溴甲烷高选择性转化为芳烃的催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源日趋枯竭和原油价格居高不下,储量相对丰富的天然气的综合利用越来越受到关注。甲烷经溴甲烷制备高附加值的芳烃是高效利用天然气的有效方式,为芳烃开辟了新的合成路线,对缓解芳烃原料的缺乏具有现实意义。本论文旨在研究溴甲烷制备芳烃的高效催化剂,试图揭示催化剂的构效关系、反应机理和失活机理。
     本论文首先研究了商业HZSM-5分子筛负载PbO催化剂上的溴甲烷芳构化反应情况。考察了载体、改性组分、焙烧条件、反应条件等因素对催化剂性能的影响。结果表明,HZSM-5分子筛载体优于SiO2、A12O3、ZrO2和HSAPO-34; PbO表现出优于其他金属氧化物的芳构化性能;最佳的PbO负载量和HZSM-5分子筛硅铝比分别为5wt.%和70;450℃焙烧8 h的5wt.%-PbO/HZSM-5催化剂性能最佳;360℃左右的反应温度和较低的溴甲烷空速有利于提高芳烃的选择性。XRD、SEM等表征结果表明,HZSM-5的酸性质对溴甲烷芳构化反应尤其重要;PbO高度分散于HZSM-5分子筛表面,显著减少了催化剂表面的中强酸密度,稍微增加了弱酸和强酸密度,从而促进了溴甲烷的芳构化,芳烃收率达31.6%;反应物在催化剂表面的积碳是导致催化剂失活的主要原因。
     为了寻求更加高效的HZSM-5催化剂,以廉价的正丁胺为模板剂,采用水热晶化法成功合成了小晶粒HZSM-5分子筛,并在固定床反应装置上评价了其对溴甲烷转化为芳烃反应的催化性能。系统考察了投料硅铝比、母液碱度、氯化钠添加量、晶种、晶化时间等因素对合成产物的收率、物化性质和催化性能的影响,并采用XRD、SEM、NH3-TPD等手段对部分合成的分子筛进行了表征,还关联了催化剂的构效关系。结果表明,当投料中SiO2/Al2O3为70,正丁胺(BTA)/SiO2为0.2847, Na2O/SiO2为0.1237, H2O/SiO2为37.4,NaCl/Al2O3为60,添加自制晶种为5wt.%/SiO2,晶化条件为100℃/24h-170℃/24h时,合成的HZSM-5分子筛结晶完好,晶粒尺寸为0.3μm-0.7/μm,对溴甲烷制备芳烃反应具有更好的催化性能,芳烃收率达44.2%; HZSM-5分子筛的结晶度越高或者晶粒较小,有利于改善其催化性能;而且分子筛表面酸性适中有利于溴甲烷高选择性地转化为芳烃。
In view of increasing shortage of petroleum resource and high price of crude oil, the utilization of the relatively abundant natural gas, composed mainly of CH4, has attracted significant attention. The catalytic conversion of natural gas into aromatic hydrocarbons via bromomethane as intermediate is a desirable way to develop effectively natural gas industry and enhance its added-value, which opens up a novel and feasible synthetic route for aromatic hydrocarbon and provides new raw materials for aromatics. This paper try to develope highly efficient catalysts for the conversion of methyl bromide into aromatics, clarify the structure-catalytic efficiency relationship of the catalysts and make a preliminary study on the reaction mechanism and catalysts deactivation mechanism.
     The catalytic conversion of CH3Br to aromatics was firstly investigated over PbO-modified commercial HZSM-5 catalyst. The effects of supports, modifying components, calcination conditions and reaction conditions on catalytic performance were studied. It was found that HZSM-5 is better than SiO2, A12O3, ZrO2 or HSAPO-34 as support. PbO is superior to the other metal oxides selected to modify HZSM-5, and the most suitable PbO loading and SiO2/Al2O3 ratio are 5wt.% and 70, respectively. The 5wt.%-PbO/HZSM-5 calcined at 450℃for 8 h performs the best. Also, The characterization results indicate that (i) the PbO species is highly dispersed on the HZSM-5 support, which leads to a significant decrease in the density of the surface moderate intensity acidity and a slight increase in the density of the strong and weak intensity acidity of the catalyst, (ii) the role of PbO is to promote hydrocarbon aromatization, and (iii) the acid sites of HZSM-5 are indispensable for CH3Br conversion into aromatics. (iiii) the deactivation of catalyst is due to pore blocking by carbonaceous deposits on the surface of catalysts.
