甜菜夜蛾和斜纹夜蛾性信息素通讯系统的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学防治的推广使得害虫对杀虫剂产生了严重的抗性,防治效果显著下降,同时造成天敌杀伤和环境污染等问题。利用昆虫性信息素来防治害虫因为具有灵敏度高、选择性强、对天敌无害、不造成环境污染等优点,逐渐成为了一种具有发展前景的绿色防治技术。因此,针对重要的农业害虫,深入开展两性间信息素通讯系统的研究,全面了解两性间信息素通讯系统的复杂性,不仅有助于阐明昆虫两性间的化学通讯机制,而且对于进一步开发更为高效的性信息素防治技术具有重大的应用价值。本文以甜菜夜蛾(Spodoptera exigua Hubner)和斜纹夜蛾(Spodoptera litura Fabricius)为对象,针对当前蛾类昆虫两性间信息素通讯系统研究的一些薄弱环节,如雄性信息素及其功能、雌性信息素对同种雌蛾的影响、以及雄蛾对雌性信息素电生理反应的昼夜节律等,进行了研究。主要结果如下:
     1甜菜夜蛾和斜纹夜蛾雄性信息素的存在证据
     甜菜夜蛾和斜纹夜蛾在两性共同放置时,其交配行为均可分为求偶萌动期、求偶兴奋期、预交配期和成功交配期4个阶段。在雌雄蛾分开放置时,雌蛾的求偶行为没有变化,但雄蛾只能观察到求偶萌动期和兴奋期两个阶段,几乎不能进入到打开味刷的预交配期,说明雌性信息素的存在对于雄蛾打开味刷起决定性作用。两种夜蛾在雄蛾触角切除后两性间几乎不能成功交配;雌蛾触角切除后对交配率有明显影响,在甜菜夜蛾和斜纹夜蛾中使交配率分别下降了31%和28%;而当雄蛾味刷去除后,甜菜夜蛾和斜纹夜蛾的交配率分别下降30%和27%左右,与雌蛾切除触角的下降程度相似,间接证明了味刷中雄性性信息素的存在。
     2甜菜夜蛾和斜纹夜蛾雄蛾味刷组分的化学鉴定
     分别用正己烷、二氯甲烷和甲醇对两种夜蛾的雄蛾味刷进行浸提,并用1个味刷当量的提取液进行电生理测定,结果发现只有甲醇提取液能够引起雌、雄蛾显著的EAG反应,并且甲醇提取液在两种夜蛾间存在交叉活性。进一步对甲醇提取液的气谱-触角电位联用(GC-EAD)分析,在两种提取液中都发现一个活性峰。该活性峰的保留时间很短,且在两种夜蛾提取液间非常接近,推测可能为同一种物质。由于该组分极性较强、热稳定性差,气质联用(GC-MS)分析未能得到定性结果。对甜菜夜蛾味刷正己烷提取液的GC-MS分析表明,其主要组分为棕榈酸(16:0)、亚油酸(18:2)、油酸(18:1)和硬脂酸(18:0)四种有机酸;根据GC图谱对比,推测斜纹夜蛾味刷同样含有这4种组分,该4种有机酸是否具有雄性信息素活性或作为信息素的前体物质,有待进一步研究。此外,从正己烷提取液中还鉴定出3种直链烷烃,推测其为味刷表皮的碳氢化合物。
     3甜菜夜蛾和斜纹夜蛾雄蛾味刷中有机酸组分的滴度、比例及日动态变化
     利用GC定量分析了两种夜蛾3日龄雄蛾味刷中4种有机酸的滴度以及甜菜夜蛾不同日龄味刷中各组分滴度的动态变化。结果表明:3日龄甜菜夜蛾味刷中棕榈酸、油酸、亚油酸和硬脂酸滴度分别为27.80、24.58、15.40和5.10 ng/ME,相对比例为38.14、33.73、21.13和7.00%;斜纹夜蛾的滴度分别为24.36、20.02、15.87、和6.02 ng/ME,相对比例为36.75、30.21、23.95和9.08%,与甜菜夜蛾的情况相似。甜菜夜蛾雄蛾味刷中,4种有机酸在刚羽化(0日龄)雄蛾中的滴度很低,随后快速上升,2日龄后稳定下来,不再有显著变化。
     4甜菜夜蛾和斜纹夜蛾雌蛾对同种雌性信息素的电生理和行为反应
     EAG电生理测定表明,甜菜夜蛾和斜纹夜蛾雌蛾对自身释放的雌性信息素也能产生明显的触角电位,尽管反应强度较同种雄蛾的明显要弱。进一步的求偶行为观察表明,当甜菜夜蛾雌蛾暴露在雌性信息素中,其求偶行为发生了明显的改变,表现为求偶率较对照明显降低,求偶高峰期发生后移,求偶时间延长到光期开始后2小时;但暴露在雌性信息素下的雌蛾腺体内的性信息素滴度没有改变。此外,趋避实验结果表明,雌蛾在嗅觉仪中对雌性信息素也没有明显的趋避反应。求偶行为的改变有利于雌蛾在时间上避开其他雌蛾个体,从而减轻竞争并获得更多的与雄蛾的交配机会。
     5甜菜夜蛾和斜纹夜蛾成虫对雌性信息素EAG反应的时动态及其与PBP表达量的关系
     EAG测定表明,斜纹夜蛾和甜菜夜蛾雄蛾触角对雌性信息素的敏感性没有明显的昼夜节律,在光期依然表现出了与暗期相似的敏感性。为探讨其机制,利用实时荧光定量PCR初步测定了斜纹夜蛾雄蛾触角内的两个信息素结合蛋白(PBP)的表达量,表明光期的表达量较暗期明显降低。两者间的不一致暗示,除PBP外可能还有其他蛋白参与了对性信息素分子的运输,从而在光期维持较高的触角敏感性;或者PBP担负暗期相关的多种功能,而在光期PBP表达量明显降低后仍足以维持相当的触角敏感性。
Due to the wide and intensive use of chemical insecticides in fields, insect pests have developed serious resistances to most varieties of insecticides, resulting in unsatisfied efficacies and even failures in pest control. Insect sex pheromone, as an alternative method to chemical insecticides, has many advantages such as high sensitivity, species-specificity and safety to environment, and therefore has been considered to be one of the prosperous green pest control methods. Obviously, thoroughly understanding the sex pheromone communication system between male and female insects would be very important not only for the clarification of the mechanisms of sex communication but also for the development of more efficient pest control method targeting on sex pheromone communication system. Here in the present study, some less-studied aspects of sex pheromone communication system in Spodoptera exigua and S. litura were explored, which included chemical identification of male sex pheromone, electrophysiological and behavioral responses of females to the conspecific female sex pheromone, and diel rhythm of electrophysiological response of males to female sex pheromone. The main results are as follows:
     1. Evidence for the presence of male sex pheromone in S. exigua and S. litura
     The copulation behaviors of S. exigua and S. litura were investigated by direct observation. For the two moth species, when male and female were placed together in a container, the copulation behavior of both sexes could be divided into four sequential periods:precalling period, calling period, precopulation period and copulation period. However, when male and female placed separately in different container, the females presented the same four periods, but males only presented the first two periods with the third and fourth periods hardly observed, indicating that the presence of female sex pheromone was crucial for males to display the hairpencils. Hairpencil and antennal excision assays were carried out to confirm the effect of the hairpencils on the mating success. Males with antennal excision resulted in almost no mating success; while females with no antennae caused a reduction in mating success rate by 37% in S. exigua and 28% in S. litura. In the case of males with hairpencil excision, the mating rate was decreased by 30% in S. exigua and 27% in S. litura. Taken together the results of antennal excision and hairpencil excision assays, it was suggested that the male sex pheromone was released from the hairpencil, and had a significant influence on mating success between female and male moths.
