,探讨雄激素、雌激素、雄激素受体、雌激素受体以及Fos蛋白表达和社会行为发生的关系,研究两种田鼠通过两个嗅觉系统发生的社会识别、记忆、交配、攻击行为的神经生物学机制,以探讨两种田鼠的进化机制和适应功能。研究分以下5部分内容:
     1.应用行为聚焦取样观察和免疫组织化学相结合的方法,比较了棕色田鼠(Microtus mandarinus)(n=15)和沼泽田鼠(M.fostis)(n=15)在同种雄雄交往中的行为差异,及在雄雄交往前后雌激素β受体(ERβ)和雄激素受体(AR)表达的差异。在2h的雄雄交往中,前1h棕色田鼠对同性入侵者有较多的攻击和防御行为,后1h攻击行为较少,沼泽田鼠前后1h差异不大(p>0.05),整个2h期间,棕色田鼠较沼泽田鼠对同性入侵者有较多的攻击、防御行为,较少的非社会行为。免疫组织化学检测,没有社会交往时棕色田鼠主嗅球系统投射区和犁鼻系统投射区ERβ免疫阳性细胞(ERβ-IRs)明显少于沼泽田鼠,且显色淡,AR免疫阳性细胞(AR-IRs)在两种鼠间差异不大,且都明显少于各自的ERβ-IRs。2h交往后,棕色田鼠主嗅球投射区和犁鼻系统投射区的ERβ-IRs细胞数明显少于交往前,AR-IRs细胞数明显多于交往前;沼泽田鼠交往前与交往后ERβ-IRs和AR-IRs细胞数均无显著差异,且显著多于交往后棕色田鼠ERβ-IRs细胞数,显著少于交往后棕色田鼠AR-IRs细胞数。以上结果表明:两种田鼠在社会交往中社会行为不同;ERβ的减少和AR的增多可能在社会识别及攻击行为中均起一定的作用,可能也是引起两种田鼠社会行为发生差异的原因之一。
     2.通过对阉割7、14、30天成年雄性棕色田鼠攻击行为的行为观察,发现
    
    在阉割7和14天时,攻击行为没有降低,阉割30时,攻击行为明显降低。阉割
    7天时,血清中的肇酮(T)和雌二醇(EZ)明显升高,脑区的T免疫阳性细胞
     (T-IRs)、AR-IRs、E:免疫阳性细胞(EZ一IRs)、ERp一IRs比假手术组显著升高,
    血清中高浓度的辜酮和雌二醇以及脑区AR和ERp细胞数目的变化,可能是这一
    时期攻击行为没有降低的主要原因;阉割14天时,血清中的翠酮明显降低,雌
    二醇仍高于假手术组,T-IRs、EZ一IRs显著降低,没有检测到AR一IRs、ERp一IRs,
    ERp没有对攻击行为产生抑制作用,可能是这一时期攻击行为没有降低的主要原
    因;阉割30天时,血清中没有检测到T,E:也明显降低,T-IRs、AR一IRs、EZ一IRs、
    ERp一IRs均显著升高,血清中的T和E:明显降低,可能是这一时期攻击行为降低
    的主要原因。以上结果表明:(l)长期阉割抑制成年棕色田鼠攻击行为;(2)阉割
    不同时期,攻击行为发生的神经生物学机制可能不同,血清中T、EZ,脑区的T、
    EZ、AR和ERp可能均起一定的作用。
     3.将辜丸下降的成年雄性棕色田鼠分成三组:(l)对照组:嗅闻24h新鲜锯
    木。(2)暴露组:嗅闻24h动情期雌鼠底物。(3)交配组:与动情期雌鼠交配24ho
    放射免疫检测血清中的T浓度,交配组高于暴露组,交配组和暴露组都显著高于
    对照组。用免疫组化检测犁鼻系统部分投射区:终纹床核(B ST)、下丘脑腹内侧
    核WM均、内侧视前区(Mpo)、隔外侧核(LS)、杏仁内侧核(ME)下IRs、AR一IRs、
    Fos免疫阳性细胞(Fos一IRs),T-IRS、AR一IRs、Fos一IRS在这5个脑区内,交配组
    显著高于对照组,交配组在内侧一视前区和杏仁内侧核显著高于暴露组,两组在终
    纹床核、下丘脑腹内侧核、隔外侧核没有显著差异;暴露组在终纹床核、下丘脑
    腹内侧核、隔外侧核显著高于对照组,内侧视前区和杏仁内侧核两组没有显著差
    异。表明:(l)内源性雄激素对其受体有上调作用。(2)脑内的雄激素通过其
    受体的调节作用和血清中较高浓度雄激素可能是雄性棕色田鼠完成交配活动的两
    个必要条件。(3)不同的脑区在交配活动中可能起不同的作用。
     4.放射免疫检测血清中的EZ浓度,交配组比暴露组、对照组显著增高,暴露
    组和对照组没有显著差异。通过免疫组化检测与性行为有关的脑区:弓状核(ARc)、
    终纹床核、下丘脑腹内侧核、内侧视前区、隔外侧核、杏仁内侧核EZ、ERp免疫阳
    性细胞,EZ一IRs在交配组比对照组和暴露组各区域都显著增多,暴露组比对照组在
    隔外侧核显著增多外,其它区域没有显著差异。ERp一IRs在这三组之间均没有显著
    差异,而且ERp免疫阳性细胞颜色浅淡。表明:雌激素对雄性棕色田鼠的交配活动
    起一定的作用,但可能通过其他受体,ERp在雄性棕色田鼠的交配活动中可能没有
    起重要作用。
     5.用免疫组织化学检测T、AR、Fos在对照组、暴露组、交配组嗅球(MOB)
    乡
    
    和副嗅球(AOB)僧帽细胞和颗粒细胞免疫反应,在MOB三组之间没有显著差异,
    交配组在AOB僧帽细胞和颗?
Social behaviors of rodent are not only related with existence environment, mating system, heredity et al., but also are regulated by neuroendocrine, particularly by androgen and estrogen. Therefore, studies the relation between hormone and social behaviors of different species with different mating system, can not only explore the neuroendocrinical mechanism of social behaviors, but also can reveal the intrinsic mechanism, evolution mechanism and adaptation function.
    The microtine rodents show profound differences in reproductive biology and social organization in spite of their taxonomic relationship. In order to explore the relation between androgen, estrogen, androgen receptor, estrogen receptor, expression of Fos protein and social behaviors, using monogamous mandarin voles (Microtus mandarinus) and reed voles (Microtus fortis) with promiscuous reproductive characteristics as two study objects, the neurobiological basis of social organization, memory, mating, aggressive behavior of two species are studied through two olfactory systems, and explore evolution mechanism and adaptation function of two species voles. The study is divided in five parts.
    1. In order to investigate the neurobiological mechanism of the social behavior difference in the adult male mandarin voles (Microtus mandarinus) and reed voles(M.fostis), the behavior focal sampling method and immunohistochemistry method were used to investigate these differences in the behaviors of intraspecies male-male interactions and the expressions of estrogen receptor P (ER0) and androgen receptor (AR) between two species, respectively (n=15). During the two hour interaction of male-male individuals, the mandarin voles spent significantly more time on the aggressive and defensive behavior to homosexual invaders in the first one hour than in the last hour, while the reed voles didn't have significantly behavioral difference between the first and the last one hour (p>0.05); During the whole two-hour interaction of male-male individuals, the mandarin voles spent significantly more time on the
    
