小菜蛾抗阿维菌素品系、抗虫酰肼品系及敏感品系性信息素通讯系统的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动大大强化了生物的进化压力,化学防治导致的害虫抗药性就是一个典型例子。杀虫剂胁迫可能对害虫性信息素通讯系统产生影响,而经过长期选择形成的害虫抗性品系的信息素通讯系统,与其敏感品系相比甚至会存在明显的分化。性信息素介导的昆虫雌雄个体间的求偶和交配,具有高度的敏感性和种特异性,因此作为一种重要的害虫防治途径,同时又是昆虫种群繁殖及种间生殖隔离的重要环节。研究农业害虫抗性品系与敏感品系间性信息素通讯系统的变化,有助于我们更加有效的利用昆虫性信息素来进行害虫防治,同时有利于我们了解在杀虫剂选择下害虫种群的分化过程。本论文以重要农业害虫小菜蛾为对象,对其阿维菌素和虫酰肼抗性品系及其敏感品系的性信息素通讯系统进行了比较研究,同时分析了亚致死剂量阿维菌素处理小菜蛾幼虫后对所得成虫信息素通讯系统的影响,主要结果如下:
     1小菜蛾抗阿维菌素品系,抗虫酰肼品系与敏感品系间性信息素通讯系统的差异
     求偶行为观察表明,抗感品系间雌虫的求偶节律没有显著差异,但两种抗性品系雌虫在求偶高峰期的求偶率显著低于敏感品系。对求偶高峰期雌虫腺体中性信息素的提取分析发现,两种抗性雌虫性信息素滴度都显著低于敏感雌虫,尤其是抗阿维菌素品系的雌虫,其性信息素两种主要组分的比例(Ald/Ac=1.59:8.41)较敏感品系(Ald/Ac=4.57:5.43)明显不同。雄虫对雌性性信息素二元混合物(Ald/Ac=1:1)的EAG反应试验证明,当性信息素剂量≥10ng时,两种抗性雄虫的反应显著高于敏感品系,但两种抗性品系间不存在差异;两种抗性品系对其他比例(Ald/Ac=1:9、3:7、7:3和9:1)性信息素混合物的EAG反应,也显著高于敏感品系。
     2小菜蛾抗阿维菌素品系、抗虫酰肼品系与敏感品系的风洞行为和交配选择性
     以雌蛾为信息素源对不同品系雄蛾进行的风洞行为反应试验证明,小菜蛾敏感品系、抗虫酰肼品系雌虫对三种品系雄虫的吸引能力都较高,彼此间没有显著差异,而抗阿维菌素品系雌虫对敏感品系、抗虫酰肼品系雄虫的引诱能力(达诱芯的比例分别为20.0和30.0%),都低于抗阿维菌素品系雄虫的35.0%,其中敏感品系与抗阿维菌素品系间存在显著差异。进一步的交配选择性试验表明,敏感品系和抗虫酰肼品系间存在同征交配现象;敏感品系和抗阿维菌素品系组合中,无论抗性还是敏感品系都倾向于和敏感品系交配;而在抗虫酰肼和抗阿维菌素品系组合中,两种雄虫都倾向于和抗虫酰肼品系雌虫交配。可见,抗阿维菌素品系雌虫性信息素组分间比例的明显变化,影响了雌虫对雄虫的吸引力,并进而降低其交配机会。这一结果对基于抗性基因稀释的害虫“庇护所”抗药性治理策略的正确实施,以及高效利用性信息素进行害虫预测和防治,均具有重要的指导意义。
     3小菜蛾抗阿维菌素品系与敏感品系杂交F1代的性信息素通讯系统
     敏感品系和抗阿维菌素品系的正反交F1代Z1(敏感雌虫×抗性雄虫)和Z2(敏感雄虫×抗性雌虫)雌虫的求偶节律和两个亲本类似,但雌虫暗期的求偶率、性信息素组分Z11-16:Ald的滴度、以及雄蛾对不同剂量性信息素混合物(Z11-16:Ald和Z11-16:Ac=1:1)的EAG反应均有明显变化,表现为介于两亲本之间,且具有明显的母本偏向性;雌虫的另一性信息素组分Z11-16:Ac的滴度在Z1、Z2和抗性品系间相似,均显著低于敏感品系。进一步对自交和回交后代等进行分析,有望阐明抗感品系间性信息素通讯系统差异的遗传机制。
     4亚致死剂量的阿维菌素处理幼虫对小菜蛾性信息素的影响
     亚致死剂量阿维菌素处理敏感品系小菜蛾三龄幼虫,显著延长了幼虫到蛹的发育时间并降低了蛹重。试虫羽化后,处理雌蛾高峰期的求偶率显著低于对照雌蛾;与对照雌蛾相比,处理雌蛾两种性信息素组分(尤其是Z11-16:Ald)的滴度显著减少,但两组分(Z11-16:Ald和Z11-16:Ac)间的比例没有显著差异。亚致死剂量的阿维菌素处理后,雄虫对不同剂量的雌性性信息素二元混合物的EAG反应增强,当处理剂量为1ng-100ng时达到显著水平;处理剂量在1000ng时,处理组仍然高于对照组,但差异不显著。对不同比例的性信息二元素混合物的EAG反应,处理组也都高于对照组,且当混合物比例(Z11-16:Ald/Z11-16:Ac)为9:1、5:5、3:7时,差异达到显著水平。因此,亚致死剂量处理类似于抗药性品系的情况,即抑制了雌虫性信息素的合成,而提高了雄虫对雌性信息素的电生理反应。抗阿维菌素品系和亚致死剂量阿维菌素处理后,引起小菜蛾性信息素通讯系统类似的变化,其中机制有待进一步研究。
Human activities greatly speed up the evolutionary process of many animal species, and one best known example in insect is the the occurrence of insecticide resistance. Insecticide employment may affect the sex pheromone communication systems in pest, along with the evolution of pest resistance to insecticiede. With the high sensitivity and species-specificity, insect sex pheromone communication plays the key role in the reproduction behavior and has been used in pest control and population forecasting. Studes of the changes of sex pheromone communication system between resistant and susceptible pests is helpful for us to control pest more effectively with sex pheromone and to understand the process of speciation. This study comparaed the sex pheromone communication systems of tebufenozid resistant, abamectin resistant and their sussceptible strain in diamondback moth, and investigated the effects of larva treatment with sublethal dose abamectin on the sex pheromone communication system of survival moths. The main results were as following.
