城市雨洪的水动力耦合模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气温的变化,我国经济的迅速发展,城市化进程的加快,自然集水区的减少,近年来城市暴雨洪水的灾害日趋严重。城市高强度的降雨形成的降雨洪水不同于溃坝和河道排放能力不足引起的水灾害,其主要是由于排水管道系统不能及时排走城市地表雨水,造成部分地区淹没,严重的形成内洪,导致城市交通、供水、供电、供气、通讯等生命线工程瘫痪,给人民的生命财产带来损失。因而研究城市雨洪的非恒定过程可以为排水管道的设计和改造、防灾减灾决策、城市雨洪的预报及水资源利用等提供依据,具有重要的研究意义和实际应用价值。
     论文在前人理论研究和科学实践的基础上,回顾了城市雨洪的研究现状和分析了其形成的原因以及城市化对城市雨洪的综合影响,阐述了本文的选题意义和主要工作内容。
     首先,建立一维模型。该模型采用一维圣维南方程和Preissmann窄缝假设,既可以计算排水管网中的有压流动,又可以计算无压自由表面流。模型采用交错网格和半隐式格式求解,增加了离散模型的通用性和稳定性;采用递推关系将变量集中于连接汊点,减少了求解变量的数目,增加了求解计算的效率;对管段内流动计算进行了重新推导,使得其可以计算同一管段内的异向流。通过经典Stocker溃坝,有压无压过渡流管道,以及排水管网模拟等算例对模型进行了验证,然后将模型成功应用到川崎市(kawasaki)地下排水管网的模拟,验证和模拟的结果说明模型能够处理干滩和小水深,具有较好的数值稳定性、鲁棒性和较高的计算效率。
     其次,建立地面径流水动力模型。该模型将二维水动力模型和一维河网模型耦合,二维模型应用有限体积法和有限差分法相结合的离散方法,采用非结构网格,因而对复杂的计算区域有较好的适应性,在城市雨洪模拟时可以根据各个区域的不同性质、地形等进行网格剖分,减小了概化带来的计算误差。一维模型和二维模型通过经验公式的方法建立耦合连接关系,通过对托赛河(Toce)流域城市淹没试验,一、二维连接降雨和洪水淹没等算例对模型进行了检验和验证,并应用模型模拟了概化的小集水域,研究了阻力、坡度、降雨强度以及对流项等对集流时间的影响。
     第三,建立一、二维耦合的城市雨洪模型。该模型采用经验公式将地面径流模型和地下排水管网模型连接形成了完整的城市雨洪模型。连接后的模型既可以模拟地面河道和集水域之间的水流交换,也可以模拟地面径流和地下管流间的相互交换。
The number of flood disasters worldwide has been increasing significantly in recent years. This partly due to a changing climate, urbanization, increasing utilization of flood plains, and a reduction in the natural retention capacity of catchments. In fact, the rainfall and storm water produced flood is one of the most severe natural disasters especially for urban areas. Rainstorm can generate a large amount of surface storm water in a short period due to the high intensity rainfall and an inadequate sewer system. This leads to local flooding in an urban area including of streets, roads, residential houses, and commercial districts.
    In this study, a coupled one-dimensional and two-dimensional numerical model is developed to simulate a local rainfall produced flooding process over an urban area. The model results provide us with the spatial flood risk information, as water depth, inundation time and flow velocity during the flooding. The model can be a new tool in flood risk study. It is very useful in the decision making a flood prevention and evacuation for many agencies.
    An extensive literature review is done for hydrological and hydraulic methods and models in flood study. The work for this research is summarized in the following ways.
    (1) Developed the one-dimensional model. The model aims to simultaneously handle equations of flow through the sewer system and surface flow. The algorithm is obtained through the apatial discretisation of the shallow water equations based on techniques as stagger mesh and semi-implicited methods. The Preissmann fictitious slot is utilized to compute the flows may be either free surface (subcritical or supercritical) or pressurized in pipes. The limited waterdepth method is used for the wetting and drying interface. Particular attention is posed to the numerical treatment of the accuravy, the stability and the reliability of the code that tested on the selected study cases.