    
    aggressive and defensive behaviors to homosexual invaders and less time on the nonsocial behaviors than the reed voles. Before the two-hour interaction of male-male individuals , we found there were obviously fewer and lighter stained ERp immunoreactive neurons (ER|3-IRs) in both main olfactory bulb system project regions and vomeronasal system project regions in the mandarin voles than in the reed voles, but no significant difference in numbers of AR immunoreactive neurons (AR-IRs) between the two species through the examining of immunoreactive neurons, moreover, there were significantly fewer AR-IRs than ERp-IRs in two species of vole before the two-hour interactions. There were significantly fewer ER-IRs in both the main olfactory bulb project regions and the vomeronasal system project regions in the mandarin voles after interactions than before interactions, but there were significantly more AR-IRs after interactions than before interactions in the mandarin voles; There were not significant difference in both numbers of ER|3-IRs and AR-IRs between before and after interactions in the reed voles, and there were greatly significantly more ERp-IRs neurons in the reed voles than in the mandarin voles which had gone through interactions, there were significantly fewer AR-IRs in the reed voles than in the mandarin voles which had gone through interactions. The results indicate that mandarin voles and reed voles had different social behaviors in social interactions. The result suggest that the decrease of ERp-IRs and increase of AR-IRs might affect social recognition and aggressive behavior, and this might also be one of reasons of social behaviors difference in two vole species.
    2. Aggressive behavior of the adult male mandarin was conducted on 7,14 and 30 days after castration, respectively, the aggressive behavior was not decreased on 7 and 14 days after castration, however, the aggressive behavior was significantly decreased on 30 days after castration. 7 days after cast
引文
Adkins E., Pniewski E E., Contral of repeoduction by sex steroids in male quil, J. Comp. Phychsiol., 1978,92,1169-1179.
    Adkins-Regan E., Effect of sex steroids on the reproduction of castrated male ring doves (streptopelia sp.) , J. Physiol. Behav., 1981,26,561-565.
    Albert D.J., Jonik R.H., Walsh M.L., Hormone-dependent aggression in male and female rats: Experimental, hormonal, and neural foundations, Neurosci. Biobehav. Rev., 1992,15,177-192.
    Albert D.J., Walsch M.L., Gorzalka B.B., Siemens Y., Louie H., Maternal aggression and intermale social aggression: A behavioural comparison, Behav. Proc., 1987,14, 267-275.
    Aldheid G. F., De Olmos J. S., Beltramino C. A., Amygdala and extended amygdala, San Diego: Academic Press, 1995,495-578.
    Alves S.E., McEwen B.S., Hayashi S., Korach K.S., Pfaff D.W., Ogawa S., Estrogen-regulated progestin receptors are found in the mmidbrain raphe but not hippocampus of estrogen receptor alpha (ER α ) gene-disrupted mice, J. Comp. Neurol., 2000,47,185-195.
    Apostolakis E.M, Garai J, Lohmann J.E., Epidermal growth factor activates reproductive behaviour independent of ovARian steroids in female rodents, J. Mol. Endocrinol, 2000,14,1086-1098.
    Apostolinas S., Rajendren G., Dobrjansky A., Gibson M.J., Androgen receptor immunoreactivity in neural regions in normal and hypogonadal male mice:effect of androgens, Brain Res., 1999,817,19-24.
    Archer J., The behavioral biology of aggression, Cambridge: Cambridge University Press, 1988.
    Barfield R.J., Reproductive hormones and aggressive behavior, in:Flannely K.J., Blanchard D.C. (Eds) , Biological persective on aggression. New York; Alan R. Liss, Inc., 1984,105-134.
    Baum M.J., Everitt B.J., Increased expression of c-Fos in the medial preoptic area after mating in male rats: role of afferen inputs from the medial amygdala and midbrain central tegmental field, Neuroscience, 1992,50,627-646.
    
    
    Baum M.J., Tobet S.A., Starr M.S., Bradshaw W.G., Implantation of dihydrotestosterone propionate into the lateral septum or medial amygdala facilitates copulation in castrated male rats given estradiol systemically, Horm. Behav., 1982,16,208-223.
    Bean N.J., Conner R., Central hormonal replacement and home-cage dominance in castrated rats, Horm. Behav., 1978,11,100-109.
    Beatrice G., David A.E., Doris Z., Michael R.P., Andrew N.C., C-Fos induced by mating or noncontact sociosexual interaction is colocalized with androgen receptors in neurons within the forebrain, midbrain, and lumbosacral spinal cord of male rats, Hormones and Behavior, 1998,33,125-138.
    Ben-Ari Y., The amygdaloid complex, Amsterdam: Elsevier North Holland Biomedical Press, 1981,516.
    Blaustein J.D., Erskine M.S. Feminine sexual behavior: cellular integration of hormonal and afferent information in the rodent forebrain, in: Pfaff, D.W. (Ed.) , Hormones, Brain and Behavior, Academic Press, New York, 2002,139-214.
    Blaustein J.D., Olster D.H., Gonadal steroid hormone receptors and social behaviors, in:Balthazart, J. (Ed) , Advances in Comparative and Environmental Physiology, Springer-Verlag, Berlin, 1989,3,31-104.
    Brackett N.L., Edwards D.A., Medial preoptic connections with the midbrain tegmentum are essential for male sexual behavior, 1984,32,79-84.
    Brain P, Haug M., Hormonal and neurochemical correlates of various forms of animal "agg(?)ression", Psychoneuroendocrinology, 1992,17,537-551.
    Brennan P.A., Keverne E.B., Neural mechanisms of mammalian olfactory learning, Prog. Neurobiol., 1997,51,457-481.
    Brennan P., Kaba H., Keverne E.B., Olfactory recognition: a simple memory system, Science, 1990,250, 1223-1226.
    Brennan P.A., The vomeronasal system, Cell Mol. Life Sci., 2001,58,546-555.
    Brot M.D., De. Vries G.J., Dorsa D.M., Local implants testosterone metabolites regulate vasopressin mRNA in sexually dimorphic nuclei of the rat brain, Peptides., 1993,14,933-940.
    Bruce H.M., An exteroceptive block to pregnancy in the mouse, Nature, 1959,184,105.
    Buijs R.M., Swaab D.F., Dogterom J.,Van Leeuwen F.W,, Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat, Cell Tiss. Res.,
    