     1. Differences of sex pheromone communication systems in abamectin, tebufenozide resistant and sussceptible strain in diamondback moth
     Calling behavior of female moths showed that there was no difference in calling rhythm between two resistant and sussceptable females, while the calling percentages of resistant females were much lower than that of the sussceptible females. Analysis of sex pheromone showed that resistant females produced significantly less amounts of sex pheromone, compared with susceptible moths. More impotantly, the ratio of two major pheromone components (Ald/Ac) in Aba-R females was 1.6:8.4, much different from susceptible females (Ald/Ac=4.5:5.5). For the male side, resistant males showed significantly higher EAG responsiveness to female binary sex pheromone mixture (Ald/Ac=1:1) at the dose==1 Ong, and there was no difference between two resistant strains. Resistant males also showed higher EAG response to female binary sex pheromone mixture with ratio 1:9,3:7,7:3 and 9:1 (Ald/Ac) than sussceptible males.
     2. Wind tunnel and mating choice experiment in abamectin, tebufenozide resistant and susceptible strain
     Wind tunnel experiment indicated that both susceptible and tebufenozide resistant female remaind high attractiveness to three males, with no difference among males of three strains. However, abamectin resistant females suffered low attractiveness to susceptible and tebufenozide resistant males (source contact percentages were 20% and 30%, respectively), lower than abamectin male (35%). The mating choice experiment confirmed that assosiative mating occur between susceptible and tebufenozide resistant strain; however, in susceptible and abamectin resistant strain combination, males of both strains tended to mate with suscaptible female; similarly two resistant male tended to mate with tebufenozide resistant female in abamectin and tebufenozide resistant strains combination. All the results suggest that abamectin female, in which the ratio of two major sex pheromone components was greatly changed, suffer low attractiveness to males and consequently low mating chances. This finding would be very important to the empoyments of'refuge strategy'in pest resistance management, and to the use of insect sex pheromone in pest control.
     3. Study of sex pheromone communication systems in hybrid F1 of abamectin resistant and susceptible strain
     The F1 hybrid offspring Z1 (S(?)×R(?)) and Z2 (R(?)×S (?)) showed similar calling rhythm with their parents. However, the calling percentage and titer of pheromone Z11-16:Ald in females and male's EAG responsiveness to the bianary pheromone mixture (Ald/Ac=1:1) at different dosages were all between those of two parents, and closer to the mother's. Another pheromone component Z11-16:Ac was about the same among Z1, Z2 and the resistant strain, but sinificantly higher in the sucsseptible strain. The further analysis of offsprings of Z1×Z2 and the backcrosses will be requried to elucidate the genetics of the insecticide associated changes in sex pheromone communication system in the diamondback moth.
     4. Sublethal effect of abamectin on sex pheromone communication systems in susceptible diamondback moth
     Abamectin treatment with sublethal dose not only extended the larva development and reduced pupa weight, but also affacted the sex pheromone communication system of the survival adults. Calling percentage of survival females reared from larvae treated with sublethal dose of abamectin was significantly lower than that of the control. In agreement, the titers of sex pheromone of treated females were reduced compared with the control females, especially the Z11-16:Ald component. The component ratio (Ald/Ac) was not significant different between treated and control moths. Treatment of larva with sublethal dose abamectin also significantly raised EAG response of males to female binary sex pheromone mixture dosed 1-100ng and at the ratio of 1:1 (Ald/Ac). To other ratioes of the binary sex pheromone mixture (Ald/Ac=9:1,5:5 and 3:7), treated males also showed significantly higher EAG response than control males. The influences on sex pheromone communication system by abamectin of sublethal dose and by the abamectin resistance were very similar, the mechanisms underlying which deservs to be explored.
引文
1 何玉仙,杨秀娟,翁启勇等.小菜娥对阿维菌素的抗性研究.福建农业学报.2002,17(3):155-158.
    2 穆兰芳,董双林,杨智化。杀虫剂亚致死剂量对昆虫性信息素通讯系统影响的研究进展。植物保护学报,2005,32(2):201-206
    3 李腾武,高希武,郑炳宗,梁沛。小菜蛾对阿维菌素的抗性遗传方式和相对适合度研究。昆虫学报,2000,43(3):255-263
    4 刘开林,何林,王进军,赵志模.害虫及害螨对阿维菌素抗药性研究进展[J].昆虫知识,2007,44(2):194-200.
    5 刘永杰,徐蓬军,李艳伟,束怀瑞,黄大卫。昆虫蜕皮激素受体及其类似物的杀虫机制研究进展。昆虫学报,2007,50(1):67-73
    6 吴青君.小菜蛾对阿维菌素的抗性机制及GABAA受体的药理性质研究[D].中国农业大学博士学位论文,2000.