    (2) Developed the two-dimensional model. The model simulates storm water process over ground, which initially is dry. The finite volume method is used for the continuity equation and semi-implicit method is used for the momentum equations and the sime-lagrangian methods are used for the convection term, which keep the model stability. Numerical model was tested by the physical modeling of the Toce river valley, Italy, which considered as representative of a real life flood occurrence.
    (3) Developed the coupled one-dimensional and two-dimensional model. The model presented in the paper tries to solve the problem of interactions between two components which
引文
[1] Akanbi A. A. Katapodes N. D. Model for flood propagation on initial dry land. J. Hydraulic Engineering(ASCE), 1988, 114(7): 689-706.
    [2] Ambrosi D. Approximation of shallow water equations by Roe's Riemann solver. International Journal for Numerical Methods in Fluids, 1995(20): 157-168.
    [3] Ashley R. M, Arthur S., Cocghlan B. and Mcfrecor I. Fluid sediment in combined sewers. Water Sci. Technol, 1994,29(1-2): 113-123.
    [4] Batten P., Lambert C., Causon D.M. Positively conservative high-resolution convection schemes for unstructured elements. International Journal for Numerical Methods in Fluids, 1996(39): 1821-1838.
    [5] Bermudez A, Vazquez ME. Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, 1994(8): 1049-1050.
    [6] Bertrand-Krajewski J J, Chebbo G and Sager A. Distribution of pollutant mass vs. volume in stormwater discharges and the first flush phenomenon. Water Res., 1998, 32(8): 2341-2356.
    [7] Bettess, R., Pitfield R. A., Price, R. K., A surcharging model for storm sewer systems. In: Halliwell, P. R. (Ed.), Urban Storm Drainage. Pentech Press, London, 1978, 306-316.
    [8] Brandstetter, A. B., Engel, R. L., Cearlock, D. B., A mathematical model for optimum design and control of metropolitan wastewater management systems. Water Resources Bulletin, 1973, 9(6): 1188-1200.
    [9] Brufau P., A numerical model for the flooding and drying of irregular domains. Int. J. Num. Meth. in Fluids, 2002(39): 247-275.
    [10] Brufau P., Garca-Navarro P. Unsteady flee surface flow simulation over complex topography with a multidimensional upwind technique, J. Comp. Physics, 2003(186): 503-526.
    [11] Brufau P., Garcia-Navarro P. Two-dimensional dam break flow simulation. Int. J. Num. Meth. in Fluids, 2000(33): 35-57.
    [12] Brufau P., Vazquez-Cendon M. E., Garca-Navarro P. A numerical model for the flooding and drying of irregular domains. Int. J. Num. Meth. in Fluids, 2002(39): 247-275.
    [13] Bryan W. K., Duncan M. Efficient calculation of transient flow in simple pipe networks. J. Hydraulic Engineering, ASCE, 1992(118): 1014-1030.
    [14] Caleffi V., Valiani A. Finite volume method for simulating extreme flood events in natural channels. J. Hydraulic Research, 2003(41): 168-177.
    [15] Casulli V. Semi-implicit Finite Difference Methods for the two-dimensional Shallow water Equations. J. Comput. Physics, 1990(86): 56-74.
    [16] Characklis G. W. and Wiesner M. R. Particles, metals and water quality in runoff from large urban watershed. J. Environ. Eng-ASCE, 1997, 123(8): 753-759.
    [17] Chebbo G, Gromaier-Mertz M. C., Ahyerre M. and Garnauds. Production and transport of urban wet weather pollution in combined sewer systems: the Marais experimental urban catchment in Pads. Urban Water 2001, 3(1-2): 3-15.[18] Cheng Xiaotao, Qiu Jingwei, Li Na and Liu Shukun. Development of urban flood simulation techniques in China, http://www.iahr.net/.
    [19] Christopher Zoppou. Review of urban storm water models. Environmental modelling and software, 2001, 16(3): 195-231.
    [20] Colella P., Woodward P. The piecewise Parabolic Method for gas-dynamical simulations. J. Computational Physics, 1984(54): 174-202.
