利用性信息素防治豆野螟的生物学基础及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆野螟Maruca vitrata是一种严重的泛热带豆类蔬菜害虫。主要危害豇豆Vigna unguiculata、四季豆Phaseolus vulgaris、扁豆Dolichos lablab、木豆Cajanus cajan等表面少毛的豆类蔬菜。对豇豆的危害尤为严重,此虫为害豇豆等常造成“十荚九蛀”,一般田块花被害率52.3%以上,豆荚被害率37.8%,叶被害率9.9%,大发生年份若不进行防治几乎绝收,花被害率可达到90%以上,产量损失达到20%~60%。幼虫钻蛀或结网为害花、花蕾、嫩茎、豆荚,严重影响化学农药的使用效果,同时也不利于天敌对其的自然控制作用。鉴于此,我们利用性信息素来作为监测和防治豆野螟的手段,主要结果如下:
     1.豆野螟成虫行为学特征及性信息素产生与释放节律
     豆野螟的羽化行为全天可见,在雌蛾中,86%于暗期羽化;在雄蛾中,73%于暗期羽化;雌雄蛾羽化行为在暗期第4、5和8 h差异达到显著。交尾活动发生在暗期19:00到5:00之间,交尾持续时间最短约为20 min,最长约为90 min,3日龄进入暗期第5 h具有最高的交尾率。1、6和7日龄成虫具有单个交尾高峰,2到5日龄成虫具有两个交尾高峰。同一日龄成虫交尾在暗期前半段平均花费的时间要明显高于在后半段花费的时间。低龄和高龄的成虫用于交尾的时间明显高于中龄的性成熟成虫。成虫的开始交尾时间随着日龄的增加逐渐前移。雄蛾对3日龄处女雌蛾进入暗期后第5和第9 h的性腺提取物和空气收集性信息素的触角电位反应最强。处女雌蛾田间诱蛾试验表明:23:00-01:00为诱蛾高峰期,3日龄处女雌蛾的诱蛾效果最好。该蛾的羽化、交尾及性信息素产生与释放均存在节律上的一致性。
     2.豆野螟延迟交尾和多次交尾对其生殖活动的影响。
     豆野螟雌雄同时延迟交尾,雌雄虫的寿命、产卵量均表现为先上升后下降的趋势,但是对卵的孵化率没有显著的影响;雌虫延迟交尾,随着延迟时间的增加,雌虫的寿命、产卵量、卵的孵化率表现为下降的趋势,而雄虫的寿命延迟交尾第三天达到最大值;雄虫延迟交尾,随着延迟交尾时间的增加,雌雄虫的寿命、产卵量均表现为先上升后下降的趋势,卵的孵化率随着延迟逐渐下降。随着雄虫交尾次数的增高,成功交尾率在逐渐降低,用于交尾的时间延长。雌虫和相应雄虫的寿命逐渐缩短,雌虫的产卵量下降,但对卵的孵化率影响不大。豆野螟雌虫一生只交尾一次,试验室未见到雌虫二次交尾。
     3.豆野螟成虫日龄对交尾行为有较大的影响。
     不同日龄雌蛾与3日龄雄蛾的交尾,交尾率随蛾龄增加呈下降趋势;不同日龄雄蛾与3日龄雌蛾交尾,交尾率随蛾龄增加呈升高趋势;相同日龄成蛾,交尾率先升后降。不同日龄雌蛾交尾百分率的下降在较高温环境比在较低温环境更加显著;但环境温度对不同日龄雄蛾的交尾却没有太大的影响;相同日龄成蛾3日龄以后的交尾在较高温环境下下降的更快。不同日龄雌蛾的交尾研究中,随着雌蛾日龄的增加,交尾持续时间明显延长;不同日龄雄蛾的交尾研究中,较低日龄和较高日龄雄蛾交尾时的持续时间较长。在较低温环境下所有试验各日龄的持续时间均有所延长。不同日龄雌蛾(雄蛾)与3日龄雄蛾(雌蛾)的交尾和相对应的雄蛾对雌蛾性信息素的触角电位反应(electroantennography,EAG)基本一致,说明雄蛾的反应在交尾行为的完成中具有重要的作用。
     4.豆野螟性信息素组份化学结构的分析与鉴定
     通过使用了DB-1和DB-WAX毛细柱进行气相色谱(gas chromatography,GC)分析以及使用DB-17和DB-WAX毛细柱进行气相色谱-质谱(gas chrornatography-mass spectrometry,GC-MS)分析豆野螟武汉和广州两个地理种群性信息素腺体组份的化学结构,结果表明:(E,E)-10,12-hexadecadienal是豆野螟两个地理种群性信息素的主要组份。同时首次利用GC和GC-MS发现(E,E)-10,12-hexadecadienol和(E)-10-hexadecenal也是武汉种群性信息素的组份,豆野螟武汉种群性信息素腺体成分为(E,E)-10,12-hexadecadienal,(E,E)-10,12-hexadecadienol和(E)-10-hexadecenal,其比例为51.4:4.1:44.5(峰面积之比)。广州种群性信息素中没有发现(E,E)-10,12-hexadecadienol存在,其性信息素由(E,E)-10,12-hexadecadienal和(E)-10-hexadecenal组成,其比例为86.5:13.5(峰面积之比)。
     5.豆野螟雄蛾触角对性信息素的EAG反应
     三种化合物的剂量-反应关系研究表明,不论是武汉种群还是广州种群,豆野螟雄虫触角对(E,E)-10,12-hexadecadienal均最为敏感,而对另外两种标准化合物次之。二元组份的研究表明,两个种群诱芯中只要有(E,E)-10,12-hexadecadienal,EAG反应均较强,由(E,E)-10,12-hexadecadienol和(E)-10-hexadecenal组成的诱芯活性最差;在武汉,(E,E)-10,12-hexadecadiena:(E)-10-hexadecenal为5:5的组合比其他二元组份产生更大的EAG反应;在广州,(E,E)-10,12-hexadecadienal:(E,E)-10,12-hexadecadienol为5:5的组合显著高于其他所有二元组合。三元诱芯的研究发现,在武汉,(E,E)-10,12-hexadecadienal:(E,E)-10,12-hexadecadienol:(E)-10-hexadecenal为5:1:5时产生最大的EAG反应,在广州,三种化合物为5:5:1的组合产生的EAG反应更大。
     6.豆野螟触角化感器的超微结构观察
     豆野螟雌雄蛾触角呈线状,由柄节、梗节和鞭节组成。柄节较长;梗节较粗,并均覆盖着鳞片;鞭节由72~82节组成,长度为86~97 mm,两性间无明显的差别。豆野螟感受器主要分布在触角的背面、腹面和外侧面,内侧面一般覆盖有鳞片,因此感受器很少。雌雄比较发现,就长度而言,雌蛾触角上的腔锥感器以及耳形感器均长于雄蛾,但是毛形感器则正好相反;就分布密度而言,三种感器在雌蛾触角上的分布比雄蛾较稀疏。两个地理种群的比较发现,广州种群不论雌雄蛾,其触角感器比武汉种群密度大,但长度偏短;刺形感器仅见于武汉种群的触角上,而锥形感器仅见于广州种群。
     7.性信息素活性组份的田间诱捕试验
     田间试验表明,在武汉,单一组份诱芯(E,E)-10,12-hexadecadienal的诱捕活性最佳,(E)-10-hexadecenal可以起到增效作用,而(E,E)-10,12-hexadecadienol没有增效作用;二元组份诱芯(E,E)-10,12-hexadecadienal和(E)-10-hexadecenal为5:5以及三元组份诱芯(E,E)-10,12-hexadecadienal、(E,E)-10,12-hexadecadienol和(E)-10-hexadecenal的比例为5:0.3:5时具有最佳的诱捕活性。而在广州,单一组份诱芯(E,E)-10,12-hexadecadienal的诱捕活性最佳,(E,E)-10,12-hexadecadienol可以起到增效作用,而(E)-10-hexadecenal没有增效作用;相应的二元组合活性最高为(E,E)-10,12-hexadecadienal和(E,E)-10,12-hexadecadienol为5:5的比例;添加微量的(E)-10-hexadecenal有增效作用,(E,E)-10,12-hexadecadienal、(E,E)-10,12-hexadecadienol和(E)-10-hexadecenal的三者的最佳比例为5:5:0.7。
     8.豆野螟性信息素诱芯及诱捕器优化试验
     诱芯与诱捕器的最优化试验表明,随着诱捕器在田间放置时间的延长,其引诱活性呈现逐渐降低,前2周的诱捕效果最好,以后逐渐下降。雄虫的捕获数量不受诱芯的包裹与否的影响,使用铝箔保护的诱芯和不使用其保护的诱芯的诱捕量间没有明显的差异。120cm是最佳的诱捕高度,90和150 cm的高度次之,30和180cm最差。传统的三角形粘胶诱捕器与5L的水瓶诱捕器诱蛾量相当,水盆诱捕器和1.5L诱捕器较差。100μg的诱芯含量诱捕效果较好,与300μg间没有显著差异,继续增加每个诱芯的总含量不但没有增加诱捕活性,相反,诱捕量有所下降。
The legume pod borer, Maruca vitrata, is a serious pantropical insect pest of grainlegumes, such as cowpea, Vigna unguiculata, common bean, Phaseolus vulgaris, hyacinthbean, Dolichos lablab and pigeon-pea, Cajanus cajan. In cowpea, infestation was higheron flowers (52.3%) than on pods (37.8%) and leaves (9.9%). Without control measures,flower infestation rates up to 90% were reported. The losses in grain yield have beenestimated to range from 20 to 60%. The larvae of M.vitrata damage flowers, flower buds,terminal shoots and young pods by webbing or boring, which protects the larvae fromnatural enemies and insecticides. The major results are summarized as following:
     1. Study on adult behavior and circadian rhythm of sex pheromone production andrelease of M. vitrata
     The results showed that the emergence activity of M. vitrata occurred throughout theday, and 86% of females and 73% of males emerged during the scotophase. Thedifferences of emergence behavior between both sexes were statistically significantduring the 4th, 5th and 8th hour of the scotophase (t>4; P<0.05). The mating behaviortook placed from 19:00 to 05:00. The mating duration varied from 20 to 90 minutes. Thehighest mating frequency occurred during the 5th hour of the scotophase for 3-day-oldmoths. Single mating peaks were observed for 1-, 6- and 7-day-old moths, while doublemating peaks were observed for 2- to 5-day-old moths. Adults of the same age spentlonger time in mating during the first half of the scotophase than during the second half ofthe scotophase. The mating behaviour of the moth was age-dependent. Young and oldpairs spent more time in mating than mature pairs of the middle age. Advanced onset oftime and peak for mating were observed directly by older moths. The EAG response ofmale moths was highest to the crude extract of pheromonal glands and air collection from3-day-old virgin female moths and during 5th and 9th hour of the scotophase. In the fieldtests, the highest percentage of the male moths was trapped during 23:00-01:00, and moremale moths were trapped by 3-day-old virgin female moths than by female moths of otherage. The emergence activity, mating activity and the female sex pheromone release weresynchronized at different ages and time of the scotophase. The sex pheromone release was almost constant throughout the scotophase, but mating behavior concentrated between thetwo mating peaks.
     2. Effect of delayed mating and multiple mating of M. vitrata on reproduction