     2. Chemical identification of compounds produced by male hairpencil glands from S. exigua and S. litura
     Electroantennogram (EAG) was conducted to investigate the effects of male hairpencil extracts on EAG responses of male and female S. exigua and S. litura. Hexane, Methylenechloride and methanol were used to extract the hairpencils, but only the extract by methanol could elicit a significant EAG response in both male and female moths, and a cross-response was found between two moth species for both hairpencils. The further GC-EAD assay led a finding of an active compound but the chemical identification of this compound failed by GC-MS possibly due to the heat instability and strong polarity of the compound. Moreover, hexane extract of hairpencils from male S. exigua were analyzed by GC-MS, and four chemical components were identified as palmitic(C16:0), linoleic(C18:2), oleic(C18:1), and stearic acid(C18:0). Hexane extract of hairpencils from male S. litura was considered to contain the same four acids based on comparing of gas chromatograms from the both moth species. Whether these four organic acids acted as male sex pheromone components or not needed to be further confirmed.
     3. Quantitative analysis of compounds produced by male hairpencil glands from S. exigua and S. litura
     GC quantitative analysis of the hairpencil extracts with hexane from three old moths showed a similar titers and relative proportions of four components between the two moth species. The titers of palmitic, linoleic, oleic, and stearic acid were 27.80,24.58,15.40, and 5.10 ng/FM with a relative proportion of 38.14,33.73,21.13 and 7.00%, respectively, in S. exigua. While in S. litura, the corresponding titers were 24.36,20.02,15.87, and 6.02 ng/FM, and the relative proportion were 36.75,30.21,23.95%,9.08%, respectively. The dynamics measurements of extracts from different day old moths showed a sharp increase in the titers of the four acids from 0-day-old moth to two-day-old moth, and a stabilization of the titers was achieved since two-day-old moth on.
     4. Electrophysiological and behavioral responses of both sexes of S. exigua and S. litura to the conspecific female sex pheromone
     Electroantennogram (EAG) recordings showed that female S. exigua and S. litura were indeed capable of perceiving their own sex pheromones (two single components and their mixture), and displayed a similar dose-response relation pattern to that of respective males, although intensities of female responses were much less than those of corresponding males. Furthermore, the female S. exigua calling behavior was apparently influenced by presence of the female sex pheromone. The proportions of calling females in the peak calling period were significantly reduced and the calling peak time postponed by 2.5h, but the calling duration was prolonged by 1.5h into 2h of photophase, compared with controls. However, the pheromone titers in the female moth glands were the same between treatment and the control, implicating a reduced pheromone biosynthesis in the glands of treated moths. In addition, olfactometer experiment exhibited no obvious tendency or escape behavior response of females to sex pheromone stimuli. Such modification in calling behavior in S. exigua was speculated to decrease the competition among female individuals and subsequently to obtain more chances to mate with males.
     5. Daily changes of EAG responses to the conspecific female sex pheromone in S. exigua and S. litura, and relation between EAG response and expression level of PBP in male S. litura
     EAG response to conspecific female sex pheromone component by female and male S. litura and male S. exigua indicated no obvious diel rhythms in EAG responses. Males retained similar sensitivity between the scotophase and photophase. To explore the mechanisms of such high EAG sensitivity in photophase, the transcription levels of PBP genes in male S. litura antennae were measured by Real-time quantitive PCR in one scotophase time point and three photophase time points. The results showed a significant reduction from scotophase to photophase in the amounts of SlitPBPl and SlitPBP2 mRNA. As PBPs was thought to transport the sex pheromone molecules to the receptors localized on the dentrite membrane of olfactory neuron, the PBP expression level should positively correlate to the EAG responses. Therefore, such incongruity between the EAG sensitivity and PBP expression level might imply a more complicated situation regarding the PBP functions and sex pheromone transportations.