    [21] Colella P., Woodward P. R.. The piecewise Parabolic Method for gas-dynamical simulations. J. comp. phys., 1984(54): 174-184.
    [22] Colon, IL, McMahon, G. F., Brass model: application to Savannah River system reservoirs. J. Water Resources Planning and Management, ASCE, 1987, 113(2): 177-190.
    [23] David R.Maidment,张建云,李纪生.水文学手册,北京:科学出版社,2002.10.
    [24] Dawdy, D. R., O'Donnell, T., Mathematical models of catchment behaviour. J. the Hydraulics Division, Proceedings of the ASCE, 1965(91): 123-137.
    [25] Dehui Su, Development and application of an integrated one- and two-dimensional, numerical, urban rainfall flood simulation model. 2003.
    [26] Deletic A. The first flush load of urban surface runoff. Water Res. 1998, 32(8): 2462-2470.
    [27] Delis A. I. Improved application of the HLLE Riemann solver for the shallow water equations with source terms. Communications in Numerical Methods in Engineering, 2003(19): 59-83.
    [28] Ehab A. M. Simulation of unsteady flow in irrigation canals with dry bed. J. Hydraulic Engineering. 1993, 119(9): 1021-1039.
    [29] F. Alcrudo, P. Garcia, P. Brufau, J. Murillo, D. Garcia, J. Mulet, G. Testa, D. Zuccal?. The model city flooding experiment. EC Research Project: Project Reference No: EVGI-CT2001-00037.
    [30] Geng, Y. F., Wang Z. L., Jin S., FVS scheme for severe transient flow in pipe networks. J. Hydrodynamics. 2005, 17(5): 621-628.
    [31] Glaister P. Conservative Upwind Difference Schemes for Shallow Water Equations. Computers and Mathematics with Applications, 2000(39): 189-199.
    [32] Godunov, S. K., The finite diference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb., 1959(47): 357-393.
    [33] Goutal N., Maurel F. A finite volume solver for 1D shallow-water equations applied to an actual river. International Journal for Numerical Methods in Fluids, 2002, 38: 1-19.
    [34] Greyvenstein G. P. An implicit method for the analysis of transient flows in pipe networks, International Journal for Numerical Methods in Engineering, 2002(53): 1127-1143.
    [35] Gromaier-Mertz M. C., Garnaud S and Saad M. Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Res., 2001, 35(2): 521-533.
    [36] Guinot V. Boundary condition treatment in 2~*2 systems of propagation equations. International Journal for Numerical Methods in Engineering, 1998(42): 647-666.
    [37] Guinot V. Riemann solvers for water hammer simulations by Godunov method. International Journal for Numerical Methods in Engineering, 2000(49): 851-870.
    [38] Holly F. M., Chevereau G., Mazaudou B. Nnmerical simulation of unsteady flow in storm sewer systems using complete and simplified flow equations. Proc., Int. Conf. on numerical modelling of river,??channel and overland flow for water resource and enviroment application, int. Assoc. of Hydr. Res., Bratislava, Czecholovakia, 1981.
    [39] Hossein M. V. S., Alierza K. Transient flow in pipe networks. J. Hydraulic Research, 2002, 40(5): 637-644.
    [40] Hsu M H, Chen S H, Chang YJ. Inundation simulation for urban drainage basin with storm sewer system. J. Hydrology, 2000, 234(2): 21-371.
    [41] Hwang Y. H., Chung N. M. A fast Godunov method for the water hammer problem. International Journal for Numerical Methods in Engineering, 2002(40): 799-819.
    [42] Ishigaki, T., Toda, K. and Inoue, K. Hydraulic model tests of inundation in urban area with underground space, 30th IAHR Congress, Greece, 2003, 803): 487-493.
    [43] Iwasa, Y. and Inoue, K. (1982): Mathematical simulation of channel and overland flood flows in view of flood disaster engineering, J. Natural Disaster Science, 1982, 4(1): 1-30.