    7 王建军,韩召军,王荫长.南京郊区小菜蛾抗性测定和几种杀虫剂触杀毒力的比较[J].南京农业大学学报,2000,23(4):21-24.
    8 王方海,沈萍,崔永涛,李广宏。昆虫神经肽PBAN的细胞内信号转导。生命科学,2006,18(3):255-261
    9 王香萍,方宇凌,张钟宁。小菜蛾性信息素研究及应用进展。植物保护,2003,29(5):5-10
    10徐玉红,刘国光,吕文英,陈琳。农药米满的杀虫机制及在国内的应用。植物保护,2004,30(4):17-19
    11 余德亿,汤葆莎,占志雄等.福建省小菜蛾田间抗药性测定[J].福建农业科技,2000,1:14-16.
    12张雪燕,何捷.云南省主要菜区小菜蛾抗药性研究初报[J].云南农业科技,1998,(4):10-13.
    13周程爱,王小平,陈章发等.长沙地区小菜蛾田间种群抗药性及增效剂的作用[J].湖南农业大学学报(自然科学版).2000,26(5):358-362.
    14赵新成,王琛柱。蛾类昆虫性信息素通讯系统的遗传与进化。昆虫学报,2006,49(2):323-332
    15 Argentine, J.A., J.M. Clark, and D.N. Ferro.1989. Genetics and synergism of resistance to azinphosmethyl and permethrin in the Colorado potato beetle (Coleoptera, Chrysomelidae). J. Econ. Entom.82:698-705.
    16 Allison J. D. And Carde R. T. Male pheromone blend preference function measured in choice and no-choice wind tunnel trials with almond moths, Cadra cautella. Animal Behaviour.2008, 75:259-266
    17 Anton, S., and Gadenne, C.2007. Plasticity of olfactory-guided behaviour and its neurobiological basis:lessons from moths and locusts. Entomo. Exp. Appl.123:1-11.
    18 Appel A. G. and Abd-Elghafa S. F. Toxicity, sublethal effects, and performance of sulfluramid against the German cockroach (Dictyoptera: Blattellidae). J. Econ. Ento.1990,83:1409-1414.
    19 Astrid T. G., Melanie M., Gerhard S., Sybille L., Ales S. and David G. H.2008. Host strain specific sex pheromone variation in Spodoptera frugiperda. Zoology.5:1186-1206
    20 Bashir, T.. Hodges, R. J., Birkinshaw, L. A., Hall, D. R., and Farman, D. I.2003. Phenotypic plasticity of Rhyzopertha dominica pheromone signaling: the effects of different hosts and presence of conspecific females on male produced aggregation pheromone. J. Chem. Ecol.29:945-959.
    21 Baker T. C. Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J. Chem. Ecol.2008,34:971-981
    22 Booksmythe I. Detto T. and Backwell P. Y. Female fiddler crabs settle for less:the travel costs of mate choice.2008, Animal Behaviour.2008.
    23 Bueno A. F. and Freitas S. Effect of the insecticides abamectin and lufenuron on eggs and larvae of Chrysoperla externa under laboratory conditions. BioControl.2004,49:277-283
    24 Butlin R. K. Popolation genomics and speciation. Genetica.2008.
    25 Byers J. A. Chemical constraints on the evolution of olfactory communication channels of moths. J. Theor. Biol.2005,235:199-206
    26 Campanhola, C., Mccutchen, B. F., Baehrecke, E. H., and Plapp, J. R.1991. Biological constraints associated with resistance to pyrethroids in the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol.84:1404-1411
    27 Cao G. C., Han Z. J., Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost, Pest Manag. Sci.2006,62:746-751.
    28 Cao G. C., Han Z. J., Biochemical mechanisms for resistance of diamondback moth, Plutella xylostella (L.) to tebufenozide, Entomol. Res.2007,37:13-14.
    29 Carde, R. T., and Baker, T. C.1984. Sexual communication with pheromones. Chem. Ecol. Insects 10:355-383
    30 Castrezana S. J. and Markow T. A. Sexual isolation and mating propensity among allopatric Drosophila mettleri populations. Behav Genet.2008,38:437-445
    31 Chen Z. L., Fang Y. L. And Zhang Z. N. Synthesis and assessment of attractiveness and mating disruption efficacy of sex pheromone microcapsules for the diamondback moth. Chinese Science Bulletin.2007,52:1365-1371
    32 Chisholm, M. D., Steck, E. W., and Palaniswamy, P.1983. Field trapping of diamondback moth Plutella xylostella using an improved four-component sex attractant blend. J. Chem. Ecol. 19:113-118
    33 Christer L., BOEL S. L., Jan L., Moncia A. and Gunnar B.1985. Individual variation in the pheromone of the turnip moth, Agrotis aegetum. J. Chem. Ecol.11:1181-1196
    34 Christine R. and Boake B. Sexual selection and speciation in Hawaiian Drosophila. Behavior Genetics.2005,35:297-303
    35 Christophe G., Jean F. P., Bernard L. C. And Michel R.1997. Development and pheromone communication systems in hybrids of Agrotis ipsilon and Agrotis segetum. J. Chem. Ecol. 23:191-209
    36 Clark D. C. and Haynes K. F. Sublethal effects of cypermethrin on chemical communication, courtship and ovipositionin the cabbage looper (Lepidoptera: Noctuidae). J. Econ. Ento.1992,85: 1771-1778.