引文
1.董双林,杜家纬.交配和温度对甜菜夜蛾(Spodoptera exigua)雌蛾性信息素产生的影响.应用生态学报,2002,13(12):1633-1636
    2.董双林,杜家纬.甜菜夜蛾信息素组分的鉴定及其田间试验.植物保护学报,2002b,29(1):19-24
    3.董双林,杜家纬.甜菜夜蛾性信息素鉴定及应用研究进展.昆虫知识,2002a,39(6):412-416
    4.董双林.中国甜菜夜蛾Spodoptera exigua Hiibner性信息素及其应用研究.中国科学院上海昆虫研究所博士论文,2000
    5.杜家纬,昆虫信息素及其应用.北京:中国林业出版社,1988
    6.范伟民,盛承发,苏建伟.棉铃虫成虫对性信息素的电生理和行为反应研究.昆虫学报,2003,46(2):138-143
    7.韩宝瑜,昆虫化学信息物质及其在害虫治理中的应用展望.安徽农学通报,2002,8(1):12-13
    8.黄春霞,朱丽梅,倪珏萍,曹晓宇.甜菜夜蛾的饲养方法介绍.昆虫知识,2002,39(3):229-231
    9.黄勇平,周志华,唐大武,王淑芬,杜家纬.棉铃虫雄性信息素的研究Ⅳ.棉铃虫触角对雌、雄性信息素组分的EAG反应.湖南农业大学学报,1995,21(5):458-463
    10.寇秀颖,于国萍.脂肪和脂肪酸甲酯化方法的研究.食品研究与开发,2005,26(2):46-47
    11.李卫华,涂洪涛,苗雪霞,郭线茹.昆虫嗅觉相关蛋白的研究进展.昆虫知识,2006,43(6):757-762
    12.刘永杰.甜菜夜蛾抗药性监测与抗性机理研究.南京农业大学博士论文,2002
    13.鲁玉杰,张孝羲,翟保平.温度和光周期对棉铃虫雌性信息素成分的含量与比例的影响.生态学报,2002,22(4):566-570
    14.缪森,张龙,王丽红.昆虫气味结合蛋白的研究进展.云南大学学报,2003,25(增刊):161-165
    15.司胜利,许少甫,杜家纬.烟夜蛾雄蛾性附腺因子对雌蛾性信息素合成的抑制作用.昆虫学报,2000,43:120-126
    16.孙凡,杜家纬,陈庭华.斜纹夜蛾性信息素通讯系统.昆虫学报,2003,46(1):126-130
    17.孙凡,胡隐月,杜家纬.斜纹夜蛾性信息素通讯系统.昆虫学报,2002,45(3):404-407
    18.王桂荣,郭予元,吴孔明.昆虫触角气味结合蛋白的研究进展.昆虫学报,2002,45(1):131-137
    19.王淑芬,黄勇平,周志华,唐大武,杜家纬.棉铃虫雄性信息素的研究Ⅰ.与雄蛾味刷有关的交配行为的观察.湖南农业大学学报,1995,21(5):452-457
    20.王荫长.昆虫生理学.北京:中国农业出版社,2004
    21.咸漠,咸漠,康亦兼,刘延,刘君洪,毕颖丽,甄开吉.菌油脂肪酸碱法甲醋化的研究.吉林大学自然科学学报,2001,1:103-105
    22.谢建军,胡美英,许再福.斜纹夜蛾的天敌及其生物防治.昆虫天敌,1999,21(2):82-92
    23.修伟明,董双林,王荫长.昆虫信息素结合蛋白及其分子运输机制和生理功能研究进展.昆虫学报,2005,48(5):778-784
    24.阎凤鸣.化学生态学.北京:科学出版社,2003
    25.杨明伟,董双林.蛾类昆虫雄性信息素及其功能.华东昆虫学报,2006,15(3):179-186
    26.杨智化,唐贤汉,杜家纬.环境温度对亚洲玉米螟求偶活动及性信息素释放的影响.化学生态学.1:19-24.上海:科学技术出版社,1992
    27.孟宪佐,我国昆虫信息素研究与应用的进展.昆虫知识,2000,37(2):75-81
    28.张庆贺,影响蛾类性信息素释放和接受的生态因子.生物防治通报,1993,9(2):80-86
    29.赵成华.蛾类昆虫性信息素生物合成的研究进展.昆虫学报,2000,43(4):429-439
    30.周晓梅,黄炳球.斜纹夜蛾抗药性及其防治对策的研究进展.昆虫知识,2002,39(2):98-102
    31.朱彬彬,姜勇,雷朝亮.昆虫信息素结合蛋白的研究概况.昆虫知识,2005,42(3):240-243
    32. Aplin R.T., Birch M.C., Identification of odorous compounds from male Lepidoptera. Experientia. 1970,26:1193
    33. Aplin R.T., Birch M.C., Pheromone from the abdominal brushes of male noctuid Lepidoptera. Nature.1968,217:1167-1168
    34. Am H., Toth M., Priesner E., List of sex pheromone of Lepitoptera and related attractants. Paris:OILB-SROP.1992
    35. Babilis N.A., Mazomenos B.E., Pheromone production I Sesamia nonagrioides:diel periodicity and effect of age and mating. J. Insect. Physiol.1992a,38:561-564
    36. Babilis N.A., Mazomenos B.E., Mating behaviour of the corn stalk borer Sesamia nonagrioides. Entomol. Exp. Appl.1992b,65:199-204
    37. Baker T.C., Carde R.T., Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha molesta (Busck). J. Insect. Physiol.1979, 25:943-950
    38. Baker T.C., Chemical control of behavior. In Comprehensive Insect Physiology, Biochemistry, Pharmacology. (eds. Kerkut G.A, Gilbert L.I.). Oxford: Pergamon,1985,621-672
    39. Baker T.C., Nishida R., Roelofs W.L., Close-range attraction of female oriental fruit moths to herbal scent of male hairpencils. Science.1981,214:1359-1361
    40. Baker T.C., Origin of courtship and sex pheromones of the oriental fruit moth and a discussion of the role of phytochemicals in the evolution of lepidopteran male scents. In Proc. Symp. Phytochemical Ecol: Allelochemicals, Mycotoxins, and Insect Pheromone and Allomones. (eds. Chou C.H, Waller G.R.).Taiwan: Academia Sinica & US National Science Foundation. In press, 1989
    41. Bell T.W., Meinwald J., Pheromones of the arctiid moths (Creatonotus transiens and C.,gangis); chiral components from both sexes and achiral female components. J. Chem. Ecol.1986, 12:385-409
    42. Bestmann H.J., Vostrowsky O., Platz H., Pheromone XII., Mannchenduftstoffe von Noctuiden (Lepidoptera), Male sex pheromones of noctuides. Experientia.1977,33:874-875
    43. Birch M.C., Responses of both sexes of Trichoplusia ni (Lepidoptera: Noctuidae) to virgin females and to synthetic pheromone. Ecol. Entomol.1977,2:99-104
    44. Birch M.C., Grant G.G., Brady U.E., Male scent brush of Peridromo saucia chemistry of cecretion. Ann. Entomol. Soc. Am.1976,69:491-492
    45.Birch M.C., Hefetz A., Extrusible organs in male moths and their role in courtship behavior. Bull. Entomol. Soc. Am.1987,33:222-229
    46. Birch M.C., Lucas D., White P.R., The courtship behaviour of the cabage moth, Mamestra brassicae (Lepidoptera: Noctuidae) and the role of male hairpencils. J. Insect. Behav.1989, 2:127-140
    47. Birch M.C., Male abdominal brush-organs in British noctuid moths and their value as a taxonomic character. Entomologist.1972,105:185-205,233-244
    48. Birch M.C., Poppy G.M., Baker T.C., Scents and eversible scent structures of male moths. Ann. Rev. Entomol.1990,35:25-58