     Delayed mating and multiple mating of M. vitrata affected the reproduction. Thelongevity of females and males, fecundity of females increased firstly, and then reduced,but fertility of eggs did not change much when males and females mating were delayed atsame time.; The longevity of females, fecundity of females and fertility of eggs reduced,but the longevity of males increased firstly, and then reduced when females mating weredelayed; The longevity of females and males and fecundity of females increased firstly,and then reduced, but fertility of eggs reduced when males mating were delayed; Themating success rate, the longevity of males and females, fecundity of females reduced,but mating duration was prolonged, fertility of eggs did not change much when maleswere multiple mating. Males can mate for 4 times in the whole life while females canmate only one time.
     3. The age of M. vitrata affected the mating.
     Effect of male and female age on the mating success and circadian rhythms of maleresponse to female sex pheromones of the legume pod borer were investigated. Theactivity of thc females remained at a high level until the 3rd days after adult emergence,whereas in males, the peak of activity occurred on the 3rd day and activity remained at ahigh level until the 6th days. The mating frequency of same-aged pair was low at1-day-old, reached a maximum at 3-day-old and thereafter decreased rapidly with age.The declines in female mating success were more pronounced under warm than coolthermocycles, while were not obvious for males. The time spend mating was longer inolder than in younger females. Very young and very old males generally spent more timein mating than mature individuals. The duration of mating was considerably prolonged atall ages under cool than warm thermocycles. Effect of male and female age on the matingsuccess and circadian rhythms of male response to female sex pheromones of the legumepod borer were synchronized, which showed male response play an important role incopulation of Maruca vitrata.
     4. Identification of female sex pheromone of M. vitrata
     Sex pheromone gland extractions from Maruca vitrata virgin female mothsoriginating in Wuhan and Guangzhou were analyzed by GC (DB-1, DB-WAX) andGC-MS (DB-17, DB-WAX). The result confirmed previously published finding that (E,E)-10, 12-hexadecadienal is the most abundant component of the legume pod borer. InWuhan, exactions were also found to contain (E, E)-10, 12-hexadecadienol and (E)-10-hexadecenal as components. The ratio of three chemicals is 51.4: 4.1:44.5 in thesex pheromone glands. In Guangzhou, (E, E)-10, 12-hexadecadienol can not be found insex pheromone gland extractions of Maruca vitrata. The ratio of two chemicals is 86.5:13.5 for (E, E)-10, 12-hexadecadienal and (E)-10-hexadecenal respectively.
     5. Male EAG response to female sex pheromone
     Dose-response curve of these chemicals demonstrated that (E, E)-10,12-hexadecadienal elicited the largest male EAG responses to either Wuhan orGuangzhou populaion, followed by (E, E)-10,12-hexadecadienol and (E)-10-hexadecenal.Study on binary synthetic lures showed greater EAG responses were to those including (E,E)-10,12-hexadecadienal, but two-component blends including (E,E)-10,12-hexadecadienol and (E)-10-hexadecenal elicited lowly males EAG responses. InWuhan, a two-components blend of (E, E)-10, 12-hexadecadienal and (E)-10-hexadecenalin a 5:5 ratio elicited significantly males EAG responses than any other binary syntheticlures; In Guangzhou, a two-components blend of (E, E)-10, 12-hexadecadienal and (E,E)-10, 12-hexadecadienol in a 5:5 ratio elicited significantly males EAG responses thanany other binary synthetic lures; Study on ternary synthetic lures showedthree-component blend of (E, E)-10, 12-hexadecadienal and two other components in a5:1:5 ratio elicited significantly males EAG responses in Wuhan. A three-componentblend of (E, E)-10, 12-hexadecadienal and two other components in a 5:5:1 ratio elicitedsignificantly males EAG responses in Guangzhou.
     6. Observation on ultrastructure of antennal sensilla in M. vitrata
     The morphology of antennae of M. vitrata was observed under scanning electronmicroscope. Antennae is made up of scapus, pedicle and flagella, which cosists of 72-82segments and is 86-97 cm long. The inner side surface of antenna is covered withcataphyUa and most of the antennal sensilla lie on its outer, upper and lower surfaces.Compared with both sesxes, Sensillum coeloconicum and Ear-shaped sensillum offemales are longer than that of males, but Sensillun trichodeum is shorter than that ofmales; The number of all Sensillum of females are lesser on females antennae than malesantennae. Compared with different population, the sensillum of Guangzhou populationare more compact and short for both sexes. Sensilla cheatica are observed on Wuhanpophlation antennae and sensilla basiconica can be observed on Guangzhou populationantennae.
     7. Field-trapping experiment of synthetic sex pheromone lures
     Field test with single synthetic sex pheromone lures demonstrated that (E, E)-10,12-hexadecadienal can catch more M. vitrata male in Wuhan, followed by (E, E)-10,12-hexadecadienol and (E)-10-hexadecenal. When adding (E)-10-hexadecenal to (E,E)-10, 12-hexadecadienal, the catches of males were increased significantly. Atwo-components lures of (E, E)-10, 12-hexadecadienal and (E)-10-hexadecenal in a 5:5ratio catched significantly male catches than any other binary synthetic lures; Athree-component lures of (E, E)-10, 12-hexadecadienal and two other components in a5:0.3:5 ratio catched significantly males than other ternary lures. In Guangzhou, (E, E)-10,12-hexadecadienal can catch more M. vitrata male, followed by (E,E)-10,12-hexadecadienol and (E)-10-hexadecenal. Adding (E, E)-10,12-hexadecadienolto (E, E)-10, 12-hexadecadienal, the catches of males were increased significantly. Atwo-components lures of (E, E)-10, 12-hexadecadienal and (E, E)-10, 12-hexadecadienolin a 5:5 ratio catched significantly males than any other binary synthetic lures; A ternarylures of (E, E)-10, 12-hexadecadienaI and two other components in a 5:5:0.7 ratio catchedsignificantly males.