    37 Clark D. C. and Haynes K. F. Sublethal effects of chlordimeform on chemical communication and other reproductive behaviors in the female cabbage looper moth (Lepidoptera:Noctuidae). Archives of Insect Biochemistry and Physiology.1992,19:105-117.
    38 Costa, F. G., Viera, C., and Frankescoli, G.1997. Male sexual behavior elicited by a hybrid pheromone:a comparative study on Lycosa thorelli, L. carbonelli, and their hybrid progeny. Canadian Journal of Zoology 75:1845-1856
    39 Costanzo K. and Monteiro A. The use of chemical and cisual cues in female choice in the butterfly Bicyclus anynana. Proc. R. Soc. B.2007,274:845-851
    40 Cusson, M. and Mcneil, J. N. Innervation of juvenile hormone in the regulation of pheromone release activities in a moth. Science.1989,243:210-212.
    41 Cotar C. McNamara J. M. Collins E. J. And Houston A. I. Should females prefer to mate with low-quality males. J. Theor. Biol.2008,254:561-567
    42 Delisle, J., and Vincent, C.2002. Modified pheromone communication associated with insecticidal resistance in the obliquebanded leafroller. Chovristoneura rosaceana, Chemoecology 12:47-51.
    43 Delpuech, J., Gareau, E., Terrier, O., and Foulillet, P.1998. Sublethal effefects of the insecticide chlorpyrifos on the sex pheromone communication of Trichogramma brassicae. Chemosphere 36:1775-1785
    44 Delpuech, J., Legallet, B., and Fouillet, P.2001. Partial compensation of the sublethal effect of deltamethrin on the sex pheromonal communication of Trichogramma brassicae. Chemosphere 42:985-991
    45 Delpuech, J., Legallet, B., Terrier, O., and Fouillet, P.1999. Modifications of the sex pheromonal communication of Trichogramma brassicae by a sublethal dose of deltamethrin. Chemosphere 38:729-739.
    46 Delpuech J. and Meyet J. Reduction in the sex ratio of the progeny of a parasitoid wasp (Trichogramma brassicae) surviving the insecticide chlorpyrifos. Arch. Environ. Contam. Toxicol. 2003,45:203-208
    47 Delpuech J., Bardon C. and Bouletreau M. Increase of the behavioral response to kairomones by the parasitoid wasp Leptopilina heterotoma surviving insecticides. Arch. Environ. Contam. Toxicol. 2005,49:186-191
    48 DeLury N. C., Judd G. J. R.. and Gardiner M. G. T. Antennal detection of sex pheromone by female Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) and its impact on their calling behaviour. J. Entomol. Soc.2005,102:3-11
    49 Desneux N., Rafalimanana H. and Kaiser L. Dose-response relationship in lethal and behacioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere.2004, 54:619-627
    50 Desneux N., Denoyelle R. and Kaiser L. A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere.2006,65:1697-1706
    51 Domingue M. J., Musto C. J., Linn C. E., Roelofs W. L. And Baker T. C. Evidence of olfactory antagonistic imposition as a facilitator of evolutionary shifts in pheromone blend usage in Ostrinia Spp. J. Inse. Phys.2007,53:488-496
    52 Etges W. J. Divergence in mate choice systems: does evolution play by rules? Genetica.2002, 116:151-166
    53 Evenden M. L., Judd G. J. and Borden J. H. Investigations of Mechanisms of pheromone communication disruption of Choristoneura rosaceana in a wind tunnel. J. Insect. Behav.2000, 13:499-510
    54 Evenden M. L. and Haynes K. F. Potential for the evolution of resistance to pheromone based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni. Ento. Exper.Appl.2001,100:131-134
    55 Floyd J. P. and L. A. Crowder, Sublethal effects of permethrin on pheromone response and mating of male pink bollworm moths. J. Econ. Entom.1981,74:634-638.
    56 Foster S. P., Tomiczek M., Thompsomt R., Denholm L., Poppy G., Kraaijeveld A. R. and Powell W. Behavioural side-effects of insecticide resistance in aphids increase their vulnerability to parasitoid attack. Animal Behaviour.2007,74:621-632
    57 Franck, P., and Toubon, J. F.2007. Insecticide resistance may enhance the response to a host-plant volatile kairomone for the codling moth, Cydia pomonella. Naturwissenschaften 94:449-458.
    58 Friberg M. Vongvanich N., Kemp D. J., Merilaita S. And Wiklund C. Female mate choice determines reproductive isolation between sympatric butterflies. Behav. Ecol. Sociobiol.2008, 62:873-886
    59 Gadenne C., Picimbon J. F., Becard J. M., and RENOU M.1997. Development and Pheromone Communication Systems in Hybrids of Agrotis ipsilon and Agrotis segetum. J. Chem. Ecol. 23:191-209.
    60 Giolo F. P., Medina P., Grutzmacher A. D. And Vinuela E. Effects of pesticides commonly used in peach orchards in Brazil on predatory lacewing Chrysoperla carnea under laboratory conditions. BioControl.2008.
    61 Glennp, S., Camilla, R., and Christer, L.2002. Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpuncella. J. Chem. Ecol.28(7):1447-1461.
    62 Groot A. T., Santagelo R. G., Ricci E., Browine C., Gould F. and Schal C. Differential attraction of Heliothis subflexa males to synthetic pheromone lures in Eastern US and Western Mexico. J. Chem. Ecol.2007,33:353-368
    63 Haynes K. F. and Baker T. C. Sublethal effects of permethrin on the chemical communication system of the pink bollworm moth, Pectinophora gossypiella. Arch. Insect Biochem. Physiol.1985, 2:283-293.