    49. Birch M.C., Pre-courtship use of abdominal brushes by the nocturnal moth, Phlogophora meticulosa (L.) (Lepidoptera: Noctuidae).Anim. Behav.1970b,18:310-316
    50. Birch M.C., Structure and function of the pheromone-producing brush-organs in males of Phlogophora meticulosa (L.) (Lepidoptera: Noctuidae). Trans. R. Entomol. Soc. Lond.1970a, 122:277-292
    51. Bohbot J., Vogt R.G., Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect. Biochem. Mol. Biol.2005, 35:961-979
    52. Boppre M., Petty L., Schneider D., Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male creatonotus moths (Lepidoptera: Arctiidae)., J. Comp. Physiol. A.1985,157:569-577
    53. Callahan F.E., Vogt R.G., Tucker M.L., Dickens J.C., Mattoo A.K., High level expression of "male specific" pheromone binding proteins (PBPs) in the antennae of female noctuid moths. Insect. Biochem. Mol. Biol.2000,30:507-514
    54. Carde R.T., Haynes K.E., Structure of the pheromone communication channel in moths. In: Carde RT, Millar JG (eds), Advances in Insect Chemical Ecology, Cambridge University Press, Cambridge.2004,283-332
    55. Clearwater J.R., Chemistry and function of a pheromone produced by the male of the southern armyworm, Pseudaletia separate. J. Insect. Physiol.1972,18:781-789
    56. Clearwater J.R., Pheromone metabolism in male pseudaletia separata(Walk.,) and Mamestra configurata (Walk.,)(Lepidoptera: Noctuidae). Comp. Biochem. Physiol. B.1975,50:77-80
    57. Clearwater J.R., Structure development and evolution of the male pheromone system in some Noctuidae(Lepidoptera). J. Morphol.1975,146:129-176
    58. Conner E., Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth, Utetheisa ornatrix. J. Chem. Ecol.1989,15 In press
    59. Culvenor C.C.J., Edgar J.A., Dihydropyrrolizine secretions associated with coremata of Utetheisa moths (family Arctiidae). Experientia.1972,28:627-628
    60. DeLury N.C., Judd G.J.R., Gardiner M.G.T., Antennal detection of sex pheromone by female Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) and its impact on their calling behaviour. J. Entomol. Soc. Brit. Columbia.2005,102:3-11
    61. De-Santis F., Francois M.C., Merlin C., Pelletier J., Maibeche-Coisne M., Conti E., Jacquin-Joly E., Molecular cloning and in situ expression patterns of two new pheromone binding proteins from the corn stemborer, Sesamia nonagrioides. J. Chem. Ecol.2006,32:1703-1717
    62. Dong S.L., Du J.W., Chemical identification and field tests of sex pheromone of beet armyworm Spodoptera exigua. Acta. Phytophylacica. Sin.2002,29:19-24
    63. Dong S.L., Du J.W., Diel rhythms of calling behavior and sex pheromone production of beet armyworm, Spodoptera exigua(Lepidoptera: Noctuidae). Entomologia. Sinica.2001,8(1):89-96
    64. Edgar J.A., Cockrum P.A., Carrodus B.B., Male scent organ chemicals of the vine moth, Phalaenoides glycinae Lew(Agaristidae). Experientia.1979,35:861
    65. El-Sayed A.M., Suckling D.M., Behavioural observations of mating disruption in three lepidopteran pests. Behaviour.2005,142:717-729
    66. Faucheux M.J., Morphology and distribution of sensilla on the cephalic appendages, tarsi, and ovipositor of the European sunflower moth, Homoeosoma nebulella Den.and Schiff.(Lepidoptera: Pyralidae). Int. J. Insect Morphol. Embryol.1991,20:291-307
    67. Fitzpatrick S.M., Mcneil J.N., Male scent in Lepidoptera communication: the role of male pheromone in mating behaviour of Pseudaletia unipuncta(Haw.,)(Lepidoptera: Noctuidae). Mem. Entomo. Soc. Can.1988,146:131-151
    68. Foster S.P., Howard A.J., Ayers R.H., Age-related changes in reproductive characters of four species of tortricid moths. New. Zeal. J. Zool.1995,22:271-280
    69. Gokce A., Stelinski L.L., Gut L.J., Whalon M.E., Conparative behavioral and EAG responses of female obliquebanded and redbanded leafroller moths (Lepidoptera: Tortricidae) to their sex pheromone components. Eur. J. Entomol.2007,104:187-194
    70. Goodpasture C., Richard R.D., Martin D., Laster M., Sperm cell abnormalities from inter-specific crosses between Heliothis virescens and H. subflexa. Ann. Entomol. Soc. Am.1980,73:529-532
    71. Grant A.J., O'Connell R.J., Responses of olfactory receptor neurons in Utetheisa ornatrix to gender-specific odors. J. Comp. Physiol. A.2000,186:535-542
    72. Grant G.G., Brady U.E., Brand J.M., Male armyworm scent brush secretion: identification and electroantennogram study of major components. Ann. Entomol. Soc. Am.1972,65:1224-1227
    73. Grant G.G., Eaton J.L., Scent brushes of the male tobacco hornworm Manduca sexta (Lepidoptera: Sphingidae). Ann. Entomol. Soc. Am.1973,66(4):901-904