     In order to obtain more efficient catalyst, H-ZMS-5 zeolite was prepared by hydrothermal crystallization method, using n-butylamine (BTA) as template. The as-prepared materials were evaluated for the conversion of CH3Br into aromatics in the fixed-bed reactor. The effects of batch SiO2/Al2O3 ratio, alkalinity, NaCl/Al2O3 ratio, seed crystals and crystallization time on the yield, physico-chemical properties and catalytic performance of ZSM-5 zeolites were systematically studied. The structure-catalytic efficiency relationships of the catalysts were also clarified by the characterization techniques of XRD、SEM and NH3-TPD. Using the optimum sol (SiO2/Al2O3=70, BTA/SiO2= 0.2847, Na2O/SiO2= 0.1237, H2O/SiO2= 37.4, NaCl/Al2O3= 60, and Seed crystals/SiO2= 5wt.%), and the preferable crystallization conditions of 100℃/24h-170℃/24h, HZSM-5 zeolites with high crystallinity and a small size of 0.3μm-0.7μm were obtained and found to exhibit better activity, selectivity and stability towards the CH3Br conversion into aromatics, the aromatic yield reach up to 44.2%. It can be deduced that higher crystallinity or smaller crystal size will favor the improvement of the catalytic performance of HZSM-5 zeolites. Moreover, efficient conversion of methyl bromide into aromatics can be obtained only when the surface acidity of the HZSM-5 zeolite is moderate.
引文
[1]陈庆龄,钱伯章.天然气化工发展现状.现代化工,2002,22(5):1-4
    [2]张广瑞,张庆金,王平彪,等.FT合成和天然气化工的未来.河北化工,2009,32(4):31-35
    [3]沈师孔.天然气转化利用技术的研究进展.石油化工,2006,35(9):799-809
    [4]张小平,陈立宇,张秀成,等.磷钨酸催化剂部分氧化甲烷合成甲醇的探索性实验研究.天然气化工,2006,31(2):44-48
    [5]曹发海,范权,王升.由天然气制低碳烯烃的技术前景.中氮肥,2001,6(1):1-5
    [6]Wang L S. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letter,1993,21(1-2):35-41
    [7]雍瑞生,谭斌,王科.天然气化工的技术进展与发展机遇.天然气化工,2009,34(4):70-74
    [8]白尔铮.费托合成燃料的经济性及发展前景.化工进展,2004,23(4):370-374
    [9]陈建钢,相宏伟,李永旺,等.费托法合成液体燃料关键技术进展.化工学报,2002,54(4):9-14
    [10]刘中民,丁云杰,徐恒泳.天然气制化学品及液体、燃料.上海天然气应用技术论坛论文集.上海,2001,92-96
    [11]白尔铮、唐华荣.国内外C1化工发展概况及建议.上海天然气应用技术论坛论文集,上海,2001,106-109
    [12]Scurrell M S. Prospects for the direct conversion of light alkanes to petrochemicalfeedstocks and liquid fuels - a review. Applied Catalysis, 1987,32:1-22
    [13]Mitchell H L, Waghorne R H, et al. Catalysts for the conversion of relatively low molecular weight hydrocarbons to high molecular weight hydrocarbons and the regeneration of the catalysts. US4172810.1978-03-08
    [14]Mikkelsen 0, Kolboe S. The conversion of methanol to hydrocarbons over zeo ite H-beta. Microporous and Mesoporous Materials,1999, 29(1-2):173-154
    [15]Wu X C, Abraha M Q, Anlhony R G. Methanol conversion on SAPO-34:reaction condition for fixed-bed reactor, Applied catalysis A:General,2004,260(1):63-69
    [16]Gorin E, Tex D. Conversion of normally gaseous hydrocarbons. US Patent.2320274,1943-05-25
    [17]Lester G R. Bromine recovery. US Patent.3310380,1967-03-21
    [18]Butter S A, Jurewicz A T, Kaeding W W. Conversion of alcohols, mercaptans, sulfides, halides and/or amines. US Patent.3894107, 1975-07-08
    [19]Kaiser S W. Production of hydrocarbons with aluminophosphate molecular sieves. United States Patent.4524234,1985-06-18
    [20]Brophy J H, Freide J J H M, Tomkinson J D, International Patent WO. 85/02608,1985-07-20
    [21]Olah G A. Electrophilic methane conversion. Accounts of Chemical Research,1987,20(11):422-428
    [22]Olah G A, Gupta B, Felberg J D, et al. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and hydrolysis of methyl halides over gamma-alumina-supported metal oxide/hydroxide catalysts:a feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether, Journal of the American Chemical Society,1985,107(24):7097-7105
    [23]Hellring S D, Schmitt K D, Chang C D. Synthesis and decomposition of trimethyloxonium ZSM-5, a purported intermediate in methanol conversion into gasoline. Journal of the Chemical Society. Chemical communications,1987,17:1320-1322