    1978,186,423-433.
    Butler P.C., Mills R.H., Bloch G.J., Inhibition of lordosis behavior in male and female rats byandrogens and progesterone, Horm. Behav., 2001,40(3) ,384-95.
    Caldwell G., Glickman S., Smith E., Seasonal aggression independent of seasonal testosterone in wood rats, Proc. Natl.Acad.Sci.U.S.A., 1984,81,5255-5257.
    Canteras N.S., Simerly R.B., Swanson L.W., Organization of projections from the medial nucleus of the amygdala: a PHAL study in rat, J. Comp.Neurol., 1996,369,328-330.
    Carr W.J, Loeb L.S, Wylie N.R., Responses to feminine odors in normal and castrated male rats, J. Comp Physiol Psychol., 1966,62,336-338.
    Carter C.S, De Vries A.C., Getz L.L., Physiological substrates of mammalian monogamy: The prairie vole model, Neurosci. Biobehav. Rev., 1995,19,303-314.
    Chery A.F., Madeline E.R., Alicia W., Jacob P. H., Testosterone enhances aggression of wild-type mice but not those deficient in type 5α-reductase, Brain Res., 2002,948,165-170.
    Cheryl S.L., Allen J.S., Digydrotestosterone and estrogen regulation of rat brain androgen-receptor immunoreactivity, J. Physiology & Behavior, 2000,69,445-453.
    Cheusi G., Bluthe R., Goodall G., Dantzer R., Social and individual recognition in rodents: Methodological aspects and neurobiological bases, Behavioural Processes, 1994,33,58-88.
    Christenson T., Wallen K., Brown B., Effects of castration, blindness and anosmia on social reactivity in the male Mongolian gerbil (Meriones ungulatus ), Physiol.Behav., 1972,10,989-994.
    Clarke F.M., Faulkes C.G., Hormonal and behavioural correlates of male dominance and reproductive status in captive colonies of the naked mole-rat, Heterocephalus glaber, Proc R Soc Lond B Biol Sci., 1998,265 (1404) ,1391-9.
    Cologer-Clifford A., Simon N.G., Lu S.F., Smoluk S.A., Serotonin agonist-induced decreases in intermale aggression are dependent on brain region and receptor subtype, Pharmacology Biochemstry and Behavior, 1997,58 (2) ,425-430.
    Cologer-Clifford A., Simon N.G., Richter M.L., Androgens and estrogens modulate 5-HT1Aand 5-HT1B agonist effects on aggression, Physiol Behav., 1999 65 (4-5) ,823-8.
    
    
    Coolen L.M, Wood R.I., Testosterone stimulation of the medial preoptic area and medial amygdala in the control of male hamster sexual behavior: redundancy without amplification, Behav Brain Res., 1999,98 (1) ,143-53.
    Coolen L.M., Olivier B., Peters H.J.P.W., Veening J.G., Demonstration of ejaculation-using 5-HT_(1A) agonist 8-OH-DPAT, Physiol.Behav., 1997,62,881-891.
    Coopersmith C., Gans S.E., Rowe D.W., Erskine M.S., Infusions of lidocaine into the amygdala, but not the preoptic area, block pseudopregnancy in the rat, J. Neuroendocrinol., 1996,8,259-266.
    Coquelin A., Clancy A.N., Macrides F., Noble E.P., Gorski R.A., Pheromonally induced release of luteinizing hormone in male mice: involvement of the vomeronasal system, J. Neuroscience, 1984,4,2230-2236.
    Curtis J.T., Liu Y., Wang Z., Lesions of the vomeronasal organ disrupt mating-induced pair bonding in female prairie voles (Microtus ochrogaster), Brain Res., 2001,901, 167-174.
    Delville Y., Mansour K.M., Ferris C.F., Testosterone facilitates aggression by modulating Vasopressin receptors in the hypothalamus, Physiology & Behavior, 1995,60(1) ,25-29.
    Demas G.E., Moffatt C.A., Drazen D.L., Nelson R.J., Castration Does Not Inhibit Aggressive Behavior in Adult Male Prairie Voles (Microtus ochrogaster), Puysiology. Behavior,1999,66(1) ,59-62.
    Doherty P.C., Sheridan P.J., Uptake and retention of androgen in neurons in the brain of the golden hamster, Brain Res., 1981,218,327-334.
    Dudley C.A.,Moss R.L., Activation of an anatomically distinct subpopulation of accessory olfactory bulb neurons by chemosensory stimulation, Neuroscience, 1999,91,1549-1556.
    Edwards D.A. Davis A.B., Deafferentation of the olfactory bulbs of male rats reduces erection to remote cues from females, Physiol.Behav., 1997,62,145-149.
    Edwards D.A., Early androgen stimulation and aggressive behavior in male and female mice, Physiol.Behav., 1969,4,333-338.
    Eric B.K., The vomeronasal organ, Science, 1999,286 (22),716-720.
    Ferguson J.N., Young L.J., Insel T.R., The Neuroendocrine Basis of Social Recognition, Frontiers in Neuroendocrinology, 2002,23,200-224.
    
    
    Fewell G.D., Meredith M., Experience facilitates vomeronasal and olfactory influence on C-Fos expression in medial preoptic area during pheromone exposure or mating in male hamsters, Brain Res., 2002,941,91-106.
    Fiber J. M., Swann, Testosterone differentially influences sex-specific pheromone stimulated c-Fos expression in limbic regions of Syrian hamsters, Horm.Behav., 1996,30,455-473.
    Filardo E.J., Quinn J.A., Bland K.I., Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog,GPR30,and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF, J. Mol Endocrinol, 2000,10,1649-1660.
    Fink G., Sumner B., Rosie R., Wilson H., McQueen J., Androgen actions on central serotonin neurotransmission: relevance for mood, mental state and memory, Behavioural Brain Res., 1999,105,53-68.
    Foote S.L., Bloom F.E., Aston-Jones G., Nucleus locus coeruleus: new evidence of anatomical and physiological specificity, Physiol Rev., 1983,63,844-914.
    Fugger H.N., C-Foster T.C., Gustafsson J.A., Rissman E.F., Novel effects of estradiol and estrogen receptor α and β on cognitive function, Brain Res., 2000,883, 258-264.
    Geoge G.J.M., Kuiper M., Petra E., Localization and hormonal stimulation of phosphorylation sites in the LNCap- Cell androgen receptor, J. Biochem., 1993,291,95-105.
    Gheusi G., Bluthe R.M., Goodall G., Dantzer R., Social and individual recognition in rodents: Methodolgical aspects and neurobiological bases, Behavioural Processes, 1994,33,59-88.
    Giguere V., Tremblay A., Tremblay G.B., Estrogen receptor β: re-evaluation of estrogen and antiestrogen signaling, Steroids, 1998,63,335-339.
    Gilles G., Rose-Marie B., Glyn G., Robert D., Social and individual recognition in rodents: methodological aspects and neurobiological bases, Behavioural Processes,1994,33,59-88.
    Godwinj, Hartman V., Nag P., Androgenic regulation of steroid hormone receptor mRNAs in the brain of whiptail lizards, J. Neuroendocrinol., 2000,12,599-606.
    Gottreich A., Zuri I., Hammel I., Terkel J., Noninvolvement of testosterone in aggressive defense behavior in the male blind mole rat Spalax ehrenbergi.
    