    74. Grant G.G., Morphology of the presumed male pheromone glands on the forewings of tortricid and phycitid moths. Ann. Entomol. Soc. Am.1978,71(3):423-431
    75. Grant G.G., Scent apparatus of the male cabbage looper, Trichoplusia ni. Ann. Entomol. Soc. Am. 1971,64:347-352
    76. Groot A., Gemeno C., Brownie C., Gould F., Schal C., Male and female antennal responses in Heliothis virescens and H. subflexa to consepcific and heterospecific sex pheromone compounds. Environ. Entomol.2005,34:256-263
    77. Heath R.R., Landolt P.J., Dueben B.D., Murphy R.E., Schneider R.E., Identification of male cabbage looper sex pheromone attractive to females. J. Chem. Ecol.1992,18:441-453
    78. Heath R.R., Landolt P.J., Leppla N.C., Dueben B.D., Identification of male-produced pheromone of Anticarsia gemmatalis(Hubner)(Lepidoptera: Noctuidae) attractive to conspecific males. J. Chem. Ecol.1988,14:1121-1130
    79. Hendricks A., Laan C.E., Vander Kerkhof L., The role of abdominal brushes in the sexual behaviour of small ermine moths (Yponomeuta latr.,). Meded Fac Landbouww et Rijksuniv Gent, 1984,49:719-726
    80. Hendricks D.E., Shaver T.N., Tobacco budworm: male suppressed emission of sex pheromone by the female. Enviro. Entomol.1975,4:555-558
    81. Hillier N.K, Vickers N.J., The role of Heliothine hairpencil compounds in female Heliothis virescens (Lepidoptera: Noctuidae) behavior and mate acceptance. Chem. Senses.2004, 29:499-511
    82. Hillier N.K., Kleineidam C., Vickers N.J., Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Noctuidae) responsive to behaviorally relevant odors. J. Comp. Physiol. A.2006,192:199-219
    83. Hirai K., Directional flow of male scent released by Pseudaletia separata Walker (Lepidoptera: Noctuidae) and its repellent effect on adults and larvae of four noctuid and one Physitinae moth. J. Chem. Ecol.1982,8(10):1263-1270
    84. Hirai K., Male scent emitted by armyworm, Pseualetia unipuncta and P.,separata (Lepidoptera: Noctuidae). Appl. Entomol. Zool.1980,15:310-315
    85. Hirai K., Shorey H.H., Gaston L.K., Competition among courting male moths: male-to-male inhibitory pheromone. Science.1978,202:644-645
    86. Honda H., Hanyu K., Scanning electronmicroscopy of antennal sensilla of the Yellow Peach Moth, Conogethes punctiferalis (Guenee) and Conogethes sp. (Lepidoptera: Pyralidae). Jap. J. Appl. Entomol. Zool.1989,33(4):238-246
    87. Howse P.E., Stevens L.D.R., Jones O.T., Insect pheromones and their use in pest management. In: Chapman, Hall (eds), Landon.1998, pp 103-132
    88. Huang Y.P., Xu S.F., Du J.W., Studies on the male hairpencil pheromone of Helicoverpa armigera., Contirbutions from Shanghai Institute of Entomology.1992,12:5-12
    89. Huang Y.P., Xu S.F., Tang X.H., Male orientation inhibitor of cotton bollworm: inhibitory effects of alcohols in wind-tunnel and in the field. Entomologia. Sinica.1997,4(2):173-181
    90. Huang Y.P., Xu S.F., Tang X.H., Zhao Z.W., D J.W., Male orientation inhibitor of cotton bollworm: identification of compounds produced by male hairpencil glands. Entomologia. Sinica.1996, 3:172-182
    91. Jacquin E., Nagnan P., Frerot B., Identification of hairpencil secretion from male Mamestra brassicae (L.) (Lepidoptera: Noctuidae) and electroantennogram studies. J. Chem. Ecol.1991, 17:239-247
    92. Jacquin-Joly E., Merlin C., Insect olfactory receptors: contributions of molecular biology to chemical ecology. J. Chem. Ecol.2004,30(12):2359-2397
    93. Kalinova B., Hoskovec M., Liblikas I., Unelius C.R., Hansson B.S., Detection of sex pheromone components in Manduca sexta (L.). Chem. Senses.2001,26:1175-1186
    94. Konstantopoulou M.A., Pratsinis H., Kletsas D., Mazomenos B.E., Pheromone-binding protein and general odorantbinding protein of Sesamia nonagrioides: sex- and diel-dependent expression. Entomol. Exp. Appl.2006,119:129-136
    95. Krasnoff S.B., Bjostad L.B., Roelofs W.L., Quantitative and qualitative variation in male pheromones of Phragmatobia fuliginosa and Pyrrharctia isabella (Lepidoptera:Arctiidae). J. Chem. Ecol.1987,13:807-822
    96. Krasnoff S.B., Dussourd D.E., Dihydropyrrolizidine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids. J. Chem. Ecol.1989,15:47-60
    97. Krasnoff S.B., Roelofs W.L., Quantitative and qualitative effects of larval diet on male scent secretions of Estigmene acrea, Phragmatobia fuliginosa and Pyrrharctia isabella (Lepidoptera:Arctiidae). J. Chem. Ecol.1989,15:1077-1093
    98. Krasnoff S.B., Vick K.W., Male wing-gland pheromone of Ephestia elutella. J. Chem. Ecol.1984, 10:667-679