    [24]Taylor C E, Noceti R P. Conversion of methane to gasoline-range hydrocarbons. Proceeding 9th international Congresson Catalysis Calgary. Chemical Institute of Canada,1988,2:990-997
    [25]Taylor C E, Noceti R P, Schehl R R. Dirct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Studies in Surface Science and Catalysis,1998,36:483-489
    [26]Taylor C E. Conversion of substituted methanes over ZSM-catalysts. Studies in Surface Science and Catalysis,2000,130:3633-3638
    [27]Taylor C E, Noceti R P. Catalysts and method. US Patent.5019652, 1991-03-28
    [28]Taylor C E, Noceti R P. Oxyhydrochlorination catalyst. US Patent, 5139991.1992-08-18
    [29]Noceti R. P, Taylor C E. Process for converting light alkanes to higher hydrocarbons. US Patent.4769504,1998-09-06
    [30]Waycuilis J J. Conversion of alkanes to oxygenates. US Patent. 7064238,2006-06-20
    [31]Degirmencia, Unera D, Yilmaz A. Methane to higher hydrocarbons via halogenation. Catalysis Today,2005,106(1-4):252-255
    [32]Osterwalder N, Stark W J. Direct coupling of bromine-mediated methane activation and carbon-deposit gasification. ChemPhysChem, 2007,8(2):297-303
    [33]Lin R H, Ding Y J, Gong L F, et al. Oxidative bromination of methane on silica-supported non-noble metal oxide catalysts. Applied Catalysis A:General,2009,353(1):87-92
    [34]Schweizer A E, Jones M E, Hickman D A. Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto. US Patent.6452058,2002-09-17
    [35]Muray D K, Chang J W, Haw J M. Conversion of methyl halides to hydrocarbons on basic zeolites:a discovery by in situ NMR. Journal of the American Chemical Society,1993,115:4732-4741
    [36]Svelle S, Aravinthan S, Bj(?)rgen M, et al. The methyl halide to hydrocarbon reaction over H-SAPO-34. Journal of Catalysis,2006, 241(2):243-254
    [37]Jens K J, Halvorsen S, Ofslad E B. Methane conversion via methyl chloride:condensation of methyl chloride to light hydrocarbons. Studies in Surface Science and Catalysis,1988,36:491-495
    [38]Lersch P, Balldermann F. Conversion of chloromethane over metal-exchanged ZSM-5 to higher hydrocarbons. Appllied Catalysis, 1991,75(1):133-152.
    [39]Sun Y, Campbell S M, Lunsford J H, et al. The catalytic conversion of methyl-chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites. Journal of Catalysis,1993, 143(1):32-44
    [40]Xia X R, Bi Y L, Wu T H, et al. An infrared spectroscopic study of the mechanism of chloromethane conversion to higher hydrocarbons on HZSM-5 catalyst. Catalysis Letter,1995,33(1-2):75-90
    [41]Murray D K, Howard T, Goguen P W, et al. Methyl halide reactions on multifunctional metal-exchanged zeolite catalysts. Journal of the American Chemical Society,1994,116:6354-6360
    [42]Jaumain D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over various protonic and cationic zeolite catalysts as studied by in-situ FTIR and catalytic testing. Studies in Surface Science and Catalysis,2000,130:1607-1612
    [43]Jaumain D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations. Journal of Molecular Catalysis A Chemical,2003, 197(1-2):263-273
    [44]Noronha L A, Souza-Aguiar E F, Mota C J A. Conversion of chloromethane to light olefins catalyzed by ZSM-5 zeolites. Catalysis Today,2005,10:9-13
    [45]Chich B. Influence of some parameters on methyl chloride conversion over various zeolites:H-ZSM5, H-ZSM12 and mordenite. Revue Roumaine de Chimie,1997,42(12):1165-170
    [46]Wei Y X, Zhang D Z, Xu L, et al. New route for light olefins production from chloromethane over HSAPO-34 molecular sieve. Catalysis Today,2005,106(1-4):84-89
    [47]Lorkovica I M, Yilmaz A, Yilmaz G A, et al. A novel integrated process for the functionalization of methane and ethane:bromine as mediator. Catalysis Today,2004,98(1-2):317-322.