     8. Optimation of sex pheromone lure and trap for M. vitrata
     The experiments were conducted to compare different trap designs, and other aspectsof the lures. Lures showed no loss of effectiveness for up to 2 weeks. Attraction reducedgradually 2 weeks later. Result showed that shielding the lures from the sunsight withaluminium foil did not increase catches of M. vitrata, and the data are not significantdifference with no-sielding lures. 120 cm was the optimum height for captures than 90 cmand 150 cm, and 30 cm and 180 cm were not feasible for capture. A sticky-trap design and5 L water-bottle trap were found to be superior to water-pan trap and 1.5 L water-bottle.100μg is the optimum lure dose for capture, and more dose will not increase the catches,in reverse, the dose inhabited the attractant.
引文
1.陈方景.豇豆豆荚野螟发生规律及防治对策.中国植保导刊,2004,24:22-23
    2.陈秀光,李志斌,刘旬,孔杰,张钟宁,娄照祥.小菜蛾合成性信息素在测报、诱捕和交配阻碍中的田间应用.动物学集刊,1990,7:17-22.
    3.杜家纬.昆虫性信息素及其应用.北京:中国林业出版社,1988.
    4.杜永均,严福顺,唐觉.大豆蚜触角嗅觉感器结构及其功能.昆虫学报,1995,38:1-7
    5.方宇凌,张钟宁.植物气味对棉铃虫产卵及田间诱蛾的影响.昆虫学报,2002,45:63-67.
    6.管致和.昆虫学通论.北京:北京农业大学出版社,1985,10-126
    7.郭予元.棉铃虫的研究.北京:中国农业出版社,1998.
    8.韩宝瑜.昆虫化学信息物质及其在害虫治理中的应用展望.安徽农学通报,2002,8:12-13
    9.韩桂彪.若干卷叶蛾性信息素化学通讯系统和行为学研究.[博士学位论文].杭州:浙江大学图书馆,1996
    10.洪健,叶恭银,胡萃.茶尺幼成虫触角感受器的扫描电镜观察.浙江农业大学学报,1993,19:53-56.
    11.侯有明,车俊义.油菜田节肢动物群落结构及其害虫防治策略研究.西北农业学报,1998,7:51-54
    12.侯有明,庞雄飞,梁广文.性诱剂对小菜蛾种群控制的应用技术研究.昆虫天敌,2000,22:111-115
    13.侯有明,庞雄飞,梁广文,尤民生.性诱剂对蔬菜大棚小菜蛾种群控制效应的研究.中国生物防治,2001,17:121-125.
    14.胡慧建,梁广文,张维球.小菜蛾性诱剂诱杀作用的研究.昆虫学研究进展,1998,5:100-103
    15.胡慧建,梁广文.小菜蛾性诱剂迷向作用效果的研究.华南农业大学学报,2000,24:113-135
    16.胡慧建,梁广文,张维球.性诱剂对小菜蛾成虫空间分布型的影响.昆虫天敌,2000,22:1-6
    17.黄勇平,沈君辉,王淑芬,唐大武.昆虫性信息素变异研究的进展.中南林学院学报,1998,18:88-95.
    18.柯礼道,方菊莲,李志强.豆野螟的生物学特性及其防治.昆虫学报,1985,28:51-59
    19.李典谟,伍一军,武春生,杨冠煌,张金桐.当代昆虫学研究.北京:中国农业科学技 术出版社,2004,177-179
    20.李惠明,潘月华,赵康.豆野螟的发生规律与测报防治技术.长江蔬菜,1997,12:17-18
    21.李连昌,韩桂彪,李婕.化学生态学,1998,2:59-62.
    22.黎国翰.豆野螟的发生与防治.湖北农业科学,1991,26:423-431
    23.林美新,王伟民,蔡鹤良,吴永明.豆野螟在扁豆上的发生与防治.植保技术与推广,1997,17:27-28
    24.刘孟英.昆虫化学通讯与信息素.昆虫激素,1984,1:61-80
    25.刘孟英.昆虫知识,1994,31:56-59.
    26.刘玉秀.黄斑卷蛾性信息素研究.[博士学位论文].北京:中国科学院图书馆,2002
    27.陆鹏飞,乔海莉,王小平,周兴苗,汪细桥,雷朝亮.豆野螟成虫行为学特征及性信息素产生与释放节律.昆虫学报,2007,50:335-342
    28.路常宽,宗世祥,骆有庆,许志春,马超德.沙棘木蠹蛾成虫行为学特征及性诱效果研究.北京林业大学学报,2004,26,79-83
    29.罗庆怀,黎家文,赵宏,张明,龙姣.贵阳地区豆野螟和亮灰蝶的生物学特性.昆虫知识,2003,40:329-334.
    30.马丁·雅各布森.昆虫性外激素.南京林产工业学院林学系-昆虫激素研究组 译.北京:科学出版社,1978,87-327
    31.马瑞燕,杜家纬.昆虫的触角感器.昆虫知识,2000,37:179-182
    32.马育华.田间试验和统计方法.第二版.北京:农业出版社,1985,91-125
    33.孟宪佐.昆虫信息素的应用.生物学通报,1997,32:46-47
    34.孟宪佐.我国昆虫信息素研究与应用的进展.昆虫知识,2000,37:75-84
    35.钦俊德.昆虫与植物的关系.论昆虫与植物的相互作用及其演化.北京:科学出版社,1987
    36.任自立,张清敏,郭淑华.亚洲玉米螟成虫触角的扫描电镜观察.昆虫学报,1987,30:26-29
    37.孙丽娟,戴华国,衣维贤,陆永钦.二化螟水稻类群与茭白类群成虫羽化节律和交配节律研究.昆虫知识,2002,39:421-423
    38.王健,吴振廷,李少恒,耿全芳.褐飞虱触角感觉器扫描电镜观察.安徽农业大学学报,1997,124:50-53
    39.王金福,李真峰.杭州市郊区主要蔬菜害虫群落结构的研究.生态学报,1988,8:78-85
    40.王金胜.农业生物化学技术.太原:山西科学技术出版社,1997,88-127
    41.王琳,沈叔平,陆永跃,曾玲.广东豆野螟发生危害动态研究.广东农业科学, 2003,25:44-47
    42.王琳,曾玲,陆永跃.豆野螟发生为害及综合防治研究进展.昆虫天敌,2003,25:83-88
    43.王平远.中国经济昆虫志第21卷(鳞翅目螟蛾科).北京:科学出版社,1980,1-229
    44.王香萍,张忠宁,雷朝亮,赵毓朝,吴旦旭.湖北高海拔地区性信息素对小菜蛾的诱捕和防治效果.昆虫学报,2004,47:135-140
    45.王香萍.昆虫信息化学物质治理小菜蛾的研究.[博士学位论文].北京:中国科学院图书馆,2004
    46.汪自琴,李锦秀.豆荚野螟的初步研究.昆虫知识,1987,24:153-155
    47.吴才宏.棉铃虫雄蛾触角的毛形感器对其性信息素组分及类似物的反应.昆虫学报,1993,36:385-388
    48.阎凤鸣.化学生态学.北京:科学出版社,2002
    49.严衍禄.现代仪器分析.第二版.北京:北京农业大学出版社,1995,173-193
    50.叶曙光,许方程,吴永汉,陈再寥.频振式杀虫灯对蔬菜田害虫的控制效果.植物保护,2000,26:45-46
    51.Bell W J,Carde R T.昆虫化学生态学.黄培新,管致和译.北京:北京农业大学出版社,1990,3-281
    52.尹文英,郦一平.棉红玲虫触角感受器的扫描电镜观察.昆虫学报,1980,23:123-129
    53.张金桐.小木蠹蛾性信息素分泌腺的位置及组织学.昆虫学报,2002,45:430-435
    54.张金桐.小木蠹蛾性行为和性信息素产生与释放的时辰节律.昆虫学报,2001,44:428-432
    55.张善干,马翔方,付宏兰.马尾松毛虫雄嫂触角毛状感受器的细微结构.昆虫学报,1995,38:8-12
    56.赵博光,贫金生,张飞龙.大袋峨雄虫触角的细微结构.昆虫学报,1986,29:327-331
    57.赵怀玲,尤民生.小菜蛾抗药性及其治理对策的研究进展.华东昆虫学报,2001,10:82-88
    58.赵新成,阎云花,王琛柱.实夜蛾属和铃夜蛾属昆虫性信息素通讯系统的研究进展.昆虫学报,2003a.46:96-107
    59.赵新成,阎云花,王琛柱.雄性棉铃虫和烟青虫对雌性信息素的触角电生理反应.动物学报,2003b,49:795-799
    60.赵新成,王琛柱.蛾类昆虫性信息素通讯系统的遗传与进化.昆虫学报,2006,49:323-332
    61. Abad J, Camps F, Fabrias G. Stereospecificity of the (Z)-9 desaturase that converts (E)-11-tetradecenoic acid into (Z, E)-9,11-tetradecadienoic acid in the biosynthesis of Spodoptera littoralis sex pheromone. Insect Biochem. Molec, 2001, 31: 799-803
    62. Adati T, Tatsuki S. Identification of female sex pheromone of the legume pod borer, Maruca vitrata and antagonistic effects of geometrical isomers. J. Chem. Ecol, 1999, 25:105-115.