    99. Krieger J., Von Nickisch-Rosenegk E., Mameli M., Pelosi P., Breer H., Binding proteins from the antennae of Bombyx mori. Insect. Biochem. Mol. Biol.1996,26:297-307
    100. Kunesch G,, Zagatti P,, Lallemand J,Y., Male sex pheromones of the African sugarcane borer: Eldana saccharina Wlk: identification and behaviour. Les. Mediateurs. Chimiques. Versailles.1981, 16-20
    101.Landolt P.J., Heath R.R., Attraction of female Trichoplusia ni (Hubner) to male-produced sex pheromone (Lepidoptera:Noctuidae). Ann. Entomo. Soc. Am.1989,82:520-526
    102. Landolt P.J., Heath R.R., Sexual role reversal in mate-finding strategies of cabbage looper moth. Science.1990,219:1026-1028
    103. Laster M.L., Interspecific hybridization of Heliothis virescens and H.,subflexa. Environ. Entomol. 1972,1:682-687
    104. Lecomate C., Thibout E., Pierre D., Auger J., Transfer, perception and activity of male pheromone of Acrolepiopsis assectella with special reference to conspecific male sexual inhibition. J. Chem. Ecol.1998,24:655-671
    105. Leyrer R.L., Monroe R.E., Isolation and identification of the scent of the moth Galleria mellonella and a reevaluation of its sex pheromone. J. Insect. Physiol.1973,19:2267-2271
    106. Li G.Q., Han Z.J., Mu L.L., Qin X.R., Chen C.K., Wang Y.C., Natural ovipositiondeterring chemicals in female cotton bollworm, Helicoverpa armigera (Hubner). J. Insect. Physiol.2001, 47:951-956
    107. Li G.Q., Ishikawa Y., Oviposition deterrents in larval frass of four Ostrinia species fed on an artificial diet. J. Chem. Ecol.2004,30(7):1445-1456
    108. Lim H., Greenfield M.D., Female pheromonal chorusing in an arctiid moth, Utetheisa ornatrix. Behav. Ecol.2007,18:165-173
    109. Lim H., Park K.C., Baker T.C., Greenfield M.D., Perception of Conspecific Female Pheromone Stimulates Female Calling in an Arctiid Moth, Utetheisa ornatrix. J. Chem. Ecol.2007, 33:1257-1271
    110. Linn C.E., Campbell M.G., Poole K.R.,Wu W.Q., Roelofs W., Effects of photoperiod on the circadian timing of pheromone response in male Trichoplusia ni: Relationship to the modulatory action of octopamine. J. Insect. Physiol.1996,42:881-891
    111. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-□□CT method. Methods 2001,25:402-408
    112. Ljungberg H., Anderson P., Hansson B.S., Physiology and morphology of pheromone specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect. Physiol.1993,39:253-260
    113. Lofstedt C.L., Vanderpers J.N.C., Sex pheromones and reproductive isolation in four European small ermine moths. J. Chem. Ecol.1985,11:649-666
    114. Maida R., Mameli M., Miiller B., Krieger J., Steinbrecht R.A., The expression pattern of four odorant-binding proteins in male and female silk moths, Bombyx mori J. Neurocytol.2005, 34:149-163
    115. Mitchell E.R., Kehat M., Tingle F.C., Mclaughlin J.R., Suppression of mating by beet armyworm (Noctuidae:Lepidoptera) in cotton with pheromone. J. Agri. Entomol.1997,14:17-28
    116. Mitchell E.R., Tumlinson J.H., Response of Spodoptera exigua and S. eridania (Lepidoptera:Noctuidae) males to synthetic pheromone and S. exigua females. Fla. Entomol.1994, 77:237-247
    117. Mochizuki F., Sugi N., Shibuya T., Pheromone sensilla of the beet armyworm, Spodoptera exigua (Hiibner) (Lepidoptera: Noctuidae). Appl. Entomol. Zool.1992,27:547-556
    118. Mudd A., Ferguson A.W., Blight M.M., Williams I.H., Scubla P., Solinas M., ClarkS.J., Extraction, isolation, and composition of oviposition-deterring secretion of cabbage seed weevil Ceutorhynchus assimilis. J. Chem. Ecol.1997,23:2227-2240
    119. Nagnan-Le Meillour P., Huet J.C., Maibeche M., Pernollet J.C., Descoins C., Purification and characterization of multiple forms of Odorant/Pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect. Biochem. Mol. Biol.1996,26:59-67
    120. Nishida R.T., Baker C., Roelofs W.L., Hairpencil pheromone component of male oriental fruit moths Grapholita molesta. J. Chem. Ecol.1982,8:947-959
    121. Noguchi H., Tamaki Y., Conspecific female sex pheromone delays calling behavior of Adoxophyes sp. and Homona magnanima (Lepidoptera: Tortricidae). Jpn. J. Appl. Entomol. Zool.1985, 29:113-118
    122. Ochieng S.A., Anderson P., Hansson B.S., Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae).Tissue. Cell.1995,27:221-232
    123. Ono T., Brush organs of the potato tuber moth: morphology, histology and preliminary examination of its function. Appl. Entomo. Zool.1979,14:432-437
    124. Page T.L., Koelling E., Circadian rhythm in olfactory response in the antennae controlled by the optic lobe in the cockroach. J. Insect. Physiol.2003,49:697-707