    [48]Liu Z, Huang L, Li W S, et al. Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis A: Chemical,2007,273(1-2):1381-1169
    [49]Romannikov V N, lone K Q. Hydrocarbons synthesis from C1 compounds using zelite catalysts. Kinetics and Catalysis,1984,25: 75-86
    [50]Broph, John Y H, Foot F, et al. Process for the production of hydrocarbons from hetero-substituted methanes. US Patent.4652688, 1987-03-24
    [51]Zhang D Z, Wei Y X, Xu L, et al. Chloromethane conversion to higher hydrocarbons over zeolites and SAPOs. Catalysis Letters, 2006,109(1-2):97-10
    [52]Juatnain D, Su B L. Monitoring the Bronsted acidity of zeolites by means of in situ FI-IR and catalytic testing using chloromethane as probe molecule. Catalysis Today,2002,73(1-2):187-196.
    [53]Su B L, Jaumain D, Treacy M M J, et al. Chloromethane as a probe molecule to characterize the Bronsted acidity of zeolites:an in-situ FTIR study. The 12th International Zeolite Conference, Materials Research Society:Warrendale, PA,1998,4:2689-2696
    [54]Ghosh A F, Kydd R A. A fourier-transform infrared spectral study of propene reactions on acidic zeolites. Journal of Catalysis,1986, 100(1):185-195
    [55]张大治,魏迎旭,沈江汉,等.氯甲烷在镁修饰的ZSM-5分子筛催化剂上催化转化研究.天然气化工,2006,31(3):14-18
    [56]张大治,魏迎旭,许磊,等.氯甲烷在H-ZSM-5分子筛催化剂上转化为烃类化合物反应研究.天然气化工,2006,31(4):42-44
    [57]Wei Y X, Zhang D Z, Liu Z M, et al. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. Journal of Catalysis, 2006,238(1):46-57
    [58]Wei Y X, He Y L, Zhang D Z, et al. Study of Mn incorporation into SAPO famework:Synthesis, characterization and catalysis in chloromethane conversion to light olefins. Microporous Mesoporous Materials,2006,90(1-3):188-197
    [59]Wei Y X, Zhang D Z, He Y L, et al. Catalytic performance of chloromethane transformation for light olefins production over SAPO-34 with different Si content. Catalysis Letters,2006,114(1-2): 30-35.
    [60]Li J Z, Qi Y, Zhang D Z, et al. Propylene production by co-reaction of ethylene and chloromethane over SAPO-34. Studies in Surface Science and Catalysis,2007,170 (2):1578-1582
    [61]Wei Y X, Zhang D Z, Liu Z M, et al. Mechanistic elucidation of chloromethane transformation over SAPO-34 using deuterated probe molecule:A FTIR study on the surface evolution of catalyst. Chemical Physics Letters,2007,444(1-3):197-201
    [62]Li J Z, Qi Y, Liu Z M, et al. Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22. Catalysis Letters,2008,121(3-4): 303-310.