    64 Hegazi E. M., Konstantopoulou M. A. and Showiel S. Is mating disruption effective in controlling the olive moth, Prays oleae? Crop protection.2008.1-9
    65 Horth L. Sensory genes and mate choice: evidence that duplications, mutations, and adaptive evolution alter variation in mating cue genes and their receptors. Genomics.2007,90:159-175
    66 Huang, Y. P. and Takanashi, T., Hoshizaki, S., Tatsuki, S., and Ishikawa, Y.2002. Female sex pheromone polymorphism in adzuki bean borer, Ostrinia scapulalis, is similar to that in European corn borer, O. nubilalis. J. Chem. Ecol.28:533-539.
    67 Hunt,R.E. and Haynes, K. F. Periodicity in the quantity and blend ratios of pheromone components in glands and volatile emissions of mutant and normal cabbage looper moths, Trichoplusia ni. J. Insect Physiol.1990,36:769-774.
    68 Ibrahim M. A., Nissinen A. And Holopainen J. K. Response of Plutella xyostella and its parasitoid Cotesia plutellae to volatile compounds. J. Chem. Ecol.2005,31:1969-1984
    69 Iqbal M, Wright D. J. Evaluation of resistance, cross-resistance and synergismof abamectin and teflubenzuron in a multi-resistant field population of Plutella xylostella (Lepidoptera: Plutellidae) [M]. Bulletin of Entomological Research,1997,87:481-486.
    70 Jean, M. D., and Eric, G.1998. Sublethal effects of the insecticide chlorpyrifos on the sex pheromonal communication of Trichogramma brassicae. Chemosphere 36:1775-1785.
    71 Jeremy D. A. and Ring T. C.2007. Bidirectional selection for novel pheromone blend ratios in the almond moth, Cadra cautella. J. Chem. Ecol.33:2293-2307
    72 Jun, T., Takuma, T., and Yukio, I.2003. Pheromone analysis of wild female moths with a PBAN C-terminal peptide injection for an estimation of assortative mating in adzuki bean borer, Ostrinia scapulalis. J. Chem. Ecol.29:2749-2759
    73 Kemp D. J., Macedonia J. M., Ball T. S. And Rutowski R. L. Potential direct firness consequences of ornament-based mate choice in a butterfly. Behav. Ecol. Sociobiol.2008,62:1017-1026
    74 Kim D. S., Brooks D. J. and Riedl H. Lethal and sublethal effects of abamectin, spinosad, methoxyfenozide and acetamiprid on the predaceous plant bug Deraeocoris brevis in the laboratory. BioControl.2006,51:465-484
    75 Komeza N., Fouillet P., Bouletreau M. And Delpuech J. Modification, by the insecticide chlorpyrifos, of the behacioral response to kairomones of a parasitoid wasp, Leptopilina boulardi. Arch. Environ. Contam. Toxicol.2001,41:436-442
    76 Krokos, F. D., Ameline, A., Bau, J., Sans, A., Konstantopoulou, M., Frerot, B, Guerrero, A., Eizaguirre, M., Malosse, C., Etchepare, O., Albajes, R., and Mazomeno, B. E.2002. Comparative studies of female sex pheromone components and male response of the corn stalk borer Sesamia nonagrioides in three different populations. J. Chem. Ecol.28:1463-1472.
    77 Lamprecht I., Schmolz E. and Schricker B. Pheromones in the life of insects.2007,37:1253-1260
    78 Lanier, G. N., and Wood, D. L.1975. Specificity of response to pheromones in the genus Ips (Coleoptera:Scolytidae). J. Chem. Ecol.23:1487-1503
    79 Lasota J. A., Dybas R. A., Avermectins, a novel class of compounds implications for use in arthropod pest control, Annu. Rev. Entomol.1991,36:91-117.
    80 Laurent, P., Serge, M., Philippe, A., Denis, B., and Sergine, P.2007. Assortative mating between European corn borer pheromone races:beyond assortative meeting. PLoS one 6:1-10.
    81 Lee S., Lee D. W. and Boo K. S. Sex pheromone composition of the diamondback moth, Plutella xylostella in Korea. J. Asia-Pacific Entomol.2005,8(3):243-248
    82 Lee D. W. and Boo K. S. Molecular characterization of pheromone biosynthesis activating neuropeptide from the diamongdback moth. PEPTIDES.2005,26:2404-2411
    83 Lee C. Y., Yap H. H. and Chong N. L. Insecticide toxicity on the adult German cockroach, Blattella germanica (L.) (Dictyoptera:Blattellidae). Malaysian Journal of Science.1996,17:1-9.
    84 Lee C. Y., Yap H. H. and Chong N. L. Sublethal effects of deltamethrin and propoxur on longevity and reproduction of German cockroaches, Blattella germanica. Entom. Exper. Appl.1998, 89:137-145
    85 Lehmann L. Keller L. F. And Kokko H. Mate choice evolution, dominance effects, and the maintenance of genetic variation. J. Theor. Biol.2007,244:282-295
    86 Lelito, J. P., Myrick, A. J., and Baker, T. C.2008. Interspecific pheromone plume interference among sympatric heliothine moths:a wind tunnel test using live, calling females. J. Chem. Ecol. 34:725-733.