    125. Palaniswamy P., Seabrook W.D., Behavioral responses of the female eastern spruce budworm Choristoneura fumiferana (Lepidoptera, Tortricidae) to the sex pheromone of her own species. J. Chem. Ecol.1978,4:649-655
    126. Palaniswamy P., Seabrook W.D., The alteration of calling behaviour by female Choristoneura fumiferana when exposed to synthetic sex pheromone. Entomol. Exp. Appl.1985,37:13-16
    127. Palaniswany P., Sviasubramania P., Seabrook W.D., Modulation of sex pheromone perception in female moths of the eastern spruce budworm, Choristoneura fumiferana. J. Insect. Physiol.1979, 25:571-574
    128. Phelan P.L., An Evolutionary Approach. In Insect Chemical Ecology. (eds. Bernard D.R, Murray B.I.). New York.1992,289-314
    129. Phelan P.L., Baker T.C., Evolution of male pheromones in moths: reproductive isolation through sexual selection? Science.1987,236:205-207
    130. Phelan P.L., Silk P.J., Northcott C.J., Tan S.H., Baker T.C., Chemical identification and behavioral characterization of male wing pheromone of Ephesia elutella (Pyralidae). J. Chem. Ecol.1986, 12:135-146
    131. Phelan P.L., Roelofs W.L., Youngman R.R., Baker T.C., Characterization of chemicals mediating ovipositional host-plant finding by Amyelois transitella females. J. Chem. Ecol.1991,17:599-613
    132. Picimbon J.F., Gadenne C., Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect. Biochem. Mol. Biol 2002,32:839-846
    133. Prestwich G.D., Du G., Laforest S., How is pheromone specificity encoded in proteins? Chem. Senses.1995,20:461-469
    134. Prestwich G.D., Proteins that smell:Pheromone recognition and signal transduction. Bioorgan. Med. Chem.1996,4:505-513
    135. Raina A.K., Klun J.A., Stadelbacher E.A., Diel periodicity and effect of age and mating on female sex pheromone titer in Heliothis zea (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am.1986, 79:128-131
    136. Roelofs W.L., Bjostad L.B., Biosynthesis of Lepidoptera pheromones. Bioorg. Chem. 1984:279-298
    137. Roelofs W.L., Wolf W.A., Pheromone biosynthesis in Lepidoptera. J. Chem. Ecol.1988, 14:2019-2031.
    138. Rosen W.Q., Han G.B., Lofstedt C., The circadian rhythm of the sex-pheromone-mediated behavioural response in the Turnip moth, Agrotis segetum, is not controlled at the peripheral level. J. Biol. Rhythm.2003,18:402-408
    139. Rutzler M., Zwiebel L.J., Molecular biology of insect olfaction:recent progress and conceptual models. J. Comp. Physiol. A: Neuroethol. Sens. Neural. Behav. Physiol.2005,191(9):777-790
    140. Saad A.D., Scott D.R., Repellency of pheromones released by females of Heliothis armigera and H. zea to females both species. Entomol. Exp. Appl.1981,30:123-127
    141. Sasaerila Y., Gries R., Gries G, Sex pheromone components of male Triathaba mundellade (Lepidoptera: Pyralidae). Chemoecology.2003,13:89-93
    142. Schneider D., Boppre M., Zweig J., Scent organ development in Creatonotos moths: Regulation by pyrrolizidine alkaloids. Science.1982,215:1264-1265
    143. Schneider D., Schulz S., Priesner E., Ziesmann J., Francke W., Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J. Comp. Physiol. A.1998,182:153-161
    144. Seabrook W.D., Linn C.E., Dyer L.J., Shorey H.H., Comparison of electroantennograms from female and male cabbage looper moths (Trichoplusia ni) of different ages and for various pheromone concentrations. J. Chem. Ecol.1987,13:1443-1453
    145. Shorey H.H., Animal communication by pheromone.N.Y.:Acad. Press.1976,167
    146. Sinwell V., Schulz S., Francke W., Kittmann R., Schneider D., Indetification of pheromones from the male swift moth Hepialus hecta L. Tetrahedron. Lett.1985,26:1707-1710
    147. Spangler H.G., Greenfield M.G., Takkessian A., Ultrasonic mate calling in the lesser wax moth. Physiol. Entomol.1984,9:87-95
    148. Steinbrecht R.A., Olfactory receptors.in Atlas of Arthropod Sensory Receptors, Dynamic Morphology in Relation to Function (eds. Eguchi E., Tominaga Y.) Springer-Verlag, Tokyo.1999
    149. Steinbrecht R.A., Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect. Morphol. Embryol.1997,26:229-245
    150. Stelinski L.L., Il'Ichev A.L., Gut L.J., Antennal and behavioral responses of virgin and mated oriental fruit moth (Lepidoptera: Tortricidae) females to their sex pheromone. Ann. Entomol. Soc. Am.2006,99:898-904
    151. Takayoshi K., Hiroshi H., Identification and possible functions of the hairpencil scent of the yellow peach moth, Conogethes punctiferalis Guenee (Lepidoptera: Pyralidae). Appl. Ent. Zool.1999, 34:147-153