    [63]Zhang D Z, Wei Y X, Xu L, et al. MgAPSO-34 molecular sieves with various Mg stoichiometries:Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Microporous and Mesoporous Materials,2008,116(1-3): 684-692
    [64]Wei Y X, Zhang D Z, Xu L, et al. Monitoring the Bronsted acidity of zeolites by means of in situ FT-IR and catalytic testing using chloromethane as probe molecule. Catalysis Today,2008,131(1-4): 262-269
    [65]Wei Y X, Zhang D Z, Chang F X, et al. Ultra-short contact time conversion of chloromethane to olefins over pre-coked SAPO-34: direct insight into the primary conversion with coke deposition. Chemical Communications,2009,5999-6001
    [66]张大治,魏迎旭,刘中民,等.氯甲烷转化制低碳烯烃的催化剂及应用.中国专利.200510086896.0,2005-11-17
    [67]魏迎旭,张大治,刘中民,等.氯甲烷转化生成低碳烯烃的SAPO分子筛催化剂.中国专利.200510086895.6,2005-11-17
    [68]张大治,刘中民,许磊.The catalytic conversion of chloromethane to olefins over various molecular sieve catalysts.中国分子筛协会年会,中国苏州,2003,11:43-46
    [69]Zhang D Z, Wei Y X, Du A P, et al. Chloromethane conversion to light olefins over silicoaluminophosphate molecular sieve. The 4th Asia Pacific Congress on Catalysis, Singapore,2006
    [70]Wei Y X, Zhang D Z, He Y L, et al. Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. The 4th Asia Pacific Congresson Catalysis, Singapore,2006
    [71]Svelle S, Kolboe S, Olsbye U, et al. A theoretical investisation of the methylation of methyl benzenes and alkenes by halomethanes over acidic zeolites. Journal of Physical Chemistry B,2003,107(22): 5251-5260
    [72]Svelle S, Joensen F, Nerlov J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society,2006,128:14770-14771
    [73]Bj(?)rgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species. Journal of Catalysis,2007,249(2):195-207
    [74]Lorkovic I M, Noy M, Weiss M, et al. C1 Coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites. Chemical Communications,2004,566-567
    [75]Breed A, Doherty M F, Gadewa S, et al. Natural gas conversion to liquid fuels in a zone reactor. Catalysis Today,2005,106(1-4): 301-304
    [76]Yilmaz A, Zhou X P, Lorkovic I M, et al. Bromine mediated partial oxidation of ethane over nanostructured zirconia supported metal oxide/bromide. Microporous and Mesoporous Materials,2005, 79(1-3):205-214
    [77]Tang J, Chen C X, Li W S, et al. High efficient conversion of propane to maleic anhydride and acetic acid by partial oxidation. Applied Catalysis A:General,2005,287(2):197-202
    [78]Zhou X P, Yilmaz A, Yilmaz G A, et al. An integrated process for partial oxidation of alkanes. Chemical Communications,2003, 2294-2295
    [79]Zhou X P, Lorkovic I M, Sherman J H. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes. US Patent. 6486368,2002-10-06
    [80]Zhou X P, Lorkovic I M, Stucky G D, et al. Integrated process for synthesizing alcohols and ethers from alkanes. US Patent.6462243, 2002-10-08
    [81]Zhou X P, Lorkovic I M, Stucky G D, et al. Integrated process for synthesizing alcohols and ethers from alkanes. US Patent.6472572, 2002-10-29
    [82]Zhou X P, Stucky G D, Sherman J H. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes. US Patent. 6465696,2002-10-25
    [83]Zhou X P, Stucky G D, Sherman J H. Process for synthesizing olefin oxides. US Patent.6403840,2002-06-11
    [84]Xu H F, Wang K X, Li W S, et al. Dimethyl ether synthesis from methane by non syngas process. Catalysis Letters,2005,100(1-2): 53-57
    [85]Wang K X, Xu H F, Li W S, et al. Acetic acid synthesis from methane by non-synthesis gas process. Journal of Molecular Catalysis A: Chemical,2005,225(1):65-69.
    [86]Wang K X, Xu H F, Li W S, et al. The synthesis of acetic acid from methane via oxidative bromination, carbonylation, and hydrolysis. Applied Catalysis A:General,2006,304:168-177
    [87]Yang F, Liu Z, Li W S, et al. The oxidative bromination of methane over Rh/SiO2 catalyst. Catalysis Letters,2008,124(3-4):226-232
    [88]Arstad B, Kolboe S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. Journal of the American Chemical Society,2001,123:8137-8138.