    Aggressive Behav., 2001,27,64-72.
    Grahm J.M., Desjardins C., Classical conditioning:Induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity, Science, 1980,210,1039-1041.
    Greco B., Blasberg M.E., Kosinski E.C., Blaustein J.D., Response of ERα-IR and ERβ-IR cells in the forebrain of female rats to mating stimuli, Hormones and Behavior, 2003,43,444-453.
    Greco B., Edwards D.A., Michael R.P., Androgen receptors and estrogen receptors are colocalized in male rat hypothalamic and limbic neurons that express c-Fos immunoreactivity induced by mating, Neuroendocrinology, 1998a,67,18-28.
    Greco B., Edwards D.A., Micheal R.P., Clancy A.N., Androgen receptor immunoreactivity and mating-induced c-Fos expression in forebrain and midbrain structures in the male rat, Neuroscience, 1996,75,161-171.
    Greco B., Edwards D.A., Zumpe D., Michael R.P., Clancy A.N., C-Fos induced by mating or noncontact sociosexual interaction is colocalized with androgen receptor in neurons within the forebrain, midbrain, and lumbosacral spinal cord of male rats, Hormones and Behavior, 1998b,33,125-138.
    Hall J.M., McDonnell D.P., The estrogen receptor beta-isoform (ERβ) of the human estrogen receptor modulates ERs transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens, Endocrinology, 1999,140,5566-5578.
    Harding C.F., Social modulation of circulating hormones in the male, Am.Zool., 1981, 21,223-232.
    Haug M., Brain P.F. Kamis A.B., A brief review comparing the effects of sex steroids on two forms of aggression in laboratory mice, Biobehav.Rev., 1986,10,463-468.
    Haug M., Brain P.F., Attack directed by group of castrated male mice towards lactating or non-lactating intruders:A urine dependent phenomenon? Physiol.Behav., 1978,121,549-552.
    Heeb M.M., Yahr P., C-Fos immunoreactivity in the sexually dimorphic area of the hypothalamus and related brain regions of male gerbils after exposure to sex-related stimuli or performance of specific sexual behaviors, Neuroscience, 1996,72,1049-1071.
    Hiort O., Huang Q., Sinnecker G.H., Single strand conformation polymorphism analysis
    
    of androgen receptor gene mutations in patients with androgen insensitivity syndromes: application for diagnosis, genetic counseling, and therapy, J. Clin Endocrinol Metab, 1993,77,262-266.
    Hlinak Z., Social recognition in ovariectomized and estradiol-treated female rats, Horm Behav., 1993,27,159-66.
    Hosli E., Jurasin K., Ruhl W., Luthy R., Holsli L., Colocalization of androgen, estrogen and cholinergic receptors on cultured astrocytes of rat central nervous system, Neuroscience, 2001,19,11-19.
    Ichikawa M., Synaptic Mechanisms Underlying Pheromone Memory in Vomeronasal System, Zoological Science, 2003,20,687-695.
    Insel T.R., Preston S., Winslow J.T., Mating in the monogamous male: behavioral consequences, Physiology & Behavior, 1995,57, 615-627.
    Iqbal J., Swanson J.J., Prins G.S., Jacobson C.D., Androgen receptor-like immunoreactivity in the Brazilian opossum brain and pituitary: distribution and effects of castration and testosterone replacement in the adult male, Brain Res., 1995,703,1-18.
    Jane M.K., Judwh M.S., Maternal aggression in rats: effects of olfactory bulbectomy, ZnSO_4-induced anosmia, and vomeronasal organ removal, Horm Behav.,1995, 29,492-518.
    Jasnow A.M., Huhman K.L., Bartness T.J., Short-day increases in aggression are inversely related to circulating testosterone concentrationss in male Siberian hamsters (Phodopus sungorus), Horm Behav., 2000,38 (2) ,102-10.
    Jean-Mare L., Endocrinology, 1998, 140:350.
    Jennes L., Croix D., Changes in the LHRH-immunoreactivity of hypothalamic structures during late pregnancy and after parturition in the guinea pig, Cell Tissue Res., 1980,205,121-131.
    Julius D., Serotonin receptor knockouts: A moody subject, Natl.Acad.Sci.U.S.A., 1998, 95,15,153-15,154.
    Kaba H., Nakanishi S., Synaptic mechanisms of olfactory recognition memory, Rev. Neurosci., 1995,6, 125-141.
    Kallio P.J., Poukka H., Moilanen A., Androgen receptor mediated transcriptional regulation in the absence of direct interaction with aspectific DNA element, Mol Endocrinol., 1995,9 (8), 1017-1028.
    
    
    Kashon M.L, Arbogast J.A, Sisk C.L., Distribution and hormonal regulation of androgen receptor immunoreactivity in the forebrain of the male European ferret, J Comp Neurol., 1996,376,567-586.
    Kashon M.L., Arbogast J.A., Sisk C.L., Distribution and hormonal regulation of androgen receptor immunoreactivity in the forebrain of the male European ferret, J. Comp., 1996,376,567-586.
    Kasper S, Rennie P.S., Bruchovsky N., Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene, J Biolchem., 1994,269(50) ,31763-31769.
    Kauer J.S., Response patterns of amphibian olfactory bulb neurons to odor stimulation, J Physiol., 1974,243,695-715.
    Kawas C., Resnick S., Morrison A., A Prospective study of estrogen replacement therapy and the risk of developing Alzheimer s disease: the Baltimore longitudinal study of aging, J. Neurology, 1997,48,1517-1521.
    Kelliher KR., Chang Y., Wersinger S.R., Baum M.J., Sex Difference and Testosterone Modulation of Pheromone-Induced Neuronal C-Fos in the Ferret's Main Olfactory Bulb and Hypothalamus, Biology of Reproduction, 1998,59,1454-1463.
    Keverne E.B., Meller, R.E., Eberhart J.A., Social influences on behaviour and neuroendocrine responsiveness of talapoin monkeys, Scand. J. Psychol., 1982,1, 37-47.
    Keverne E.B., Pheromonal inluences on the endocrine regulation of reproduction, Trends Neuroscience, 1983,6,381-384.
    Kevetter G.A., Winans S.S., Connections of the corticomedial amygdala in the golden hamster. Ⅱ. Efferents of the olfactory amygdala, J. Comp Neurol., 1981,197,99-111.
    Klein S.L, Hairston J. E, De Vries A. C., Social environment and steroid hormones affect species and sex differences in immune function among voles, Horm.Behav., 1997b,32,30-39.
    Klein S.L., Behavioral, physiological and evolutionary factors mediating sex and species differences in immune function among rodents, Unpublished Doctoral Dissertation, The Johns Hopkins University, Baltimore, MD, 1997a.
    Kollack-Walker S., Newman S.W., Mating-induced expression of c-Fos in the male Syrian hamster brain: role of experience, pheromones, and ejaculations, J.
    