    63. Afun J V K, Jackai L E N, Hodgson C J. Calendar and monitored insecticide application for the control of cowpea pests. Crop Prot., 1991,10: 363-370
    64. Alghali A M. The effects of some agrometereological factors on fluctuation of the legume pod borer, Maruca testulalis Geyer (Lepidoptera: Pyralidae), on two cowpea varieties in Nigeria. Insect Sci Applic, 1993,14: 55-59
    65. Almaas T J, Mustaparta H. Pheromone reception in tobacco budworm moth, Heliothis virescens. J. Chem. Ecol., 1990,16:1331-1347
    66. Almaas T J, Mustaparta H. Heliothis virescens: Response characteristics of receptor neurons in sensilla trichodea Type 1 and Type2. J. Chem. Ecol, 1991,17: 953-972
    67. Amatobi C J. Insecticide application for economic production of cowpea grain in the northern Sudan savannah of Nigeria. Int. J. Trop. Pest Management, 1995, 41: 14-18
    68. Amoako-Atta B and Omolo E O. Yield losses caused by the stem-pod-borer complex within maize-cowpea-sorghum inter-cropping systems in Kenya. Insect Sci. Applic, 1982,4:39-46
    69. Amoako-Atta B, Omolo E O, Kidega E K. Influence of maize, cowpea and sorghum intercropping systems on stem-pod borer infestations. Insect Sci. Applic, 1983, 4: 47-57
    70. Ando T., Ogura Y., Uchiyama M. Mass spectra of lepidopterous sec pheromones with a conjugated diene system. Agric. Biol. Chem., 1988,52:1415-1423.
    71. Ando T, Kasuga K, Yajima Y, Kataoka H, Suzuki A. Termination of sex pheromone production in mated females of the silkworm moth. Arch. Insect Biochem. Physiol., 1996,31:207-219
    72. Ando T, Ohtani K, Yamamoto M, Miyamoto T, Qin X R, Witjaksono. Sex pheromone of Japanese giant looper, Ascotis selenaria cretacea: identification and field tests. J. Chem. Ecol., 1997,23: 2413 - 2423
    73. Arnqvist G, Nilsson T. The evolution of polyandry: multiple mating and female fitness in insects. Animal Behaviour, 2000, 60:145-164
    74. Asante S K, Tamo M, Jackai L E N. Integrated management of cowpea insect pests using elite cultivars, date of planting and minimum insecticide application. Afr. Crop Sci. J., 2001, 9: 655-665
    75. Atachi P, Sourokou B. Use of Decis and Systoate for the control of Maruca testulalis (Geyer) in cowpea. Insect Sci. Applic, 1989,10: 373-381
    76. Baer R G, Berisford C W, Hermann H R. Bioassay, histology and morphology of the pheromone-producing glands of Rhyacionia frustrana, Rhyacionia rigidana, and Rhyacionia Subtropica.Ann. Entomol. Soc. Am., 1976, 69: 307-340
    77. Baker T C. Mechanism for saltational shifts in pheromone communication systems. Proc. Natl. Acad. Sci. USA, 2002, 99:13368-13370
    78. Baker T C, Ochieng S A, Cosse A A, Lee S G, Todd J L, Quero C, Vickers N J. A comparison of responses fromolfactory receptor neurons of Heliothis subflexa and Heliothis virescens to components of their sex pheromone. J. Comp. Physiol. A, 2004,190: 155-165
    79. Barrion A T, Bandong J P, De la Cruz C G, Apostol R F, Litsinger J A. Natural enemies of the bean pod-borer, Maruca testulalis in the Philippines. Trop. Gr. Leg. Bull, 1987, 34: 21-22
    80. Berg B G, Mustaparta H. The significance of major pheromone components and interspecific signals as expressed by receptor neurons in the oriental tobacco budworm moth, Helicoverpa assulta. J. Comp. Physiol. A, 1995,177: 683-694
    81. Berg B G, Galizia C G, Brandt R, Mustaparta H. Digital atlases of the antennal lobe in two species of tobacco budworm moths , the oriental Helicoverpa assulta (male) and the American Heliothis virescens (male and female). J. Comp. Neurol, 2002, 446:123-134
    82. Berg B G, Almaas T J, Bjaalie J G, Mustaparta H. Projections of male-specific receptor neurons in the antennal lobe of the oriental tobacco budworm moth, Helicoverpa assulta: a unique glomerular organization among related species. J. Comp. Neurol, 2005, 486: 209-220
    83. Beroza, M. Microanalytical methodology relating to the identification of insect sex pheromone and related behavior control chemicals. J. Chromatogr. Sci., 1975, 13: 314-316
    84. Bierl B A, Beroza M, Collier C W. Potent sex attractant of the gypsy moth: its isolation, identification and synthesis. Science, 1970,170: 87-89
    85. Blomquist G J, Dillwith J W. Pheromones: biochemistry and physiology. In: Downer R G H, Laufer H eds., Endocrinology of Insects. New York: Alan R. Liss, 1983, 527-542.
    86. Butenandt A, Beckmann R, Stamm D, Hecker E. Uberden sexual-lockstoffdes seidenspinners bombyx mori. reindarstellung und konstitution. Z. Naturforsch., 1959,14b: 283-284
    87. Callanhan F E, Vogt R G, Tucker M L. High level expression of "maie specific" pheromone binding protein (PBPs) in antennae of female noctuiid moths. Insect Biochem. Molec, 2000, 30: 507-514
    88. Carde R T, Baker T C. Sexual communication with pheromones. In: Bell W J, Carde R T eds., Chemical Ecology of Insects. New York: Plenum Press, 1984, 355-383
    89. Carde R T, Mincs A K. Insect pheromone research: New directions. New York: Chaprian &Hall, 1997, p.681
    90. Carde R T, Haynes K E. Structure of the pheromone communication channel in moths. In: Carde R T, Millar J G eds., Advances in Insect Chemical Ecology. Cambridge: Cambridge University Press, 2004, 283-332
    91. Choi M Y, Han K S, Boo K S, Russell A. Pheromone biosynthetic pathways in the moths Helicoverpa zea and Helicoverpa assulta. Insect Biochem. Molec, 2002, 32: 1353-1359
    92. Christensen T A, Mustaparta H, Hildebrand J G. Chemical communication in heliothine moths II. Central processing of intra- and inter-specific olfactory messages in the male corn earworm moth Helicoverpa zea. J. Comp. Physiol. A, 1991, 169: 259-274
    93. Conner W F, Roach B, Benedict E, Meinwald J, Eisner T. Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth, Utetheisa ornatrix. J. Chem.Ecol, 1990,16:543-552
    94. Cork A , Boo K S, Dunkelblum E, Hall D R, Jee-Rajunga K, Kehat M, Kong Jie E, Park K C, Tepgidagarm P, Liu X. Female sex pheromone of oriental tobacco budworm, Helicoverpa assulta ( Guenee ) (Lepidoptera : Noctuidae): Identification and field testing. J. Chem. Ecol, 1992,18: 403-418
    95. Cork A, Lobos E A. Female sex pheromone components of Helicoverpa gelotopoeon: first heliothine pheromone without ( Z) -11-hexadecenal. Entomol . Exp. Appl, 2003,107: 201-206
    96. Cosse A A, Campbell M, Glover T J, Linn C E Jr, Todd J L, Baker T C, Roelofs W L. Pheromone behavioral responses in unusual male European corn borer hybrid progeny not correlated to electrophysiological phenotypes of their pheromone-specific antennal neurons. Experientia, 1995, 51: 809-816
    97. Cosse A A, Todd J L, Baker T C. Neurons discovered in male Helicoverpa zea antennae that correlate with pheromone-mediated attraction and interspecific antagonism.J. Comp. Physiol. A, 1998,182: 585 - 594
    98. Delisle J, McNeil J N. Calling behavior and pheromone titre of the true armyworm Pseudaletia unipuncta (Haw.) (Lepidoptera: Noctuidae) under different temperature and photoperiodic conditions. J. Insect Physiol., 1987, 33: 315-324