    87 Lihoreau M. Zimmer C. and Rivault C. Mutual mate choice:when it pays both sexes to avoid inbreeding. PlosOne.2008,3:3365-3371
    88 Lim H. Park K. C., Baker T. C. and Greenfield M. D. Perception of conspecific female pheromone stimulates female calling in an arctiid moth, Utetheisa ornatrix. J. Chem. Ecol.2007, 33:1257-1271
    89 Lingappa, S., and Kulkarni, K. A.2004. Threat to vegetable production by diamongdback moth and its management strategies. Disease Management of Fruits and Vegetables 1:357-396.
    90 Linn, C. E., and Roelofs, W. L.1986. Modulatory effects of octopamine and serotonin on male sensitivity and periodicity of response to sex pheromone in the cabbage looper moth, Trichoplusia ni. Arch. Insect Biochem. Physiol.3:161-171.
    91 Linn, C. E., and Musto, C. J.2007. More rare males in Ostrinia: response of Asian corn borer moths to the sex pheromone of the European corn borer. J. Chem. Ecol.33:199-212
    92 Liu X., Macaulay D. M. And Pickett J. A.. Propheromones that release pheromonal carbonyl compounds in light. J. Chem. Ecol.1984,10:809-822
    93 Ljungberg H., Anderson P. and Hansson B. S. Physiology and morphology of pheromone specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J Insect. Physiol.1993,39:253-260
    94 Mcelfresh J. S. and Jocelyn G. M.1999. Geographic variation in sex pheromone blend of Hemileuca electra from southern California. J. Chem. Ecol.25:2505-2525
    95 Meffert L. M. and Regant J. L. A test of speciation via sexual selection on female preferences. Animal Behaviour.2002,64:955-965
    96 Mommaerts V., Sterk G. and Smagghe G. Bumblebees can be used in combination with juvenile hormone analogues and ecdysone agonists. Ecotoxicology.2006,15:513-521
    97 Montserrat S., Benjamin P., Jose L. A., Francisco C. and Gemma F. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone. PNAS.2007. 104:16444-16449
    98 Mottus E. Nomm V. Williams I. H. and Liblikas I. Optimization of pheromone dispensers for diamondback moth Plutella xylostella. J. Chem. Ecol.1997,2145-2159
    99 Moulton J. K., Pepper D. A., Jansson R. K., Dennehy T. J., Pro-active management of beet armyworm (Lepidoptera: Noctuidae) resistance to tebufenozide and methoxyfenozide:baseline monitoring, risk assessment, and isolation of resistance, J. Econ. Entomol.2002,95:414-424.
    100 New T. R. Moths and conservation:background and perspective. J. Inse. Conser.2004,8:79-94
    101 Nosil, P., Crespi, B. J., Gries, R., and Gries, G.2007. Natural selection and divergence in mate preference during speciation. Genetica 129:309-327.
    102 Nicolas D. Axel D. and Delpuech J. M.2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol.52:81-106
    103 Ochieng S. A., Anderson P. and Hansson B. S. Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae).Tissue Cell.1995,27:221-232
    104 Palaniswamy P. and Seabrook W. D. The alteration of calling behaviour by female Choristoneura fumiferana when exposed to synthetic sex pheromone. Entomol. Exp. Appl.1985,37:13-16
    105 Palumbi, S. R.2008. Humans as the worlds greatest evolutionary force. Science 293:1786-1790.
    106 Paterson, H. E.1980. A comment on "mate recognition systems". Evolution 34:330-331
    107 Pearson G.A., Scott D. and Meyer J. R. Modeling intra-sexual competition in a sex pheromone system:how much can female movement affect female mating success? J. Theo. Biol.2004, 231:549-555
    108 Pelozuelo L., Meusnier S., Audiot P. And Ponsard S. Assortative mating between European Corn Borer pheromone races:beyond assortative meeting.2007, PlosOne.6:1-10
    109 Pureswaran D. S., Sullivan B. T. and Ayres M. P. High individual variation in pheromone production by tree-killing bark beetls. Naturwissenschaften.2008,95:33-44
    110 Pelozuelo, L., Malosse, C., Genestier, G., Guenego, H., and Frerot, B.2004. Host-plant specialization in pheromone strains of the European corn borer Ostrinia nubilalis in France. J. Chem. Ecol.30:335-352.
    111 Phelan, P. L.1991. Evolution of sex pheromones and the role of asymmetric tracking. Insect chemical ecology. Insect Chemical Ecology:An Evolutionary Approach.66:265-314.
    112 Phelan, P. L.1997. Genetics and phylogenetics in the evolution of sex pheromones. In: R.T. Carde and A.K. Minks, Editors, Insect Pheromone Research.26:563-579.
    113 Phyllis G. Weintraub A.1997. Systemic effects of neem insecticide on Liriomya huidobrensis larvae. Phytoparasitica.25:283-289
    114 Prestwich G.D. Proteins that smell:pheromone recognition and signal transduction. Bioorganic Med. Chem.1996,4:505-513
    115 Qian, L., Cao, G.C., and Han, Z. J.2008. Biochemical mechanisms conferring cross-resistance between Tebufenozide and Abamectin in Plutella xylostella. Pesticide Biochem. Physiol. 91:175-179.
    116 Qiu, Y. and Cao, M. Mechanism of the control of sex pheromone production in female Asian corn borer, Ostrinia furnacalis. J. Xiamen Univ.1989,28:88-91.
    117 Rafaeli A. Pheromone biosynthesis activating neuropetide:regulatory role and mode of action. General and Comparative Endocrinology.2008
    118 Raina A. K. and Klun, J. A. Brain factor control of sex pheromone production in the female corn earworm moth. Science.1984,225:531-533.