    Neurobiol., 1997,32,481-501.
    Kondo Y.,Sachs B.D., Sakuma Y., Importance of the medial amygdala in rat penile erection evoked by remotes stimuli from estrous females, Behav. Brain Res., 1997, 88,153-160.
    Krege J.H., Hodgin J.B., Couse J.F., Enmark E., Wamer M., Mahler J.F., Sar M., Korach K.S., Gustafsson J.A., Smithies O., Generation and reproductive phenotypes of mice lacking estrogen receptor beta, Proc. Natl.Acad.Sci.U.S.A., 1998,95,15677-15682.
    Krege J.H., Hodgin J.B., Couse J.F., Enmark E., Warner M., Mahler J.F., Sar M., Korach K.S., Gustafsson J.-A., Smithies O., Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc.Nat.Acad.Sci.U.S.A., 1998,95, 15677-15682.
    Kreiger M.S., Morrell J.I., Pfaff D.W., Autoradiographic localization of estradiol-concentrating cells in the female hamster brain, Neuroendocrinology, 1976,22,193-205.
    Kuiper G.G., Carlsson B., Grandien K., Enmark E., Haggblad J., Nilsson S., Gustafsson J.A., Comparison of the ligand binding specificity and transcription of estrogen receptor α and β,Endocrinology, 1997,138,863-870.
    Kuiper G.G.J.M., Enmark E., Pelteo-Huikko M., Cloning of a novel estrogen receptor expressed in rat prostate and ovar, Proc.Natl.Acad.Sci.U.S.A., 1996,93, 5925-5930.
    Kumer A., Dudley C.A.,Moss R.L., Functional Dichotomy within the Vomeronasal System:Distinct Zones of Neuronal Activity in the Accessory Olfactory Bulb Corelate with Sex-Specific Behaviors, J.Neuroscience, 1999,32,1-6.
    Lawrence E.S., Christiana M.L., Charlene E.S., Donald A.D., Thomas R.I. Comparative neuroanatomy of the sexually dimorphic hypothalamus in monogamous and polygamous voles, Brain Res., 1991,541,232-240.
    Lehman M.N., Winans S.S., Vomeronasal and olfactory pathways to the amygdala controlling male hamster sexual behavior:autoradiographic and behavioral analyses, Brain Res., 1982,240,27-41.
    Lepri J.J., Wysocki C.J., Vandenbergh J.G., Mouse vomeronasal orgen: effects on chemosignals production and maternal behavior, Physiol.Behav., 1985,35,789-814.
    Li X., Schwartz P.E., Rissman E.F., Distribution of estrogen receptorh-β like
    
    immunoreactivity in rat forebrain, Neuroendocrinology, 1997,66,63-67.
    Lindzey J., Wetsel W. C., Couse J. F., Stoker T., Cooper R., Korach K. S., Effects castration and chronic steroid treatments on hypothalamic gonadotropin-releasing hommone content and pituitary gonadotropins in male wild-type and estrogen receptor-alpha knockout mice, Endocrinology, 1998,139,4092-4101.
    Lu H., Ozawa H., Nishi M., Ito T., Kawata M., Serotonergic neurones in the dorsal raphe nucleus that project into the medial preoptic area contain oestrogen receptor beta, J. Neuroendocrinol, 2001,13 (10) ,839-45.
    Lynch C.S., Story A.J., Dihydrotestosterone and estrogen regulation of rat brain androgen-receptor immunoreactivity, Physiology & Behavior, 2000,445-453.
    Marilyn Y.M., Augustus R.L., Megan E.B., Bernard P., Physical provocation potentiates aggression in male rats receiving anabolic androgenic steroids, J. Hormones and Behavior, 2002,41,101-110.
    Martinez E., Wahli W., Characterization of hormone response elements,In: Parker (ed.) , Nuclear Hormone Receptors, New York: Academic Press,1991,125-146.
    Matsuoka M., Kaba H., Mori Y., Ichikawa M., Synaptic plasticity in olfactory memory formation in female mice, Neuro. Report, 1997,8,2501-2504.
    Matsuoka M., Kaba H., Mori Y., Ichikawa M., Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites, Neuron, 1998,21,741-751.
    Matsuoka M., Mori Y., Ichikawa M., Morphological changes of synapses induced by urinary stimulation in the hamster accessory olfactory bulb, Synapse, 1998,28, 160-166.
    Matsuoka M., Yamagata K., Sugiura H., Yoshida-Matsuoka J., Norta M., Ichikaw M., Expression and regulation of the immediate-early product Arc in the accessoey olfactory bulb after mating in male rat, Neuroscience, 2002a, 111 (2) ,251-258.
    Matsuoka M., Yoshida-Matsuoka J., Sugiura H.,Yamagata K., Ichikawa M., Mating behavior induces differential Arc expression in the main and accessory olfactory bulbs of adult rats, Neuroscience Letters, 2002b,335,111-114.
    McGinnis M.Y., Williams G.W., Lumia A.R., Inhibition of male sex behavior by androgen receptor blockade in preoptic area or hypothalamus,but not amygdala or septum, Physiol.Behav., 1996,60,783-789.
    Meek L.R., Romeo R.D., Novak C.M., Sisk, C.L., Actions of testosterone in
    