    [44] Iwase Y., and Inoue K., Numerical method for inundating flood. Annals of disasters prevention research institute of Kyoto University, 1980(23): B-2.
    [45] Javier Tempranol, scar Arangol, Juan Cagiao, Joaquin Suarez and I aki Tejerol, Stormwater quality calibration by SWMM: A case study in Northern Spain, Water SA., 2006, 32(1): 55-64.
    [46] Johanna Merlein. Flow in submerged sewers with manholes. Urban water, 2000(2): 251-255.
    [47] Jonathan S. Pricel, Brian A. Branfireun, J. Michael Waddington and Kevin J. Devito. Advances in Canadian wetland hydrology, 1999-2003, Hydrol Process, 2005(19): 201-214.
    [48] Kawaike, K., Inoue, K. and Toda, K. Inundation flow modeling in urban area based on the unstructured meshes. Hydraulic Engineering Software, 2000(Ⅷ): 457-466.
    [49] Lax, P. D. and Wendrof, B., Diference methods with higher order accuracy for solving hyperbolic equations. Communications on Pure and Applied Mathematics, 1964(17): 381-398.
    [50] Lax, P. D., Weak solutions of nonlinear hyperbolic equationsand their numerical computations. Communications on Pure and Applied Mathematics, 1954(17): 159-193.
    [51] Leiser, C. P., Computer Management of a Combined Sewer System. US Environmental Protection Agency, Cincinnati, OH. 1974.
    [52] Li C. W., Yu T. S. Conservative characteristics-based schemes for mass transport. J. Hydraulic Engineering, ASCE, 1994, 120(9): 1089-1099.
    [53] Li C. W., Yu T. S.. Conservative characteristics-based schemes for mass transport. J. hydr. Eng., 1994(120): 1089-1095.
    [54] Mao Ze-yu. Accurate pipe top entry junction model for steady and unsteady flows. J. Hydrodynamics, Ser. B, 1996, 8(3): 88-96.
    [55] McMahon, G. F., Fitzgerald, R., McCarthy, B.,. BRASS model: practical aspects. J. Water Resources Planning and Management, ASCE, 1984, 110(1): 75-89.
    [56] Ming Hsihsu, Chen Shiuanbung and Chang Tsangjung. Dynamic inundation simulation of storm water interaction between sewer system and overland flows. J. the chinese institute of engineering, 2002, 25(2): 171-177.
    [57] Ming Z, Mohamed S. G. Godunov type solutions for water hammer flows. Journal of J. Hydraulic Engineering, ASCE, 2004, 130(4): 341-348.[58] Mohit Arora, Philip L. Roe. A well behaved TVD limiter for high resolution calculations of unsteady flow. J. Computational Physics, 1997, 132: 3-11.
    [59] Nessyahu, H. and Tadmor, E., Non-oscillatory central diferencing for hyperbolic conservation laws. J. Computational Physics, 1988, 87: 408-463.
    [60] news.sina.com./cnw2005-07-2817276553560s./shtml.jpg.
    [61] news.xinhuanet./comnewscenter2004-0710content_1589697./htm2.jpg.
    [62] Nguyen Tat Thang, Kazuya Inoue, Keiichi Toda, and Kenji KAWAIKE, A model for flood inundation analysis in urban area: verification and application, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 2004, 4703): 1-13.
    [63] Ole Marka, Sutat Weesakula, Chusit Apirumanekula, Surajate Boonya Aroonneta, Slobodan Djordjevic, Potential and limitations of 1D modelling of urban flooding, J. Hydrology, 2004, 299(3): 284-299.
    [64] Osher S., Slomon F. Upwind difference schemes for hyperbolic systems of conservation-laws. Mathematics of Computation, 1982: 339-374.
    [65] Paolo S. Calabro, Cosmoss: conceptual simplified model for sewer system simulation, A new model for urban runoff quality. Urban water. 2001(3): 33-42.
    [66] Quan Ling-qing. Equal time interval scheme for analysis of water hammer by characteristics. J. Hydrodynamics, Ser. A, 1997, 12(2): 188-195.