    152. Tamaki Y., Noguchi H., Yushima T., Sex pheromone of Spodoptera litura(F.) (Lepidoptera: Noctuidae): isolation, identification and synthesis. Appl. Ent. Zool.1973,8:200-203
    153. Teal P.E.A., Mclaughlin J.R., Tumlinson J.H., Analysis of the reproductive behavior of Heliothis virescens (F.,) under laboratory conditions. Ann. Entomol. Soc. Am.1981,74:324-330
    154. Teal P.E.A., Tomlinson J.H., Isolation, identification and biosynthesis of compounds produced by male hairpencil glands of Heliothis virescens (F.,) (Lepidoptera:Noctuidae). J. Chem. Ecol.1989, 15:413-427
    155. Thibout E., Ferary S., Auger J., Nature and role of sexual pheromone emitted by males Acrolepiopsis assectella(Lepidoptera). J. Chem. Ecol.1994,20:1571-1581
    156. Varley G.C., A plea for a new look at Lepidoptera with special reference to the scent distributing organs of male moths. Trans. Soc. Br. Entomol.1962,15:29-40
    157. Vogt R.G., Callahan F.E., Rogers M.E., Dickens J.C., Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem. Senses.1999,24:481-495
    158. Vogt R.G., Molecular basis of pheromone detection in insects. In Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology. (eds. Gilbert L.I, Iatro K., Gill S.). Elsevier. 2004
    159. Wagner D., Lek behaviour in Lepidoptera with emphasis on Hepialus (Hepialidae): reevaluation of the enhanced conspicuousness hypothesis., Presented at Ann Meet Entomol Sco Hollywood Fl Dec.,1985,8-12
    160. Wakamura S., Takai M., Kozai S., Inoue H., Yamashita I., Kawahara S., Kawamura M., Control of the beet army worm Spodoptera exigua (Hiibner) (Lepidoptera: Noctuidae) using synthetic sex pheromone. I. Effect of communication disruption in Welsh onion fields. Appl. Entomol. Zool. 1989,24:387-397
    161. Waladde S.M,. Kahoro H. M., Ochieng S. A., Sensory biology of Chilo spp with specific reference to C. Partellus. Insect. Sci. Appl.1990,11:593-602.
    162. Wang G.R., Wu K.M., GuoY.Y., Molecular cloning and bacterial expression of pheromone binding protein in the antennae of Helicoverpa armigera (Hiibner). Arch. Insect. Biochem. Physiol.2004, 57(1):15-27
    163. Weissling T.J., Knight A.L., Oviposition and calling behavior of codling moth (Lepidoptera: Tortricidae) in the presence of codlemone. Ann. Entomol. Soc. Am.1996,89:142-147
    164. Whalley P.E.S., Scent dispersal mechanisms in the genus Striglina Guennee, with a description of a new species(Lepidoptera:Thyrididae). J. Entomol. B.1974,43:121-128
    165. Willis M.A., Birch M.C., Male lek formation and female calling in a population of the arctiid Estigmene acrea., Science.1982,218:168-170
    166. Worster A.S., Seabrook W.D., Electrophysiological investigation of diel variations in the antennal sensitivity of the male spruce budworm moth Choristoneura fumiferana (Lepidoptera: Tortricidae). J. Insect. Physiol.1989,35:1-5
    167. Wunderer H., Handen K., Bell T.W., Sex pheromones of two Asian moths (Ctratonotus transiens, C.gangis; Lepidoptera: Arctiidae): behavior, morphology, chemistry and electrophysiology. Exp. Biol.1986,46:11-27
    168. Wyatt T.D., Animals in a chemical world. In Pheromones and Animal Behaviour Communication by Smell Taste. Cambridge University Press,2003
    169. Xiu W.M., Dong S.L., Molecular characterization of two pheromone binding proteins and quantitative analysis of their expression in the beet armyworm, Spodoptera exigua (Hubner). J. Chem. Ecol.2007,33:947-961
    170. Xiu W.M., ZhouY.Z., Dong S.L., Molecular characterization and expression pattern of two pheromone-binding proteins from Spodoptera litura (Fabricius). J. Chem. Ecol.2008, 34(4):487-498
    171. Xu H.Y., Li GQ., Liu ML., Xing G.N., Oviposition deterrents in larval frass of the cotton boll worm, Helicoverpa armigera (Lepidoptera: Noctuidae): Chemical identification and electroantennography analysis. J. Insect. Physiol.2006,52:320-326
    172. Yoshiyasu Y., Yamagishi M., Katayama J., Control of the beet army worm Spodoptera exigua (Hubner), on Welsh onion by synthetic sex pheromone in Yodo district Kyoto. Scientific reports of the Kyoto Prefectural University.1995,47:1-8
    173.Zagatti P., Kunesch G, Ramiandrasoa F., Malosse C., Hall D.R., Lester R., Nesbitt B.F., Sex pheromones of rice moth, Corcyra cephalonica Stainton I., Identification of male pheromone. J. Chem. Ecol.1987,13:1561-1567
    174.Zagatti P.G., Castel Y., Courtship behaviour of the false coding moth Cryptophlebia leucotrata: androconial display and mating success (Lepidoptera: Tortricidae). Ann. Soc. Entomol. Fr(NS). 1987,23:113-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700