    prepubertal male hamsters: dissociation of effects on reproductive behavior and brain androgen receptor immunoreactivity, Horm. Behav., 1997,31 (1) ,75-88.
    Meisel R.L., Sachs B,D., The physiology of male sexual behavior, In: Knobil E, Neill J.D. (Eds), The Physiology of Reproduction, vol.2.New York: Raven Press, New York, 1994,3-106.
    Meredith M., Sensory physiology of pheromone communication, In: Vandenbergh, J.G. (Ed.), Pheromones and Reproduction in Mammals, Academic, New York, 1983, 199-252.
    Mitra S.W., Hoskin E., Yudkovitz J., Pear L., Wilkinson H.A., Hayashi S., Pfaff D.W., Ogawa S., Rohrer S.P., Schaeffer J.M., Alves B.S., Alves S.E., Immunolocalization of estrogen receptor in the mouse brain: comparison with estrogen β, Endocrinology, 2003,144,2055-2067.
    Miyachi Y., Extinction of the response to the female's urinary odour as a consequence of low-dose X-irradiation in male hamster, occurs in conjunction with a marked suppression of aggressive behaviour, Behavioural Processes, 1999,47,175-188.
    Montag-Sallaz M., Welzl H., Kuhl D., Montag D., Schachner M., Novelty-induced increased expression of immediate-early genes c-fos and arg 3.1 in the mouse brain, J. Neurobiol., 1999,38,234-246.
    Moore M., Marler C., Effects of testosterone manipulations on nonbreeding season territorial aggression in free-living male lizards, Sceloporous Jarrovi.Gen.Comp. Endocrinol., 1987,65,225-232.
    Morgan J.I., Curran T., Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes c-Fos and jun, Annu. Rev. Neurosci., 1991,14, 421-451.
    Murphy M. R., Sexual preferences of male hamster: importance of preweaning and adult experience, vaginal secretion, and olfactory or vomeronasal sensation, Behav. Nural. Biol., 1980,30,323-340.
    Nicolas L.B., Pinoteau W., Papot S., Aggressive behavior induced by the steroid sulfatase inhibitor COUMATE and by DHEAS in CBA/H mice, Brain Res., 2001, 922(2) ,216-22.
    Nomura M., Durbak L., Chan J., Smithies O., Gustafsson J.A., Korach K.S., Pfaff D.W., Ogawa S., Genotype/age interactions on aggressive behavior in gonadally intact estrogen receptor beta knockout (beta ERKO) male mice, Horm Behav.,
    
    2002a,41 (3) ,288-96.
    Nomura M., McKenna E., Korach K.S., Pfaff D.W., Estrogen receptor-β regulates transcript concentrations for oxytocin and arginine vasopressin in the hypothalamic paraventricular nucleus of male mice, Molecular Brain Research, 2002b, 109, 84-94.
    Ogawa S., Chan J., Chester A.E., Gustafsson J.A., Korach K.S., Pfaff D.W., Survival of reproductive behaviors in estrogen receptor β gene-deficient ( β ERKO) male and female mice, Proc.Natl.Acad.Sci.U.S.A., 1999, 96,12887-12892.
    Ogawa S., Chester A.E., Hewitt S.C., Walker V.R., Gustafsson J.A., Smithies O., Korach K.S., Pfaff D.W., Abolition of male sexual behaviors in mice lacking estrogen receptors α and β, Proc.Natl.Acad.Sci.U.S.A., 2000,97,14737-14741.
    Ogawa S., Lubahn D.B., Korach K.S., Pfaff, D.W., Behavioral effects of estrogen receptor gene disruption in male mice, Proc.Natl.Sci.U.S.A., 1997,94,1476-1481.
    Ogawa S., Washburn T.F., Taylor J., Lubahn D.B., Korach K.S., Pfaff D.W., Modifications of testosterone-dependent behaviors by estrogen receptor-α gene disruption in male mice, Endocrinology, 1998b,139 (12) ,5058-5069.
    Olivier B., Mos J., van Oorschot R., Hen R., Serotonin receptors and animal models of aggressive behavior, Pharmacopsychiatry, 1995,28 (2),80-90.
    Olivier B., van Orschot R., Waldinger M.D., Serotonin, serotonergoic receptors, selective serotonin reuptake inhibitors and sexual behavior, Int.Clin., Psychopharmacol, 1998,13(6) ,9-14.
    Paredes R.G., Lopez M.E., Baum M.J., Testosterone augments neuronal c-Fos responses to estrous odors throughout the vomeronasal projection pathway of gonadectomized male and female rats, Horm Behav., 1998,33,48-57.
    Pendaries C., Darblade B., Rochaix P., Krust A., Chambon P., Korache K.S., Bayard F., Arnal J.F., The AF-1 activation-function of ERα may be dispensable to mediate the effect of estradiol on endothelial NO production in mice, Proc.Natl.Acad. Sci.U.S.A., 2002,99,2205-2210.
    Pfaff D.W., Schwartz-Giblin S., McCarthy M.M., Kow L.M., Cellular and molecular mechanisms of female reproductive behaviors, in: Knobil E., NeilI J.D. (Eds.) , The Physiology of Reproduction, 2nd edition, Raven Press, New York, 1994,107-220.
    Pfaff D.W, Pfaffmann C., Olfactory and hormonal influences on the basal forebrain of
    
    the main rat, Brain Res., 1969,15,137-156.
    Pfeiffer C.A., Johnston R.E., Hormonal and behavioral responses of male hamsters to females and female odors: roles of olfaction, the vomeronasal system, and sexual experience, Physiol.Behav., 1994,55,129-138.
    Pierce J.D., Dewsbury D.A., Female preference or unmated versus mated males in two species of (Microlus ochrogaster and Microtus montanus), J.Camp.Psychol., 1991,105,165-171.
    Pinxten R., Ridder E. D., Cock M.D., Eens M., Castration does not decrease nonreproductive aggression in yearling male European starlings (Sturnus vulgaris) , Hormones and Behavior, 2003,43,394-401.
    Polston E.K., Erskine M.S., Patterns of induction of the immediate early genes c-Fos and egr-1 in the female rat brain following differential amounts of mating stimulation, Neuroendocrinology, 1995,62,370-394.
    Powers J.B., Newman S.W., Bergondy M.L., MPOA and BNST lesions in male Syrian hamsters:differential effects on copulatory and chemoinvestigatory behaviors, Behav Brain Res., 1987,23,181-95.
    Ranzandi M., Pedram A., Greene G.L., Cell membrane and nuclear estrogen receptors derive from asingle transcrpt: studies of ER α and ER β expressed in CHO cells, J.Mol Endocrinol., 1999,13,307-319.
    Rasia-Filho A.A., Peres T.M.S., Cubilla-Cutierrez F.H., Lucion A.B., Effects of estradiol implanted in the corticomedial amygdala on the sexual behavior of castrated male rats, Braz J Med Biol Res., 1991,24,1041-9.
    Richardson H.L., Cisk C.L., Anatomical relationships among medial amygdala efferent and GnRH neurons, Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC,2002,660,162002
    Romeo R.D., Sisk C.L., Pubertal and seasonal plasticity in the amygdala, Brain Res., 2001,889 (1-2),71-7.
    Rosser A.E., Keverne E.B., The importance of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block, Neuroscience, 1985,15,1141-1147.
    Sar M., Lubahn D.B., French F.S., Wilson E.M., Immunohistochemical localization of the androgen receptor in rat and human tissues, Endocrinology,1990,127, 3180-3186.
    