    [89]Arstad B, Kolboe S. Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confined in the catalyst cavities at short time on stream. Catalysis Letter,2001,71(3-4):209-212
    [90]Bjorgen M, Olsbye U, Kolboe S. Coke precursor formation and zeolite deactivation:mechanistic insights from hexamethylbenzene conversion. Journal of Catalysis,2003,215(1):30-44
    [91]Bj(?)rgen M, Olsbye U, Petersen D. The methanol-to-hydrocarbons reaction:insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. Journal of Catalysis, 2004,221(1):1-10
    [92]Bj(?)rgen M, Olsbye U, Svelle S, et al. Conversion of methanol to hydrocarbons:the reactions of the heptamethylbenzenium cation over zeolite H-Beta. Catalysis Letters,2004,93(1-2):37-40
    [93]Arstad B, Nicholas J B, Haw J F. Theoretical study of the methylbenzene side-Chain hydrocarbon pool mechanism in methanol to olefin catalysis. Journal of the American Chemical Society,2004, 126:2991-3001
    [94]Olsbye U, Bj(?)rgen M, Svelle S, et al. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catalysis Today,2005,106(1-4): 108-111
    [95]Haw J F, Marcus D M. Well-defined (supra) molecular structures in zeolite methanol-to-olefin catalysis. Topics in Catalysis,2005, 34(1-4):41.48
    [96]Kony Z, Hanus I, Kricsi I. Infrared Spectroscopic study of adsorption and reactions of methyl chloride on acidic, neutral and basic zeolites. Appllied Catalysis B:Environmental,1996,8(4):391-404
    [97]Cserenyi J, Ovari L, Bansagi T, et al. Adsorption and reaction of CH3C1 on M02C based catalyst. Journal of Molecular Catalysis A: Chemical,2000,162(1-2):335-343
    [98]Beebe T P, Crowell J E, Yates J T. Reaction of methyl chloride with alumina surfaces:study of methoxys surface species by transmission infrared spectroscopy. The Journal of Physical Chemistry,1988,92: 1296-1301
    [99]张大治.分子筛催化转化氯甲烷制取低碳烯烃及其反应机理研究机理:[博士研究生学位论文].大连:大连化学物理研究所,2006,200-206
    [100]刘一心,何智勇.轻烃芳构化技术进展.石油与天然气化工,2005,34(3):165-167
    [101]Grieken R V, Sotelo J L, Menendez J M, et al. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials,2000,39(1-2):135-147
    [102]李浩春,分析化学手册:第五分册-气相色谱分析,第二版.北京:化学工业出版社,1999,692-705
    [103]王东杰.助催化剂对Mo/HZSM-5上甲烷无氧芳构化催化性能:[博士研究生学位论文].浙江:浙江大学有机催化,2003,51-55
    [104]Dahl I M, Mostad H, Akporiaye D, et al. Structural and chemical influences on the MTO reaction:a comparison of chabazite and SAPO-34 as MTO catalysts. Microporous and Mesoporous Materials, 1999,29(1-2):185-190
    [105]Liu W, Xu Y. Methane dehydrogenation and aromatization over Mo/HZSM-5:in situ FT-IR characterization of its acidity and the interaction between Mo species and HZSM-5. Journal of Catalysis, 1999,185(2):386-392
    [106]Trombetta M, Busca G, Lenarda M, et al. An investigation of the surface acidity of mesoporous Al-containing MCM-41 and of the external surface of ferrierite through pivalonitrile adsorption. Applied Catalysis A:General,1999,182(2):225-235
    [107]Coudurier G, Naccache C, Vedrine J C, Use of IR spectroscopy in identifying ZSM zcolite structure. Chemical Communications,1982: 1413-1415
    [108]Song Y Q, Zhu X Z, Xie S J, et al. Effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts. Catalysis Letters,1997, (1-2):31-36
    [109]Topsoe N Y, Pedersen K, Derouane E G. Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. Journal of Catalysis,1981,70(1):41-52