    [67] Roe, P. L., Approximate Riemann solvers, parametersvectors, and diference schemes. J. Computational Physics, 1981 (43): 357-372.
    [68] Rovey, E. W., Woolhiser, D. A., Urban storm runoff model. J. Hydraulics Division, ASCE, 1977(103): 1339-1351.
    [69] S. Djordjevic, D. Prodanovic and C. Maksimovic. An approach to simulation of dual drainage. Wat. Sci. Tech. 1999, 39(9): 95-103.
    [70] Schuurmans W. A model to study the hydraulic performance of controlled irrigation canals. MSc thesis, Delft Unoversity of Technology, Delft, The Netherlands.
    [71] She yuntong, Mao zeyu. Flow simulation of urban sewer networks. Tsinghua Science and Technology, 2003, 8(6): 719-725.
    [72] Shu, C. W. and Harten, A., Efcient implementation of essentially non-oscillatory shock capturing schemes. J of Computational Physics, 1988(77): 439-471.
    [73] Slobodan D., Dusan P., Godfrey A.W. Simulation of transcritical flow in pipe/channel networks. J. Hydraulic Engineering, ASCE, 2004, 120(12): 1167-1178.
    [74] Streeter V. L., Chintu Lai. Water hammer analysis including fluid friction. J. Hydraulic Division, ASCE, 1962, 5: 79-112.
    [75] Streeter VL. Transient cavitating pipe flows. J Hydraul Eng, ASCE 1983, 109: 1408-23.
    [76] Sweby, P. K., High resolution schemes using ux limiters forhyperbolic conservation laws. SIAM Journal on Numerical Analysis, 1984, 21: 995-1011.
    [77] Teemu Kokkonen, Harri Koivusalo, Tuomo Karvonen. A semi-distributed approach to rainfallrunoff modelling-a case study in a snow affected catchment. Environmental Modelling and Software, 2001,16: 481-493.[78] Temprano J. and Tejero I. Detention storage volume for combined sewer overflow into a river. Environ. Technol., 2002, 23(6): 663-675.
    [79] Theo G. Schmitt, Martin Thomas, Norman Ettrich. Analysis and modeling of flooding in urban drainage system. J. Hydrology. 2004(299): 300-311.
    [80] Toro, E. F., A weighted average flux method for hyperbolicconservation laws. Proceedings of the Royal Society, SeriesA, 1989, 423: 401-418.
    [81] Tsihrintzis V. and Hamid R.. Runoff quality prediction from small urban catchments using SWMM. Hydrol. Process. 1998, 12(2): 311-329.
    [82] Wang Z. L., Geng, Y. F., Jin S.. Unstructured finite volume algorithm for nonlinear two dimensional shallow water equation, 2005, 17(3): 306-312.
    [83] Zhang Li-xiang, Zhang Hong-ming, Wang Zheng-jun, Yang Ke. Analysis of state changing water hammer in a long pipe. J. Hydrodynamics, Ser.B, 2004, 16(1): 52-60.
    [84] Zhong J. General hydraodynamic model for sewer network system. J. hydr. Eng. 1998(3): 307-315.
    [85] Zhou Ze-xuan. Theoretical, numerical and experimental study of water hammer in pipe system with column surge chamber. J. Hydrodynamics, Ser. B, 2003, 15(5): 20-28.
    [86] Zoppou C., Roberts S., Numerical solution of the two-dimensional unsteady dam break. Applied Mathematical Modeling, 2000(24): 457-475.
    [87] 安智敏,岑国平,吴彰春.雨水口泄水量的试验研究.中国给水排水,1995,11(1):21-26.
    [88] 白玉川,万艳春,黄本胜,顾元谈.河网非恒定流数值模拟的研究进展.水利学报,2000,12:43-47.
    [89] 暴雨与经济发展,纪念”3.23”世界气象日,暴雨科研情报,武汉暴雨研究所《暴雨灾害》编辑部,2005,2(11):8-10.
    [90] 曹志芳,李义天.蓄滞洪区平面二维干河床洪水演进数值模拟.应用基础与工程科学学报,2001,9(1):74-79.