    
    Schuchard M, Landers J.P, Punkay Sandhu N, Spelsberg T.C., Steroid hormone regulation of nuclear proto-oncogenes, Endocr Rev., 1993,14,659-669.
    Scordalakes E.M, Imwalle D.B, Rissman E.F., Oestrogen's masculine side: mediation of mating in male mice, Reproduction, 2002,124 (3),331-8.
    Scott C.J., Tilbrook A.J., Simmons D.M., Rawson J.A., Chu S., Fuller P.J., Ing N.H., Clarke I.J., The distribution of cells containing estrogen receptor-a (ERa) and ERh messenger ribonucleic acid in the preoptic area and hypothalamus of the sheep: comparison of males and females, Endocrinology, 2000,14,2951-2962.
    Shipley M.T., Halloran F.J., de la Torre J., Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat, Brain Res., 1985,329,294-299.
    Shughrue P.J., Merchenthaler I., Distribution of estrogen receptor β immunoreactivity in the rat central nervous system, J. Comp.Neurol., 2001,436,64-81.
    Simerly R.B., Hormonal control of neuropeptide gene expression in sexually dimorphic olfactory pathways, Trends Neurosci., 1990,13,104-110.
    Simon N., Lu S., McKenna S., Chen X., Clifford A., Sexual dimorphisms in regulatiory systems for 24 sggression, In: Haug M, Whalen R, Aron C, Olsen K, editors. The development of sex differences and similarities in behavior, Boston: Kluwer Academic Publishers, 1993,389-408.
    Simon N., McKenna S., Lu S., Cologer-Clifford A., Development and expression of hormonal; systems regulating aggression, Ann.N.Y.Acda.Sci., 1996,794,8-17.
    Simon N.G., Cologer-Clifford A., Lu S.F., McKenna S.E., Hu Sh., Testosterone and its metabolites modulate 5HT_(1A) and 5HT_(1B) agonist effects on intermale aggression, Neuroscience and Biobehavioral Reviews, 1998,23,325-336.
    Simon N.G., Whalen R.E., Hormonal regulation of aggression: Evidence for relationship among genotype,receptor binding, and behavioral sensitivity to androgen and estrogen, Aggressive Behav., 1986,12,266-267.
    Simon N.C., Whalen R.E., Sexual differentiation of androgen-sensitive and estrogen-sensitive regulatory systems for aggressive behavior, Horm. Behav., 1987, 21,493-500.
    Sipos M.L. Nyby J.G. Concurrent androgenic stimulation of the ventral tegmental area and medial preoptic area: synergistic effects on male-typical reproductive behaviors in housse mice, Brain Res, 1996,729 (1),29-44.
    Sterner M.R., Meisel R.L., Diekman M.A., Forebrain sites of estradiol-17β action on
    
    sexual behavior and aggression in female Syrian hamsters, Behav Neurosci., 1992, 106,162-71.
    Steward O., Wallace C.S., Lyford G.L., Worley P.F., Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites, Neuron, 1998,21,741-751.
    Summers T.R., Hunter A.L., Summers C.H., Female social reproductive roles affect central monoamines, Brain Res., 1997,767,272-278.
    Szczypka M.S, Zhou Q.Y., Palmiter R.D., Dopamine-stimulated sexual behavior is testosterone dependent in mice, Behav Neurosci., 1998,112 (5) ,1229-35.
    Tai F.D., Wang T.Zh., Zhang Y.H., Sun R.Y., Sexual dimorphism of the vomeronasal organ and the accessory olfactory bulb of the mandarin vole Microtus mandarinus and the reed vole M.fortis, Acta Theriologica, 2004,49 (1),33-42.
    Temple J. L., Scordalakes E. M., Bodo C., Gustafsson J., Rissmanb E. F., Lack of functional estrogen receptor β gene disrupts pubertal male sexual behavior, Hormones and Behavior, 2003,44,427-434.
    Temple J.L., Fugger H.N., Li X., Gustafsson J. A., Rissman E.F., Estrogen receptor β hypothalamic pituitary gonadal axis sensitivity to negative feedback, Soc. Neurosci., Abstr.,2000,26,540.20.
    Thakur M.K., Asaithambi A., Mukherjee S., Synthesis and phosphorylation of androgen receptor of the mouse brain cortex and their regulation of androgen receptor of the mouse brain cortex and their regulation by sex steroids during aging, J. Mol Cell Biochem, 2000,203,95-101.
    Tobet S.A., Chikering T.W., Fox T.O., Baum M.J., Sex and regional differences in intracellular localization of estrogen receptor immunoreactivity in adult ferret forebrain, Neuroendocrinology, 1993,58,316-324.
    Trainor B.C., Marler C.A., Testosterone, parternal behavior, and aggression in the monogamous California mouse (Peromyscus californicus) , Horm Behav., 2001, 40 (1),32-42.
    Tribollet E., Barberis C., Jard S., Dubois-Dauphin M., Dreifuss J. J., Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography, Brain Res., 1988, 442,105-118.
    Trivers R.L., Parent offspring conflict, Amer.Zool., 1972,14,249-264.
    
    
    Ulibarri C, Yahr P., Effects of androgens and estrogens on sexual differentiation of sex behavior, scent marking, and the sexually dimorphic area of the gerbil hypothalamus, Horm Behav., 1996,30 (2) ,107-30.
    Vagell M.E., McGinnis M.Y., The role of aromatization in the reastoration of male rat reproductive behavior, J.Neuroendocrinol., 1997, 9,415-421.
    Vandenbergh J.G., The effects of gonadal hormones on the aggressive behaviour of adult golden hamsters (Mesocricetus auratus), Anim.Behav., 1971,19,589-594.
    Vazquez Nin G.H., Echeverry O.M., Ortiz R., Ubaldo E., Fakan S., Effects of hypophyseal hormones on transcription and RNA export to the cytoplasm, Experimental Cell Research, 1997,236,519-526.
    von der Ahe D, Renoir J.M, Baulieu E.E, Beato M., Receptor for glucocorticosteroid and progesterone recognizes distinct features of a DNA regulatory element, Proc Natl Acad Sci USA, 1986,83,2817-2821.
    Wai E.H., Hoar W.S., The secondary sex characters and reproductive behaviour of gonadectomised sticklebacks treated with methyl testosterone, Can. J.zool., 1963, 41,611-628.
    Wang C., Young W.J., Chang C., Androgen effects on the solubility and conformational change of the androgen receptor, J. Mol Cell Biochem., 1999,195,19-23.
    Wang Z.X., Young L.J., Liu Y., Insel T.R., Species differences in vasopressin receptor binding are evident early in development: Comparative anatomic studies in prairie and montane voles, J. Comp. Neuro., 1997,378 (4) , 535-546.
    Warembourg M., Leroy D., Comparative distribution of estrogen receptor α and β immunoreactivities in the forebrain and the midbrain of the female guinea pig, Brain Res., 2004,1002,55-66.
    Wersinger S.R, Baum M.J., Sexually dimorphic processing of somatosensory and chemosensory inputs to forebrain LHRH neurons in Mated ferrets, Endocrinology, 1997,138,1121-1129.
    Wersinger S.R., Baum M.J., Erskine M.S., Mating-induced c-Fos like immunoreactivity in the rat forebrain: a sex comparison and a dimorphic effect of pelvic nerve transection, J. Neuroendocrinol., 1999,5,557-568.
    Westberry J., Meredith M., The influence of chemosensory input and gonadotropin releasing hormone on mating behavior circuits in male hamsters, Brain Res., 2003,974,1-16.
    