    99. Delisle J, Royer L. Changes in pheromone titre of oblique-banded leafroller, Choristoneura rosaceana, virgin females as a function of time of day, age, and temperature. J. Chem. Ecol, 1994, 20: 45-69
    100.Delisle J. Effect of male and female age on the mating success of the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) under different ecological conditions. J. Insect Behav., 1995, 8: 781-799
    101.Deng J Y, Wei H Y, Huang Y P, Du JW. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol., 2004, 30: 2037-2045
    102.Dickinson J L, Rutowski R L. The function of the mating plug in the chalcedon checkerspot butterfly. Animal Behaviour, 1989, 38:154-162
    103.Dina S O and Medaiyedu J A. Field tests with insecticides to control Maruca testulalis and other pod-boring insects of cowpea in southern Nigeria. J. Econ. Entomol, 1976, 69:173-177
    104.Downham M C A, Hall D R, Chamberlain D J, Cork A, Farman D I, Tamo M, Dahounto D, Datinon B, Adetonah S. Minor components in the sex pheromone of the legume pod borer, Maruca vitrata (F.) (Lepidoptera: Pyralidae): development of an attractive blend. J. Chem. Ecol, 2003,29: 989-1 011
    105.Drummond B C. Multiple mating and sperm competition in the Lepidoptera. In: Smith RL ed., Sperm competition and the evolution of animal mating systems. New york: Academic press, 1984, 291-370
    106.Du J W. Current and future prospects for insect behavior modifying chemicals in China. Agricultural Chemical Biotechnology, 2000, 43: 222-229
    107.Dunkelblum E, Kehat M. Female sex pheromone components of Heliothis peltigera (Lepidoptera : Noctuidae). Chemical identification from gland extracts and male response. J. Chem. Ecol, 1989,15: 2233-2245
    108.Echendu T N C and Akingbohungbe A E. The larval populations and plant growth phase for screening cowpea for resistance to Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) in Nigeria based on flowers, pods and yield loss. Trop. Pest Manage, 1989, 35:173-775
    109.Echendu T N C and Akingbohungbc A E. Intensive free-choice and no-choice cohort tests for evaluating resistance to Maraca testulalis (Lepidoptera: Pyralidae) in cowpca. Bull. Ent. Res., 1990, 80: 289-293
    110.Edmonds R P, Borden J H, Angerilli N P D, Rauf A. A comparison of the developmental and reproductive biology of two soybean pod borers, Etiella spp. in Indonesia. Entomol. Exp. Appl, 2000, 97:137-147
    111.Ekesi S, Dike M C, Ogunlana M O. Relationship between planting dates and damage by the legume pod-borer, Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) on cowpea Vigna unguiculata (L.) Walp in Nigeria. Int. J. Trop. Pest Manage, 1996,42:375-316
    112.Ekesi S, Adamu R S, Maniania N K. Ovicidal activity of entomopathogenic hyphomycetes to the legume pod borer, Maruca vitrata and the pod sucking bug, Clavigralla tomentosicollis. Crop Protection, 2002, 21: 589-595
    113.Ezueh M I, Taylor A T. Effects of time of intercropping with maize on cowpea susceptibility to three major pests. Trop. Agric, 1984, 61: 82-86
    114.Ezueh M I. Evaluation of the electrodynamic spraying technique for cowpea pest control. Trop. Agric, 1990, 67: 77-81
    115.Foster S P, Harres M. Behavioral manipulation methods for insect pest management. Annu. Rev. Entomol., 1997, 42:123-146.
    116.Foster S P, Muggleston S J, LEf stedt C, Hansson B. Genetic study on pheromone communication in two Ctenopseustis moths. In: Carde R T, Minks A K eds., Insect Pheromone Research: New Directions. New York: Chapman & Hall, 1997a, 514-524
    117.Fu X Y, Fukuzawa M, Tabata J, Tatsuki S, Ishikawa Y. Sex pheromone biosynthesis in Ostrinia zaguliaevi, a congener of the European corn borer moth O. nubilalis. Insect Biochem. Molec, 2005, 35: 621-626
    118.Gaston L K. Technique and equipment for collection of volatile chemicals from individual, natural, or, artificial source. In: Hummel H F, Miller T A eds., Technique in pheromone research. New York: Springer, 1984
    119.Gatz B. Die sexual duftsoffe a Lepidoptera. Experienta, 1951, 7: 406-418
    120.Gemeno C, Lutfallah A F, Haynes K F. Periodical and age-related variation in chemical communication system of black cutworm moth, Agrotis ipsilon. J. Chem. Ecol, 2000, 26: 329-342
    121.Gnatzy W, Mohren W, Steinbrecht R A. Pheromone receptors in Bombryx mori and Antheraea pernyi. II. Morphometric analysis. Cell Tissue Res, 1994, 235:35 - 42
    122.Golub M A, Weathston. Technique for extracting and Collecting sex pheromones from live insects and from artificial sources. In: Hummel H F, Miller T A eds., Technique pheromone research. New York: Springer, 1984, pp:223
    123.Hallberg E, Hansson B S, Steinbrecht R A. Morphological characteristics of antennal sensilla in the European cornborer, Ostrinia nubilalis (Lep: Pyralidae). Tissue and Cell, 1994, 26: 489-502
    124.Hallberg E, Subchev M. Unusual location and structure of female pheromone glands in Theresimima ampelophaga bayle-berelle (Lepidoptera: Zygaenidae). International Journal of Insect Morphology and Embryology, 1996, 25: 381-389.
    125.Hansson B S, Lofstedt C. Inheritance of olfactory response to sex pheromone components in Ostrinia nubilalis. Naturwissenschaften, 1987, 74: 497-499
    126.Hansson B S, Lofstedt C, Foster S P. Z-linked inheritance of male olfactory response to sex pheromone components in two species of tortricid moths, Ctenopseustis obliquana and Ctenopseustis sp. Entomol. Exp. Appl, 1989, 53: 137-145
    127.Hansson B S, Toth M, Lofstedt C, Szocs G, Subchev M, Lofqvist J. Pheromone variation among eastern European and a western Asian population of the turnip moth Agrotis segetum. J. Chem. Ecol, 1990,16:1611 -1622
    128.Hansson B S. Antennal lobe projection patterns of pheromone-specific olfactory receptor neurons in moths. In: Carde R T, Minks A K eds., Insect Pheromone Research: New Directions. New York: Chapman & Hall, 1997,164-183
    129.Hansson B S, Anton S. Function and morphology of the antennal lobe: new developments. Ann. Rev. Entomol, 2000,45: 203-231
    130.Hartmann T. Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J. Chem. Ecol, 2003, 29: 2603-2608
    131.Haughes L, Chang B S W, Wangner D, Pierce N E. Effects of mating history on ejaculate size, fecundity, longevity, and copulation duration in the ant-tended lycaenid butterfly, Jalmenus evagoras. Behavioral Ecology and Sociobiology, 2000, 47:119-128
    132.Haynes K F, Gaston L K, Pope M M, Baker T C. Rate and periodicity of pheromone release from individual female artichoke plume moths, Platyptilia carduidactyla (Lepidoptera: Pterophoridae). Environ. Entomol, 1983, 12: 1597-1600
    133.Haynes K F, Hunt R E. A mutation in pheromonal communication system of cabbage looper moth, Trichoplusia ni. J. Chem. Ecol, 1990,16:1249-1257
    134.Haynes K F. Genetics of pheromone communication in the cabbage looper moth, Trichoplusia ni. In: Carde R T, Minks A K eds., Insect Pheromone Research: New Directions. New York: Chapman & Hall, 1997, 525-532