    [91] 岑国平,沈晋,范荣生,城市暴雨径流计算模型的建立和检验.西安理工大学学报,1996,12(3):184-191.
    [92] 陈壁宏.水利枢纽河段模拟.大连:大连理工大学出版社,1999.
    [93] 陈璧宏.水电站和泵站水力过渡流.大连:大连理工大学出版社,2001.
    [94] 陈继东.城市暴雨强度公式的统计方法.河海水利,1999,4:32-36.
    [95] 程晓陶,仇劲卫,陈喜军.深圳市洪涝灾害的数值模拟与分析.自然灾害学报,1995,7(4):202-209.
    [96] 仇劲卫.陈浩,刘树坤.深圳市的城市化及城市洪涝灾害,自然灾害学报,1998,02:
    [97] 仇劲卫,李娜,程晓陶等.天津市城区暴雨沥涝仿真模拟系统.水利学报,2000(11):34-.421.
    [98] 丛翔宇,倪广恒,惠士博,田富强,赵月芬.城市立交桥暴雨积水数值模拟.城市道桥与防洪,2006,3(2):52-56.
    [99] 崔健.城市不能承受之重,www.cnki.net,140-141.
    [100] 邓培德.城市暴雨公式统计中的若干问题.中国给水排水,1992,23(12):9-12.[101] 丁国川,徐向阳.城市暴雨径流模拟及动态显示系统.海河水利,2003,1:40-42.
    [102] 耿艳芬,河网水沙的数值模拟,硕士学位论文,大连:大连理工大学,2003.3.
    [103] 耿艳芬,王志力,金生.基于径向基函数神经网络的珠江三角洲河网洪水预报.大连理工大学学报,2006,46(2):267-272.
    [104] 耿艳芬,王志力,金生.基于有限体积的水击方程Godunov离散.计算力学学报,(in press).
    [105] 耿艳芬,王志力,金生.一维浅水方程的高精度GODUNOV格式.水动力学研究与进展,2005,20(4):507-512.
    [106] 郭绍光,梁扬武.城区小流域暴雨洪水计算方法的探讨.广西水利水电,2003,2:41-44.
    [107] 郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型.武汉水利电力大学学报,2000,33(6):1-5.
    [108] 贺宝根,陈春根,周乃日成.城市化地区径流系数及其应用.上海环境科学,2003,7(22):472-476.
    [109] 候咏梅.水击理论与计算研究.硕士学位论文,郑州:郑州工业大学,2003.
    [110] 黄平,赵吉国.森林坡地二维分布型水文数学模型的研究.水文,2000,20(4):1-4.
    [111] 解以扬,韩素芹,由立宏,王彦,阎春林.天津市暴雨内涝灾害风险分析.气象科学,2004,24(3):342-349.
    [112] 解以扬,李大鸣,李培彦,沈树勤,殷剑敏,韩素芹,曾明剑,辜晓青.城市暴雨内涝数学模型的研究与应用.水科学进展,2005,5(16):384-390.
    [113] 解以扬,李大鸣,沈树勤,李培彦,韩素芹,曾明剑.”030704"南京市特大暴雨内涝灾害的仿真模拟.长江科学院院报,2004,21(6):73-76.
    [114] 李鉴初,杨景芳.水力学教程.北京:高等教育出版社,1995.8.
    [115] 李兰,钟名军.基于GIS的LL-Ⅱ分布式降雨径流模型的结构.水电能源科学,2003,21(4):35-40.
    [116] 李娜,程晓陶,苑希民,胡昌伟.上海市洪水风险图制作及洪水风险信息查询系统的开发.水利发展研究,2002,12.
    [117] 李娜,仇劲卫,程晓陶,陆吉康.天津市城区暴雨沥涝仿真模拟系统的研究.自然灾害学报,2002,11(2):112-119.
    [118] 李艳红,周华君,时钟.山区河流平面二维流场的数值模拟.水科学进展,2003,14(3):424-429.
    [119] 李致家.通用一维河网不恒定流软件的研究.水利学报,1998,8:10-13.