    [110]Lobree L J, Hwang I C, Reimer J A, et al. Investigations of the State of Fe in H-ZSM-5. Journal of Catalysis,1999,186(2):242-253
    [111]Marschmeyer S, Papp H. Surface analysis of a hydrothermally treated H-ZSM-5 zeolite. Surface and Interface Analysis,1997,25(9): 660-666
    [112]Li Y G, Xie W H, Yong S. The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction. Applied Catalysis A: General,1997,150(2):231-242
    [113]Corma A, Gonzalez-Alfaro V, Orchilles A V. The role of pore topology on the behaviour of FCC zeolite additives. Applied Catalysis A:General,1999,187(3):245-254
    [114]程忠林,孙兆林.Zn-Ni/HZSM-5催化剂上微波辐射诱导正己烷芳构化.石油炼制与化工,2002,33(3):51-55
    [115]Gnep N A, Doyemet J Y, Seco A M, et al. Conversion of light alkanes into aromatic hydrocarbons:1-dehydrocyclodimerization of propane on PtHZSM-5 catalysts. Applied Catalysis,1987,35(1):93-108
    [116]Ono Y, Kitagawa H, Sendoda Y. Transformation of butylene into aromatic hydrocarbons over ZSM-5 zeolites. Journal of the Chemical Society Faraday Transactions,1987,83(9):2913-2923
    [117]郑长波、李稗婷,镍污染对HZSM-5分子筛催化剂裂化性能的影响.石油炼制,1988,(10):60-69
    [118]刘中民,陈阑权,王清遮,等.分子筛催化剂的失活与积碳.催化学报,1994,15(4):301-303
    [119]Song Y Q, Li H B, Guo Z J, et al. Effect of variations in acid properties of HZSM-5 on the coking behavior and reaction stability in butene aromatization. Applied Catalysis A:General,2005,292(2) 162-170
    [120]Lucas A, Canizares P, Duran A. Improving deactivation behaviour of HZSM-5 catalysts. Applied Catalysis A:General,2001,206(1): 87-93
    [121]Tessonnier J P, Louis B, Rigolet S. Methane dehydro-aromatization on Mo/ZSM-5:About the hidden role of Bronsted acid sites. Applied Catalysis A:General,2008,336(1-2):79-88
    [122]王岳,李凤艳,赵天波,等.纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能.石油化工高等学校学报,2005,18(4):20-23
    [123]王坤院,王祥生.纳米ZSM-5分子筛研究进展.工业催化,2008,16(2):1-6
    [124]张贺,李钢,王祥生,等.不同晶粒大小HZSM-5载体对甲烷无氧芳构化反应的影响.分子催化,17(1):70-73
    [125]殷基明,刘春英,柳云骐,等.不同晶粒大小ZSM-5分子筛的合成研究.精细石油化工进展,2006,6(9):7-11
    [126]孙慧勇,胡建仙,王建国等.小晶粒Fe/ZSM-5分子筛合成过程中粒晶大小和分布的控制.石油化工,2001,30(3):188-192
    [127]闫静,钱岭,阎子峰等.SAPO-11分子筛合成技术研究进展.天然气化工,2002,28(4):37-40
    [128]高雄厚,张永明,唐荣荣.ZSM-5沸石合成技术的进展(Ⅱ).催化裂化,1997,16(3):30-34
    [129]张领辉,李再婷,叶忆芳.不同晶粒大小ZSM-5分子筛的合成与表征.催化学报,1994,15(6):468-473
    [130]王德举,李学礼,刘仲能,等.晶种导向剂法制备纳米ZSM-5沸石.工业催化,2008,16(4):21-23
    [131]Thompson R W. Recent advances in the understanding of zeolite synthesis. Molecule Sieves,1998, (1):1-33
    [132]张艳侠.高硅铝比的纳米ZSM-5沸石分子筛的合成:[大连理工大学硕士学位论文].大连理工大学化工学院,2005,25-27
    [133]程志林,晁自胜,林海强,等.碱金属盐对ZSM-5分子筛晶化的影响.无机化学学报,2003,19(4):396-400
    [134]Shiralkar V P, Joshi P N, Eapen M J, et al. Synthesis of ZSM-5 with variable crystallite size and its influence on physicochemical properties. Zeolites,1991,11(5):511-516
    [135]Persson A E, Schoeman B J, Sterte J, et al. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA) ZSM-5 crystals. Zeolites,1995,15(7):611-619
    [136]Jacobsen C J H, Madsen C, Janssens T V W, et al. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials 2000,39: 393-401
    [137]Boronat B, Viruela P, Corma A. Theoretical study on the mechanism of the hydride transfer reaction between alkanes and alkyl carbeniumions. Journal of Physical Chemistry B,1997,101: 10069-10074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700