    135.Heath R R, Tumlinson J H. Technique for purifying, analyzing, and identifying pheromones. In: Hummel H F, Miller T A eds., Technique in pheromone research. New York: Springer, 1984,287-323
    136.Hendrikse A, Vos-Bunnemyer E. Role of host plant stimuli in sexual behavior of small ermine moths (Yponomeuta). Ecol. Entomol, 1987,12: 363-371
    137.Hildebrand J G. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA, 1995, 92: 67-74
    138.Hogge L R, Olson D J H. A simultaneous dual capillary column GC/MS technique for the identification of positional and geometrical isomer of liphatic compounds. J. Chromatogt. Sci. 1983, 21:524-528
    139.Horiike M, Yuan G, Hirano C. Location of double bond position in tetradecenols without chemical modification by mass spectrometry. Agric. Biol. Chem., 1991, 55: 2521-2526
    140.Huang Y P, Takanashi T, Hoshizaki S, Tatsuki S, Honda H. Geographic variation in sex pheromone of Asian Corn Borer, Ostrinia furnacalis, in Japan. J. Chem. Ecol, 1998,24:2079-2088
    141.Huang Y P, Takanashi T, Hoshizaki S, Tatsuki S, Honda H. Female sex pheromone polymorphism in adzuki bean borer, Ostrinia scapulalis, is similar to that in european corn borer, O. nubilalis. J. Chem. Ecol, 2002, 28:533-539
    142 Jackai L E N. Efficacy of insecticide applications at different times of day against the legume pod-borer, Maruca testulalis (Geyer) (Lepidoptera: Pyralidae), on cowpea in Nigeria. Prot. Ecol, 1983,5: 245-251
    143 Jacquin E, Jurenka R A, Ljungberg H, Nagnan P, Lfstedt C, Descoins C, Roelofs W L. Control of the pheromone biosynthetic pathway in Helicoverpa zea by the pheromone biosynthesis activating neuropeptide. Arch. Insect Biochem. Physiol, 1991,17: 81-91
    144 Justus K A, Mitchell B K. Reproductive morphology, copulation, and inter populational variation in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Inter. J. Insect Morphor. Embryo., 1999, 28: 233-246
    145.Kanno H, Sato A. Mating behaviour of the rice stem borer moth, Chilo suppressalis Walker. Appl. Entomol. Zool, 1978,13: 215-221
    146.Kanno H. Mating behavior of the rice stem borer moth, Chilo suppressalis Walker (Lepidoptera: Pyralidae). V. Critical illumination intensity for female calling and ale sexual response under various temperatures. Appl. Entomol. Zool, 1981, 16: 179-185
    147.Karel A K. Effects of intercropping with maize on the incidence and damage caused by pod borers of common beans. Environ. Entomol, 1993,22:1076-1083
    148.Kawasaki K. Effects of ratio and amount of the two sex pheromonal components of the diamondback moth on male behavioral response. Appl. Entomol Zool, 1984, 19:436-442
    149.Kawagoe T N, Suzuki K, Matsumoto. Multiple mating reduce longevity of female windmill butterfly Atrophaneura alcinous. Ecol. Entomol, 2001, 25: 258-262
    150.Klum J A. Genetic regulation of sex pheromone production and response: Interaction of sympatric pheromonal types of European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). J. Chem. Ecol, 1998, 24: 2047-2061
    151.Klun J A, Maini S. Genetic basis of an insect chemical communication system: the European corn borer. Environ. Entomol, 1979, 8: 423-426
    152.Klun J A, Plimmer J R, Bierl-leonhardt B A, Sparks A N, Primiani M, Chapman O L, Lee G H, Lepone G. Sex pheromone chemistry of the female corn earworm moth , Heliothis zea. J. Chem. Ecol, 1980a. 6:165-175
    153.Klun J A, Bierl-leonhardt B A, Plimmer J R, Sparks A N, Primiani M, Chapman O L, Lepone G, Lee G H. Sex pheromone chemistry of the female tobacco budworm moth, Heliothis virescens. J. Chem. Ecol, 1980b, 6:177-183
    154.Krasnoff S B, Dussourd D E. Dihydropyrrolizine attractants for arctiid moths that visit plants containing pyrrolidine alkaloids. J. Chem. Ecol, 1989,15: 47-60
    155.Laforest S, Wu W Q, LEfstedt C. A genetic analysis of population differences in pheromone production and response between two populations of the turnip moth, Agrotis segetum. J. Chem. Ecol, 1997, 23:1487-1503
    156.Lamunyon C W. Increased fecundity, as a function of multiple mating in an arctiid moth, Uteheisa ornatrix. Ecol. Entomol, 1997, 22: 69-73
    157.Levine J D, Funes P, Dowse H B, Hall J C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science, 2002,298: 2010-2012
    158.Levine J D. Sharing time on the fly. Curr. Opin. Cell Biol, 2004,16: 210-216
    159.Ljungberg H, Anderson P, Hansson B S. Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera : Noctuidae) . J. Insect Physiol. 1993, 39: 253-260
    160.Lofstedt C, LEf qvist J, Lanne B S, Van Der Per J N C, Hansson B S. Pheromone dialects in European turnip moths Agrotis segetum. OIKOS, 1986a, 46: 250-257
    
    161.Lofstedt C, Herrebout W M, Du J W. Evolution of the ermine moth pheromone tetradecyl acetate. Nature, 1986b, 323: 621-623
    162.Lofstedt C, Hansson B S, Roelofs W L, Bengtsson B O. No linkage between genes controlling female pheromone production and male pheromone response in the European corn borer, Ostrinia nubilalis Hubner (Lepidoptera : Pyralidae). Genetics, 1989,123: 553-556
    163.Lofstedt C. Population variation and genetic control of pheromone communication systems in moths. Entomol Exp. Appl., 1990, 54:199-288
    164.Lofstedt C, Hansson B S, Dijkerman H J, Herrebout W M. Behavioral and electrophysiological activity of unsaturated analogues of the pheromone tetradecyl acetate in the small ermine moth Yponomeuta rorellus. Physiol. Entomol., 1990,15: 47-54
    165.Lofstedt C. Moth pheromone genetics and evolution. Phil. Trans. R. Soc. Lond. B, 1993,340:167-177
    166.Macfoy C A, Dabrowski Z T, Okech S. Studies on the legume pod-borer, Maraca testulalis (Geyer) - 4. Cowpea resistance to oviposition and larval feeding. Insect SciApplic, 1983, 4: 147-152
    167.Machuka Jesse S, Okeola Oladapo G, Chrispeels Maarten J, Jackai Louis E N. The african yam bean seed lectin affects the development of the cowpea weevil but does not affect the development of larvae of the legume pod borer. Phytochemistry, 2000, 53: 667-674
    168.Mas E, Lloria J, Quero C, Camps F, Fabrias G. Control of the biosynthetic pathway of Sesamia nonagrioides sex pheromone by the pheromone biosynthesis activating neuropeptide. Insect Biochem. Molec, 2000, 30: 455-459
    169.Matsumoto S, Yoshiga T. The mechanismof sex pheromone production on silkworm moth , Bombyx mori related pheromone biosynthesis activation neuropeptide. Chem. Biol., 2001, 39: 4-6
    170.Mazor M, Dunkelblum E. Orcadian rhythms of sexual behavior and pheromone titers of two closely related moth species Autographa gamma and Cornutiplusia circumflexa. J. Chem. Ecol, 2005, 31: 2153-2168
    171.McElfresh J S, Milar J G. Sex pheromone of the common sheep moth, Hemilenca eglanterina, from the San Gabriel mountains of California. J. Chem. Ecol, 1999, 25: 687-709
    172.McNeil J N, Delisle J. Host plant pollen influences calling behavior and ovarian development of the sunflower moth, Homeosoma electellum. Oecologia, 1989, 80: 201-205.