    [120] 林绍忠.用预处理共轭梯度法求解有限元方程组及程序设计.河海大学学报,1998,26(3):112-115.
    [121] 刘成,何耘,韦鹤平.城市排水管道泥沙问题浅析.1999,25(12):7-13.
    [122] 刘俊,徐向阳.城市雨洪模型在天津市区排水分析计算中的应用,海河水利,2001,1(1):10-12[123] 刘树坤,沈振明.利用洪水风险图指导洪泛区及城市建设.灾害学,1991,6(4):
    [124] 刘树坤.国外防洪减灾发展趋势分析.水利水电科技进展,2000,20(1):2-9.
    [125] 刘树坤等.防洪减灾手册.辽宁人民出版社,1993.
    [126] 刘兴波,周玉文,甘一萍.污水管网模拟模型节点平均流量的估算方法.给水排水,2004,30(10):102-106.
    [127] 龙瀛,贾海峰,程声通.Geodatabase与城市排水系统规划集成的研究.水科学进展,2004,15(4):436-440.
    [128] 梅亚东,冯尚友.蓄滞洪区洪水演进模拟.水利学报,1996,2:63-67.
    [129] 潘存鸿,林炳尧,毛献众.一维浅水流动方程的Godunov格式求解.水科学进展,2003,4:430-436.
    [130] 任立良,刘新仁.基于数字流域的水文过程模拟研究.自然灾害学报,2000,9(4):45-52.
    [131] 芮孝芳.流域水文模型研究中的若干问题.水科学进展,1997,8(1):.
    [132] 水鸿寿.一维流体力学差分方法.北京:国防工业出版社,1998.
    [133] 谭维炎.计算浅水动力学—有限体积法的应用.北京:清华大学出版社,1998.
    [134] 陶文铨.计算传热学的近代进展.北京:科学出版社,2001,64-97.
    [135] 铁灵芝,廖文根,禹雪中.国外减轻城市洪涝灾害新设施发展综述.自然灾害学报,1995,4(增刊):228-234.
    [136] 万五一.长距离输水系统的非恒定流特性研究.博士学位论文,天津:天津大学,2004.6.
    [137] 汪广丰.南京市城市排涝设施现状与对策.中国市政工程,2001,9(3):44-47.
    [138] 王嘉松,倪汉根,金生.用TVD显隐格式模拟一维溃坝洪水波的演进与反射,水利学报,1998,5.
    [139] 王建辉,黄放.一种基于C++语言的PCCG算法.上海交通大学,1999,33(12):1605-1607.
    [140] 王如云,邱建贤,戴嘉尊,赵宁.交错网格下的浅水方程高分辨Gauss型格式.水科学进展,2002,13(4):403-408.
    [141] 王志力,耿艳芬,金生.安康枢纽下游非恒定流数学模型研究.长江科学院院报,2005,22(5):4-8.
    [142] 王志力,耿艳芬,金生.带源项的浅水方程的通量平衡离散.水科学进展,2005,16(3).
    [143] 王志力,耿艳芬,金生.二维洪水演进数值模拟.计算力学学报(in press).
    [144] 王志力,耿艳芬,金生.二维浅水流动数值模拟.第二届博士生论坛,2004.10.
    [145] 王志力,耿艳芬,金生.具有复杂计算域、地形的二维浅水流动数值模拟.水利学报,2005,36(4).
    [146] 王志力.基于Godunov和Semi_Lagrangian法的二三维浅水方程的非结构化网格离散研究.博士学位论文,大连:大连理工大学,2005.
    [147] 吴寿昌.城市暴雨径流污染.甘肃环境研究与监测,1997,10(3):43-45.
    [148] 吴作平,杨国录,甘明辉.复杂河网水沙数学模型研究.水科学进展,2004,15(3):336-340.
    [149] 吴作平,杨国录,甘明辉.河网水流数值模拟方法研究.水科学进展,2003,14(3):350-353.[150] 夏军,王纲胜,吕爱锋,等.分布式时变增益流域水循环模拟.地理学报,2003,58(5):789-196.