    119 Reddy G.V., Tabone E. and Smith M. T. Mediation of host selection and oviposition behavior in the diamondback moth Plutella xylostella and its predator by chemical cues from cole crops. Biol. Cont. 2004,29:270-277
    120 Ring T. C., Robert T. S. and Agenor M. N. Behaviour of pink bollworm males neat high dose, point sources of pheromone in field wind tennels: insights into mechanisms of mating disruption. Ento. Exper. Appl.1998,89:35-46
    121 Robbins P. S., Cash D. B., Linn C. E. and Roelofs W. L. Experimental evidence for three pheromone races of the scarab beetle. J. Chem. Ecol.2008,34:205-214
    122 Roelofs, W. L., and Comeau, A.1969. Sex pheromone specificity:taxonomic and evolutionary aspects in Lepidoptera. Science 165:398-400
    123 Roush, R. T., and Mckenzie, J. A.1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol.32:361-380.
    124 Saad A. D., Scott D. R. Repellency of pheromones released by females of Heliothis armigera and H. zea to females both species. Entomol. Exp. Appl.1981,30:123-127
    125 Sauphanor B., Feanck P., Lasnier T., Toubon J. F. and Beslay D. Isecticide resistance may enhance the response to a host-plant volatile kairomone for the codling moth, Cydia pomonella. Naturwissensehanften.2007,94:449-458
    126 Schneider M., Smagghe G., Pineda S. And Vinuela E. The ecological impact of four IGR insecticides in adults of Hyposoter didymator: pharmacokinetics approach. Ecotoxicology.2008, 17:181-188
    127 Schroeder, P. C., and Shelton, A. M.2000. Application of synthetic sex pheromone for management of diamondback moth, Plutella xylostella, in cabbage. Entomol. Exp. Appl.94:243-248.
    128 Serra M., Pina B., Abad J. L., Camps F. And Fabrias G. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone. PNAS.2007,104:16444-16449
    129 Seth R. K., Kaur J. J., Rao D. K. And Reynolds S. E. Effects of larval exposure to sublethal concentrations of the ecdysteroid agonists RH-5849 and tebufenozide (RH-5992) on male reproductive physiology in Spodoptera litura. J. Inse. Phy.2004,50:505-517
    130 Siana L. Wu W. Q. and Christer L.1997. A genetic analysis of population differences in pheromone production and response between two populations of the turnip moth, Agrotis segetum. J. Chem. Ecol.23:1487-1506
    131 Stelinski L. L., Gut L. J., Haas M. And Epstein D. Evaluation of aerosol devices for simultaneous disruption of sex pheromone communication in Cydia pomonella and Grapholita molesta. J. Pest. Sci.2007,80:225-233
    132 Stephen R. P.2001. Humans as the world greatest evolutionary force. Science.293:1786-1790.
    133 Stumpf, N., and Nauen, R.2002. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari:Tetranychidae), Pestic. Biochem. Physiol.72:111-121.
    134 Su M. W., Fang Y. L., Tao W. Q., Yan G. Z., Ma W. E. And Zhang Z. N. Identification and field evalution of the sex pheromone of an invasive pest, the fall webworm Hyphantria cunea in China. Chinese Science Bulletin.2008,53:555-560
    135 Syed Z., Guerin P. M. and Baltensweiler W. Antennal responses of the two host races of the larch bud moth, Zeiraphera diniana, to larch and cembran pine volatiles. J. Chem. Ecol.2003, 29:1691-1708
    136 Tabata, J., and Ishikawa, Y.2005. Genetic Basis to Divergence of Sex Pheromone in Two Closely Related Moths, Ostrinia scapulalis and O. zealis. J. Chem. Ecol.31:1111-1124
    137 Tabata, J., Hoshizaki, S., Tatsuki, S., and Ishikawa, Y.2006. Heritable pheromone blend variation in a local population of the butterbur borer moth Ostrinia zaguliaevi (Lepidoptera: Crambidae). Chemoecology 16:123-128.
    138 Talekar N. S., Shelton A. M., Biology, ecology and management of the diamondback moth, Annu. Rev. Entomol.1993,38:275-301.
    139 Tamaki, Y., Kawasaki, K., Yamada. H., Koshihara. T., Okaki, N., Ando, T., Yashida, S., and Kakinohama, H.1977. Z-11-Hexadecenal and Z-l 1-hexadecenyl acetate: Sex pheromone components of the diamondback moth (Lepidoptera: Plutellidae). APPL. Entomol. Zool. 12:208-210.
    140 Tang, J. D., Charlton,R.T.,Card E, R. T., and Yin, C. M. Effect of allatectomy and ventral nerve cord transection on calling, pheromone emission and pheromone production in Lymantria dispar. J. Insect Physiol.1987,33:469-476.