    173.Mellor H E, Anderson M. Antennal sensilla of whiteflies : Trialeurodes vaporariorum (Westwood ), the glasshouse whitefly , and Aleyrodes proletella ( Linnaeus ) , the cabbage whitefly, ( Homoptera: Aleyrodedae ). Part 2: Ultrastructure. Int. J. Insect Morphol. Embryol, 1995, 24:145-160
    174.Mistlberger R E, Skene D J. Social influences on mammalian circadian rhythms: animal and human studies. Biology Review, 2004, 79: 533-556
    175.Nesbitt B F, Beevor P S, Hall D R, Lester R, Dyck V A. Identification of the female sex pheromones of the moth, Chilo suppressalis. J. Insect Physiol, 1975, 21:1883-1886
    176.Newcomb R D, Sirey T M, Rassam M, Greenwood D R. Pheromone binding proteins of Epiphyas postvittana (Lepidopetra: Tortricidae) are encoded at a single locus. Insect Biochem. Molec, 2002, 32:1543-1554
    177.Nishida R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol, 2002,47: 57-92
    178.Oghiakhe S, Jackai L E N, Makanjuola W A. Cowpea plant architecture in relation to infestation and damage the legume pod-borer, Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) - 1. Effect of canopy structure and pod position. Insect Sci. Applic, 1991a, 12:193-199
    179.Oghiakhe S, Jackai L E N, Makanjuola W A. Anatomical parameters of cowpea, Vigna unguiculata (L)Walp. stem and pod wall resistance to the legume pod-borer, Maraca testulalis Geyer (Lepidoptera: Pyralidae). Insect Sci. Applic, 1991b, 12: 171-176
    180.Oghiakhe S, Jackai L E N, Makanjuola W A. Cowpea plant architecture in relation to infestation and damage by legume pod-borer, Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) - 2. Effect of pod angle. Insect Sci. Applic, 1992, 13: 339-344
    181.Oghiakhe S and Odulaja A. A multivariate analysis of growth and development parameters of the legume pod-borer, Maruca testulalis on variably resistant cowpea cultivars. Entomol Exp. App., 1993, 66: 275-282
    182.Oghiakhe S and Odulaja A. Classification of cowpea cultivars for field resistance to the legume pod borer, Maraca testulalis in Nigeria using cluster analysis. Ann. Appl. Biol., 1993,122: 69-77
    183.Oghiakhe S, Jackai L E N, Hodgson C J, Ng O N. Anatomical and biochemical parameters of resistance of the wild cowpea, Vigna vexillata Benth. (Au. TVNu 72) to Maruca testulalis Geyer (Lepidoptera: Pyralidae). Insect Sci. Applic, 1993a, 14: 315-323
    184.Oghiakhe S, Makanjuola W A, Jackai L E N. Antibiosis mechanism of resistance to the legume pod borer, Maraca testulalis Geyer (Lepidoptera: Pyralidae) in cowpea. Insect. Sci. Applic, 1993b, 14: 403-410
    185.Oghiakhe S, Jackai L E N, Makanjuola W A. Cowpea plant architecture in relation to infestation and damage by the legume pod borer, Maruca testulalis Geyer (Lepidoptera: Pyralidae) - 3. Effects of plant growth habit. Insect Sci. Applic, 1993b: 14,199-203
    186.Ohbayashi N, Yushima T, Noguchi H, Tamaki Y. Time of mating and sex pheromone production and release of Spodoptera litura (F.) (Lepidopetra: Noctuidae). Kontyu, 1973,41: 389-395
    187.Okech S O H and Saxena K N. Responses of Maruca testulalis (Lepidoptera: Pyralidae) larvae to variably resistant cowpea cultivars. Environ. Entomol, 1990, 19:1792-1797
    188.Okeyo-Owuor J B, Oloo G W, Agwaro P O. Natural enemies of legume pod-borer, Maraca testulalis (Geyer) (Lepidoptera: Pyralidae) in small farming systems of Western Kenya. Insect Sci. Applic, 1991,12: 35-42
    189.Okeyo-Owuor J B and Oloo G W. Life tables, key factor analysis and density relations in natural population of the legume pod-borer, Manuca testulalis Geyer (Lepidoptera: Pyralidae) in Western Kenya. Irtsect Sci. Applic, 1991,12: 423-431
    190.Ozawa R A, Ando T, Nagasawa H, Kataoka H, Suzuki A. Reduction of the Acyl group : The critical step in bombykol biosynthesis regulated in vitro by neuropeptide hormone in the pheromone gland of Bombyx mori. Biosci. Biotech. Biochem., 1993, 57: 2144-2147
    191.Park K C, Cork A, Boo R S. Biological activity of female sex pheromone of the Oriental tobacco budworm, Helicoverpa assulta (Guence)(Lepidoptera: Noctuidae), electroantennography, wind tunnel observation and field trapping. J. Appl. Entomol., 1994,33: 26-32
    192.Peake D A, Gross M L. Iron chemical ionization and Tandem mass spectrometry for locating double bonds. Anal. Chem., 1985,5:115
    193.Percy J E, Weatherston J. Studies of phiologically active arthropod secretions, Ⅸ. Morphogy and histology of the pheromone-producing glands of some female lepidoptera. Can. Entomol, 1971,103:1733-1739
    194.Pope M M, Gaston L K, Baker T C. Composition, quantification and periodicity of sex pheromone volatiles from individual Heliothis zea females. J. Insect Physiol., 1984,30: 943-945
    195.Price W P. Insect studies in the advancement of science: From Darwin and Wallace to the present. American Entomologist, 2003, 49:163-173
    196.Rafaeli, Jurenka. PBAN regulation of pheromone biosynthesis in female moths. In: Blomquist G J ed., Insect Pheromone. Insect Biochem. Molec, 2003,106-135
    197.Raina A K, Klun J A, Lopez J D Jr, Leonhardt B A. Female sex pheromone of Heliothis phloxiphaga (Lepidoptera: Noctuidae ): Chemical identification, male behavioral response in flight tunnel, and field tests. Environ. Entomol., 1986, 15: 931-935
    198.Raina A K. Chemical signals from host plant and sexual behavior in a moth. Science, 1992, 255: 592-594
    199.Raina A K, Wergin W P, Murphy C A. Structural organization of the sex pheromone gland in Helicoverpa zea in relation to pheromone production and release. Arthropod Struct. Dev., 2000, 29: 343-353
    200.Ramasubramanian G V and Sundara Babu P C. Ovipositional preference of spotted pod-borer, Maraca testulalis (Geyer) (Lepidoptera: Pyralidae). Leg. Res., 1989b, 12: 193-195
    201.Reddy G V P, Guerrero A. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. Capitata. J. Agric. Food Chem., 2000,48: 6025-6029
    202.Reddy G V P, Holopainen J K, Guerrero A. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass and green leaf cabbage volatiles. J. Chem. Ecol, 2002, 28: 131-143.
    203.Reddy G V P, Guerrero A. Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 2004, 9: 253-261
    204.Ridley M. Mating frequency and fecundity in insects. Biololgical Review 1988, 63: 509-549
    
    205.Rodrfguez S, Hao G X, Liu W T, Pina B, Rooney Alejandro P. Expression and evolution of A9 and All desaturase genes in the moth Spodoptera littoralis. Insect Biochem. Molec, 2004, 34:1315-1328
    206.Roelofs W L, Card R T. Hydrocarbon sex pheromone in the tiger moth (Arcitiidae). Science, 1971,171: 684-689
    207.Roelofs W, Glover T, Tang X H, Sreng I, Robbins P, Eckenrode C, Lofstedt C, Hansson B S, Bengtsson B O. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc. Natl. Acad. Sci. USA, 1987, 84:7585-7589
    208.Roelofs W L. Control of sex pheromone biosynthesis in the moth Mamestra brassicae by the pheromone biosynthesis activating neuropeptide. Insect Biochem. Molec. Biol., 1994, 24: 203-211
    209.Roelofs W L. Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA, 1995, 92: 44-491
    210.Roelofs W L, Liu W, Hao G, Jiao H, Rooney A P, Linn CE Jr. Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci . USA, 2002, 99: 13621-13626
    211.Roelofs W L, Rooney A P. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc. Natl. Acad. Sci. USA, 2003,100: 9179-9184
    212.Romeis Jorg, Sharma Hari C, Sharma Kiran K, Das , Sampa, Sarmah Bidyut K. The potential of transgenic chickpeas for pest control and possible effects on non-target arthropods. Crop Protection, 2004, 23: 923-938
    213.Rosen W Q. Endogenous control of circadian rhythms of pheromone production in the turnip moth, Agrotis segetum. Arch. Insect Biochem., 2002,50: 21-30
    214.Rosen W Q, Han G B, Lofstedt C. The circadian rhythm of the sex-pheromone mediated behavioural response in the turnip moth, Agrotis segetum, is not controlled at the peripheral level. J. Biol. Rhythm, 2003,18: 402-408
    215.Rosolind C, Herrison A G. Location of double bounds by chemical ionization mass spectrometry. A Nal. Chem. 1981, 53: 34-42
    216.Rothschild G H L, Nesbitt B F, Beevor P S, Cork A, Hall D R, Vickers N J. Studies of the female sex pheromone of the native budworm, Heliothis punctigera. Entomol. Exp. Appl, 1982, 31: 395-401
    217.Rutowski R L. Mate choice and Lepidoptera mating behavior. Florida Entomology, 2982, 65: 72-82
    218.Sadek M. Polyandry in field-collected Spodoptera littrolis moths and laboratory assessment of the effect of male history. Entomol. Exp. Appl., 2001, 98:65-172
    219.Savalli U M, Fox C W. The effect of male mating history on paternal investment, fecundity and female remating in the sees beetle Callosobruchus maculates. Functional Ecology, 1999,13:169-177
    220.Schroeder P C, Shelton A M, Ferguson C S, Hoffmann M P, Petzoldt C H. Application of synthetic sex pheromone for management of diamondback moth, Plutella xylostella, in cabbage. Entomlo. Exp. Appl, 2000, 94: 243-348
    221.Senapati H K, Sahoo B K, Patnaik M R, Pal A K. Persistence of some common pesticides on pigeonpea in Orissa. J. Agric. Res., 1992, 5:100-103
    222.Shama H C. Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata - a review. Crop Prot., 1998,17: 373-386
    223.Silk P J, Tan S H, Wiesner C J. Sex pheromone chemistry of the eastern spruce budworm. Environmental Entomology, 1980, 9: 640-644
    224.Silvegren G, Lofstedt C, Qi Rosen W. Orcadian mating activity and effect of pheromone pre-exposure on pheromone response rhythms in the moth Spodoptera littoralis. J. Insect Physiol, 2005,51: 277-286
    225.Steinbretch R A, Gnatzy W. Pheromone receptors in Bombryxmori and Antheraea pernyi. I. Reconstruction of celluar organization of sensilla trichodea. Cell Tissue Reseach, 2984, 235:25- 34
    226.Steinbrecht R A, Ozaki M, Ziegelberger G. Immunocytoche -mical localization of pheromone-binding protein in moth antennae. Cell Tissue Res., 1992,270: 287-302
    227.Steinbrecht R A, Laue M, Ziegelberger G. Immunocytochemical of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moth A ntheraea and Bombyx . Cell Tissue Res. 1995, 282:203-217
    228.Stephen P F, Wendell L R. Sex pheromone differences in populations of the Brown Headed Leafroller, Ctenopseustis obliquana. J. Chem. Ecol, 1987,13: 623-629
    229.Steven Mcelfresh J, Jocelyn G. Millar. Geographic variation in sex pheromone blend of Hemileuca electra from southern California. J. Chem. Ecol, 1999, 25: 2505-2525
    230.Subchev M, Jurenka R A. Sex pheromone levels in pheromone glands and identification of the pheromone and hydrocarbons in the hemolymph of the moth Scoliopteryx libatrix L. (Lepidoptera : Noctuidae). Arch. Insect Biochem. Physiol, 2001 47: 35-43
    231.Suckling D M, Gibb A R, Daly J M, Roger D. J, Walker G P. Improvement the pheromone lure for diamondback moth. New Zealand Plant Protection, 2002, 55: 182-187.