    
    Whalen R.E., Yahr P.I., Luttge W.G., The role of metabolism in hormonal control of sexual behavior, In Adler N., Pfaff D., Goy R.W. (Eds.) , Handbook of Behavioral Neurobiology, Vol. 7: Reproduction, Plenum, New York, 1985,609-663.
    Williams M.T., Morford L.L., McCrea A.E., Inman-Wood S.L.,Vorhees C.V., Elevations in plasmatic titers of corticosterone and aldosterone, in the absence of changes in ACTH, testosterone, or glial fibrillary acidic protein, 72 h following D,L-fenfluramine or D-fenfluramine administration to rats, Neurotoxicology and Teratology, 2001,23,23- 32.
    Winans S.S., Powers J.B., Olfactory and vomeronasal differentiation of male hamsters: histological and behavioral analyses, Brain Res., 1977,126,325-344.
    Wingfield J., Jacobs W., Hillgarth N., Ecological constrains and evolution of hormone-behavior interrelationships, Ann. N. Y.Acad. Sci., 1997,807,22-41.
    Winslow J.T., Hastings N., Carter C.S., Harbaugh C.R., Insel T.R., A role for central vasopressin in pair bonding in monogamous prairie voles, Nature, 1992, 365,545-548.
    Wood R.I., Coolen L.M., Integration of chemosensory and hormonal cues is essential for sexual behaviour in the male Syrian hamster: role of the medial amygdaloid nucleus, Neuroscience, 1997,78 (4) , 1027-35.
    Wood R.I., Newman S.W. Mating activates androgen receptor-containing neurons in chemosensory pathways of the male Syrian hamster brain, Brain Res., 1993a,614, 65-77.
    Wood R.I., Newman S.W. Intracellular partitioning of androgen receptor immunoreactivity in the brain of the male Syrian hamster: effect of castration and steroid replacement, J. Neurobiol., 1993b,24,925-938.
    Wood R.I., Newman S.W., Integration of chemosensory and hormonal cues is essential for mating behavior in the male Syrian hamster, J.Neurosci., 1995a, 15,7261-9.
    Wood R.I., Newman S.W., The medial amygdaloid nucleus and medial preoptic area mediate steroidal control of sexual behavior in the male Syrian hamster, Hormones and Behavior, 1995b,29,338-353.
    Wootton R.J., The biology of the sticklebacks, M.Croom, London, 1976.
    Wysocki C.J, Yamazaki K, Curran M, Wysocki L.M, Beauchamp G.K Removal of the vomeronasal organ does not disrupt recognition of MHC-determined individual
    
    odor type, Chem Senses, 2001,101,1058.
    Wysocki C.J., Kate Y. Bemhard R., The male vomeronasal organ mediates female-induced testosterone surges, Biology of Reproduction, 1983,28,917-922.
    Wysocki C.J., Nyby J., Whitney G., Beauchamp G.K., Katz Y., The vomeronasal organ: primary role in mouse chemosensory gender recognition, Physiol.Behav., 1982, 29,315-327.
    Xie F., Liu J., Zhang Y.L., Action Mechanisms of Androgen Receptor, Prog.Biochem.Biophys. Biochemistry and biophysics, 1999,26 (2) , 131-134.
    Xu S.F., Zhu C. Q., Sun F. Y., Wu G. C., Huang X. F., Cheng J. S., Neurobiology Shanghai: Shanghai Medical University Publishing House, 1999, 432-433.
    Yao G.H., Hou Y.Y., Xu Zh.H., Advances in Effects of Androgen on Androgen Receptors, Bioglogy research, 2001,5 (3),202-205.
    Zhang J.X., Zhang Z.B., Wang Z.W., Scent, social status, and reproductive condition in rat-like hamsters (Cricetulus triton), Physiol. Behav., 2001,74 (4-5) ,415-20.
    Zhang W.H., Saji Z. S., Makinen S., Cheng G., Jensen E.V., Warner M., Gustafsson J.A., Estrogen receptor (ER) β, a modulator of ER α in the uterus, Proc.Natl.Acad. Sci.U.S.A., 2000, 97,5936-5941.
    Zhou Z.X., Sar M., Simental J.A., A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor, J. Biol Chem., 1994,269 (18) ,13115-13123.
    解芳,刘峻,张永莲,雄激素受体的作用机制,生物化学与生物物理进展,1999,26(2).131-134.
    邰发道,孙儒泳,王廷正,周宏伟,五种鼠的脑和头骨形态及其生态关系,动物学研究,2001a,22,472-477.
    邰发道,王廷正,张育辉,郝琳,孙儒泳,棕色田鼠与沼泽田鼠犁鼻器和副嗅球的组织结构,动物学报,2003,49,248-255.
    邰发道,王廷正,棕色田鼠的种群年龄结构和密度关系分析,陕西师范大学学报(自然科学版),1997,25,95-97.
    邰发道,王廷正,孙儒泳,犁鼻器在鼠类繁殖行为中的作用,陕西师范大学学报2002,30,97-103.
    邰发道,王廷正,野生成年棕色田鼠社会行为研究,陕西师范大学学报(自然科学版),2000,28(2),76-82.
    邰发道,王廷正,豫西黄土塬农作区棕色田鼠,陕西师范大学学报(自然科学版),1998a,26(4),82-86.
    
    
    邰发道,王廷正,赵亚军,棕色田鼠的配偶选择和相关特征,动物学报,2001b,47,260-267.
    邰发道,王廷正,棕色田鼠洞群内社会组织,兽类学报,2001b,21(1),50-56.
    邰发道,王廷正,棕色田鼠种群空间格局的研究,陕西师范大学学报(自然科学版),1998b,26(1).65-70.
    许绍芬,朱粹青,孙凤艳,吴根诚,黄显奋,程介士,神经生物学,上海:上海医科大学出版,1999,432-433.
    姚根宏,侯亚义,徐志宏,雄激素对雄激素受体调节作用的研究进展,生命科学研究,2001,5(3)202-205.
    张子彦,李殿青,雄激素受体的研究进展,国外医学分子生物学分册,2002,24(2).87-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700