    141 Tetsu A., Inomata S. and Masanobu Y. Lepidopteran sex pheromones. Topics in Current Chemistry. 2004.239:51-96
    142 Thibout E., Ferary S. and Auger J. Nature and role of sexual pheromone emitted by males Acrolepiopsis assectella. J. Chem. Ecol.1994,20:1571-1581
    143 Thomas S., Luc S., Hadi M., Rodica E., Vassiliki L., Kostas I. And Guy S. Juvenile homone analogs do not affect directly the activity of the ecdysteroid receptor complex in insect culture cell lines. J. Inse. Phys.2008,54:429-438
    144 Thomas C. W. Pheromonal communication involved in courtship behavior in diptera. J. Inse. Phys. 2007,53:1089-110
    145 Thompson H. M., Wilkins S., Battersby A. H., Waite R. J. and Wilkinson D. The effects of four insect growth-regulating (IGR) insecticides on honeybee(Apis mellifera L.) colony development, queen rearing and drone sperm production. Ecotoxicology.2005,14:757-769
    146 Trimble, R. M., El-saved A. M., and Pree, D. J.2004. Impact of sub-lethal residues of azinphos-methvl on the pheromone communication systems of insecticide-susceptible and insecticide-resistant obliqueboanded leaforllers, Choristonera rosaceana (Lepidoptera:Tortricidae). Pest Manag Sci 60:660-668
    147 Vainikka A. Rantala M. J. Seppala O. And Suhonen J. Do male mealworm beetles, Tenebrio molitor, sustain the honesty of pheromone signals under immune challenge? Acta. Ethol.2000, 10:63-72
    148 Vereecken N. J., Mant J. And Schiestl F. P. Population differentiation in female sex pheromone and male preferences in a solitary bee. Behav. Ecol. Sociobiol.2007,61:811-821
    149 Vogt R. G. Molecular basis of pheromone detection in insects. In Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology. Elsevier.2004
    150 Wakamura S. and Takai M. Control of the beet army worm Spodoptera exigua using synthetic sex pheromone. Ⅰ. Effect of communication disruption in Welsh onion fields. Appl. Entomol. Zool. 1989,24:387-397
    151 Waladde S. M. and Kahoro H. M. Sensory biology of Chilo spp with specific reference to C. partellus. Insect. Sci. Appl.1990,11:593-602
    152 Wei, H. Y., and Du, J. W.2004. Sublethal effects of larval treatment with deltamethrin on moth sex pheromone communication system of the Asian corn borer, Ostrinia furnacalis. Pesticide Biochem. Physiol.80:12-20.
    153 Wei H. Y., Huang Y. P. and Du J. W.2004. Sex pheromones and reproductive behavior of Spodoptera litura moths reared from larvae treated with four insecticides. J. Chem. Ecol. 30:1457-1465
    154 Witzgall P. and Tasin M. New pheromone components of the grapevine moth Lobesia botrana. J. Chem. Ecol.2005,31:2923-2933
    155 Wong J. W., Palaniswamy P., Underhill E. W., Steck W. F. and Chisholm M. D. Novel sex pheromone components from the fall canker worm moth, Alsophila pometaria. J. Chem. Ecol.1984, 10:463-472
    156 Wu W. Q., Cottrell C. B., Bill S. H. and Christer L.1999. Comparative study of pheromone production and response in Swedish and Zimbabwean population of turnip moth, Agrotis segetum. J. Chem. Ecol.25:177-196
    157 Wunderer H., Handen K. and Bell T. W. Sex pheromones of two Asian moths:behavior, morphology, chemistry and electrophysiology. Exp. Biol.1986,46:11-27
    158 Wyatt T. D. Animals in a chemical world. In Pheromone and Animal Behavioue Communication by Smell Taste. Cambridge University Press,2003
    159 Xiu W. M., Zhou Y. Z. And Dong S. L. Molecular characterization and expression pattern of two pheromone-binding proteins from Spodoptera litura. J. Chem. Ecol.2008,34:487-498
    160 Yang M. W., Dong, S. L., and Chen. L.2009. Electrophysiological and behavioral responses of female beet armyworm Spodoptera exigua (H.) to the conspecific female sex pheromone. J. Insect Behav.22:153-164.
    161 Yang, Z. H., and Du, J. W.2003. Effects of sublethal deltamethrin on the chemical communication system and PBAN activity of Asian corn borer, Ostriniafurnacalis. J. Chem. Ecol.29:1611-1619.
    162 Yang Z. H., Bengtsson M. and Witzgall P. Host plant volatiles synergize response to sex pheromone in coding moth, Cydia pomonella. J. Chem. Ecol.2004,30:619-629
    163 Yin X. H., Wu Q. J., Li X. F., Zhang Y. J. And Xu B. Y. Sublethal effects of spinosad on Plutella xylostella. Crop Protection.2008,27:1385-1391
    164 Yoon, K.S., J.O. Nelson, and J.M. Clark.2002. Selective induction of abamectin metabolism by dexamethasone,3-methylcholanthrene, and phenobarbital in Colorado potato beetle, Leptinotarsa decemlineata (Say). Pesticide Biochemistry and Physiology 73:74-86.
    165 Zagatti P. G., Castel Y. Courtship behaviour of the false coding moth Cryptophlebia leucotrata: androconial display and mating success. Ann. Soc. Entomol.1987,23:113-123
    166 Zhao X. C., Yan Y. H. and Wang C. Z. Behavioral and electrophysiological responses of Helicoverpa assulta, H. armigera, their F1 hybrids and backcross progenies to sex pheromone component blends. J. Comp. Physiol. A 2006,192:1037-1047
    167 Zhou H. C., Du J. W. and Huang Y. P.2005. Effects of sublethal doses of malathion on responses to sex pheromones by male Asian corn borer moths, Ostrinia furnacalis. J. Chem. Ecol.31:1645-1656
    168 Zhou X. M., Bai L. Y., Huang X. Y., Wu Q. J., Advance of Studies on Insecticide Resistance of Diamondback Moth (Plutella xylostella L.) to Abamectin, Acta. Agric. Jiangxi.2007,19:48-50 (in Chinese)
    169 Zhu, J., Chastain, B. B., Spohn, B. G., and Haynes, K. F.1997. Assortative Mating in Two Pheromone Strains of the Cabbage Looper Moth, Trichoplusia ni. J. Insect Behav.10:805-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700