    232.Szocs G, Raina A, Toth M, Leonhardt B A. Sex pheromone components of Heliothis maritima: chemical identification, flight tunnel and field tests. Entomol Exp. Appl, 1993, 66: 247-253
    233.Tan Z X, Gries R, Gries G, Lin G Q, Pu G Q, Slessor K N, Li J X. Sex pheromone components of mulberry looper , Hemerophila atrilineata Butler (Lepidoptera : Geometridae). J. Chem. Ecol, 1996,122: 2263-2271
    234.Taylor T A. The bionomics of Maruca testulalis Gey. (Lepidoptera: Pyralidae), a major pest of cowpeas in Nigeria. J. West Afr. Sci. Assoc, 1967,12:111-129
    235.Taylor T A. Maruca testulalis, an important pest of tropical grain legumes. In: Singh S R, Emden H F, Taylor T A eds., Pests of Grain Legumes: Ecology and Control. London: Academic Press., 1978,193-202
    236.Tayo T O. Flower and pod development in three cowpea Vigna unguiculata (L.) (Walp) varieties with varying susceptibility to the pod-borer, Maraca testulalis (Geyer). Insect Sci. Applic, 1988, 9: 249-253
    237.Teal P E A, Heath R R, Tuminson J H, McLaughlin J R. Identification of a sex pheromone of Heliothis subflexa (Gn. ) and field trapping studies using different blends of components. J. Chem. Ecol., 1981, 7: 1011-1022
    238.Teal P E A, Tumlinson J H, Oberlander H. Neural regulation of sex pheromone biosynthesis in Heliothis moths. PNAS, 1989, 86: 2488-2492
    239.Teal P E A, Tumlinson J H. Effects of interspecific hybridization between Heliothis virescens and Heliothis subflexa on the sex pheromone communication system. In: Carde R T, Minks A K eds., Insect Pheromone Research: New Directions. New York: Chapman & Hall, 1997, 536 - 547
    240.Toth M, LEfstedt C, Blair B W, Cabello T, Farag A I, Hansson B S, Kovalev, B G, Maini S, Nesterov E A, Pajor, Sazonov P, Shamshev I V, Subchev M, SzEcs G, Attraction of male turnip moths Agrotis segetum (Lepidoptera: Noctuidae) to sex pheromone components and their mixtures at 11 sites in Europe , Asia , and Africa. J. Chem. Ecol., 1992,18:1337-1347
    241.Tregenza T, Wedell N. Polydrous females avoid costs of inbreeding. Nature, 2002, 45: 71-73
    242.Vickers N J, Christensen TA, Mustaparta H, Baker T C. Chemical communication in heliothine moths Ⅲ. Flight behavior of male Helicoverpa zea and Heliothis virescens in response to varying ratios of intra- and inter- specific sex pheromone components. J. Comp. Physiol. A, 1991,169: 275-283
    243.Vickers N J. Defining a synthetic pheromone blend attractive to male Heliothis subflexa under wind tunnel conditions. J. Chem. Ecol., 2002, 28:1255-1267
    244.Vickers N J, Christensen T A. Functional divergence of spatially conserved olfactory glomeruli in two related moth species. Chem. Senses, 2003, 28: 325-338
    245.Wakamura S, Arakaki N, Yamzawa H, Nakajima N, Yamamoto M, Ando T. Identification of epoxyhenicoxadiene and novel diepoxy derivatives as sex pheromone components of the clear-winged tussock moth Perina nuda. J. Chem. Ecol, 2002, 28: 449-467
    246.Wang C Z, Dong J F. Interspecific hybridization of Helicoverpa armigera and H. assulta (Lepidoptera: Noctuidae). Chin. Sci. Bull., 2001, 46: 489-491
    247.Wang H L, Zhao C H, Wang C Z. Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid. Insect Biochem. Molec, 2005, 35: 575-583
    248.Ward K E, Landolt P J. Influence of multiple matings on fecundity and longevity of female cabbage looper moths (Lepidoptera:Noctuidae). Ann. Entomol. Soc. American, 1995, 96:768-772
    249.Wei W, Miyamoto T, Endo M, Murakawa T, Pu G Q. Polyunsaturated hydrocarbons in the hemolymph: biosynthetic precursors of epoxy pheromones of geometrid and arctiid moths. Insect Biochem. Molec, 2003, 33: 397-405
    250.Wei W, Yammoto M, Asato T , Fujii T, Pu G Q, Ando T. Selectivity and neuroendocrine regulation of the precursor uptake by pheromone glands from hemolymph in geometrid female moths , which secrete expoxyalkenyl sex pheromones. Insect Biochem. Mol. Biol, 2004, 34:1215-1224
    251.White C S, Lambert D M, Foster S P. Chemical signals and the recognition concept. In: Lambert DM, Spencer H eds., Speciation and the Recognition Concept: Theory and Application. Baltimore, Maryland: Johns Hopkins University Press, 1995, 301-326
    252.Wolley J N. Breeding cowpea for resistance to Maruca testulalis. I : methods and preliminary results. Tropical Grain Legume Bulletin, 1976, 4:13-14.
    253.Wu W Q, Cottrell C B, Hansson B S, Lofstedt C. Comparative study of pheromone production and response in Swedish and Zimbabwean population of turnip moth, Agrotis segetum. J. Chem. Ecol, 1999, 25:177-196
    254.Yamada H. Mating habits of the diamondback moth, Plutella xylostella. Jap. J. Appl. Entomol Zool, 1979,23: 43-45
    255.Yamaoka R, Taniguchi Y, Hayashiya K. Bombykol biosynthesis from deuterium labeled hexadecenoic acid. Experientia, 1984, 40: 80-81
    256.Yamaoka R, Kuwabara Y, Ogawa M, Nakamura S, Muneyuki R. Isolation and identification of the female sex pheromone of the potato tuberworm moth, Phthorimaea operculella (Zeller). Agric. Biol. Chem., 1990,40:1971-1977 257.Zhao C H, Adlof R O, Lofstedt C. Sex pheromone biosynthesis in the pine caterpillar moth, Dendrolimus punctatus (Lepidoptera: Lasiocampidae): pathways leading to Z5-monoene and 5,7-conjugated diene components. Insect Biochem. Molec, 2004, 34: 261-271.
    258.Zhao J Z, Haynes K F. Dose PBAN play an alternative role of controlling pheromone emission in the cabbage looper moth, Trichoplusiani (Hubner) (Lepidoptera : Noctuidae). J. Insect Physiol., 1997,43: 695-700
    259.Zhao X C, Dong J F, Tang Q B, Yan Y H, Gelbic I, van Loon J J A, Wang C Z. Hybridization between Helicoverpa armigera and Helicoverpa assulta: development and morphological characterization of F1 hybrids. Bull. Entomol Res., 2005, 95: 409-416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700