    [151] 熊立华,郭生练.分布式流域水文模型.北京:中国水利水电出版社,2004.6.
    [152] 徐向阳,刘俊,郝庆庆,丁国川.城市暴雨积水过程的模拟.水科学进展,2003,14(2):193-196.
    [153] 徐向阳.平原城市雨洪过程模拟.水利学报,1998,8:34-37.
    [154] 杨国录,吴卫民.一维河流数字模拟算法的概述.泥沙研究,1995,12(4):34-41.
    [155] 杨国录.四点时空偏心Pressmann格式的应用问题.泥沙研究,1991,4.
    [156] 杨开林.泵站及全系统过渡过程计算研究报告.北京:中国水利水电科学研究院,2002.
    [157] 杨开林.明渠结合有压管调水系统的水力瞬变计算.水利水电技术,2002,33(4):6-11.
    [158] 殷峻暹.城市防洪与供水模糊集与风险分析理论研究与应用.博士学位论文,大连理工大学,2002.12.
    [159] 苑希民.中国城市水利面临着严峻形势,中国水利,2001,3:32-35.
    [160] 曾晓岚,张智,丁文川,邓晓莉.城市雨水口地面暴雨径流模型研究.重庆建筑大学学报,2004,26(6).
    [161] 张二俊,张东生,李挺.河网非恒定流三级联合算法.华东水利学院学报,1982,10(1):1-13.
    [162] 张敏,沈荣芳.城市暴雨积水预报系统的理论模型及模拟计算.同济大学学报,1994,22(3):334-340.
    [163] 张书亮,曾巧玲,姜永发,方立刚.GIS支持下的城市暴雨积水计算的可视化.水利学报,2004.12:1-10.
    [164] 张新华,隆文非,谢和平,朱家骅,王江平.二维浅水波模拟在洪水淹没过程中的模拟研究.四川大学学报,2006,38(1):20-26.
    [165] 张修忠,王光谦,金生.水沙运动一、二维分区耦合虚拟点算法.水科学进展,2004,15(2):151-155.
    [166] 张修忠,王光谦.河道及河口一维及二维嵌套泥沙数学模型.水利学报,2001,10:82-87.
    [167] 张旭.万群志,程晓陶,陆吉康.关于全国推广洪水风险图的认识与设想.自然灾害学报,1997,6(4):61-67.
    [168] 章四龙.洪水预报系统关键技术研究.博士学位论文,南京:河海大学,2005.3.
    [169] 赵人俊.论流域汇流的数学模型,水利学报,1982,3.
    [170] 赵人俊.时变线性系统流域汇流模型.水文,1991,(4):23-89.
    [171] 郑远长.中国洪水灾害风险研究进展及展望.Information Technologies for Flood Management,beijing,2001,9.
    [172] 中国人民解放军总装备部军事训练教材编辑工作委员会.计算流体力学及应用.国防工业出版社,2003.1.
    [173] 周孝德.陈慧君,沈晋.滞洪区二维洪水演进及洪灾风险分析.两安理工大学学报,1996,12(3):244-250.[174] 周玉文.戴书健.城市排水系统非恒定流模拟模型研究.北京工业大学学报,2001,27(1):84-87.
    [175] 周玉文.孟昭鲁,宋军.城市雨水管网非线性运动波法模拟技术.给水排水,1995,2 1(4):9-11.
    [176] 周玉文.赵洪宾.城市雨水径流模型研究.中国给水排水,1997,13(4):4-6.
    [177] 周玉文.城市排水管网非恒定流模拟技术的实用意义与应用前景.www.hwcc.com.cn,2004,9.30.
    [178] 周玉文.瞬时单位线法求雨水管网系统入流流量过程线的数值计算方法.哈尔滨建筑大学学报,1997,30(5):41-46.
    [179] 朱春龙.城市水环境系统控制决策支持技术研究.河海大学博士学位论文,南京:河海大学,2005,12.
    [180] 李元亚.高坝瞬时泄洪对坝下游船舶航行以及码头影响的数值模拟.水利水运工程学报,2006,108(2):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700