雨水池设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国,雨水池设计理论在城市因缺水和洪水而开展雨水管理之前,几乎处于空白,城市排水中雨水调节池的设计,也一直借助前苏联的公式。近年来,在开展城市雨洪利用工程后,由于在工程中频繁涉及到雨水池的设计,才促进了对雨水池容积设计等相关内容的探讨和研究。但雨水池的相关理论研究还是太少,尚需进一步探讨,进一步丰富和完善。
     针对我国雨水池设计现状,本文提出了研究雨水池设计理论的课题,旨在解决雨水池容积计算问题,并以此为线索,开展雨水池设计的基本理论研究。
     在前人研究的基础上,运用水文学、水力学、数理统计学等理论和基本原理,对雨水池的设计进行了分析、理论探讨和算例研究,研究内容包括设计暴雨(降雨资料统计分析方法、设计暴雨时程分配方法)、降雨量公式的推求方法、降雨扣损方法、流量过程线的计算方法、不同目标的雨水池容积的计算方法、雨水池容积计算机模拟方法等,取得如下的主要研究成果:
     (1)利用较容易获得的日降雨量数据作为依据,探讨了雨水池设计的降雨量资料的选样方法。经过对比分析,建议在资料年数不长或需要计算小于1年重现期的情况下,采用年多个值法,否则采用年最大值法。
     (2)以北京的日降雨量资料为基础数据,探讨了日降雨量的理论概率分布。结果显示降雨概率分布模型可采用对数正态分布、皮尔逊III型分布、通用极值分布等。该结果为选择日降雨量的概率分布模型提供了参考。
     (3)首次提出了降雨量公式的推求方法,并以北京的日降雨量资料为基础数据,根据提出的降雨量公式的推求方法,得出了北京市降雨量公式的形式D= a_1+a_2 (ln(P))~(a3),更高精度的公式表示形式为D = a_1 + a_2 ln( P ) + a_3 (ln( P))~2+…。参数确定后的降雨量公式可用于计算北京不同频率的日降雨量。笔者提出的降雨量公式的推求方法可以作为其他城市推求降雨量公式的参考。
     (4)在全面分析流量过程线计算方法的基础上,建议采用瞬时单位线作为流量过程线的计算方法。阐述了瞬时单位线中不完全?函数的数值算法,并通过Delphi语言编制瞬时单位线计算程序,给出了程序应用大小流域的计算实例。结果表明,本文的瞬时单位线数值算法与查表法和34点高斯积分法结果符合得很好,可以用于城市大流域或小流域的雨洪汇流的计算。
     (5)基于流量过程线概念和模型,探讨了洪峰流量调蓄池容积计算的流量过程线模型法。并利用SWMM模型进行了算例研究。首次利用降雨量公式、SCS雨型、瞬时单位线和SWMM模型,对防洪调蓄池的容积进行计算。与现行排水设计手册的方法相比,流量过程线模型法不仅得出了调蓄池的容积,而且还演算出调蓄池的入流过程以及整个管网系统的水力状况。并能进行超重现期校核、风险分析和防洪计算。
     流量过程线模型法为国内洪峰流量调蓄池的容积计算提供了新方法,弥补了现行排水设计手册中计算方法的一些不足。为调蓄池超标准设计校核和风险分析奠定了基础。
     (6)研究了面源污染治理雨水池容积的计算方法(分析模拟法)。根据该方法,借助SWMM模型进行算例研究,并与国内外计算方法进行综合比较。结果显示,分析模拟法能应对不同地区降雨径流污染差别和对环境保护目标的要求,能进行设计校核和超重现期风险分析,能得到雨水池入流流量过程线,这为雨水池运行控制奠定了基础。
     分析模拟法,为国内面源污染治理雨水池容积计算提供了新方法。改变了国内《石油化工企业给水排水设计规范》凭借经验和主观因素选择降雨量值的现状,增强了雨水池设计的科学性和合理性。
     (7)针对雨洪利用蓄水池容积计算,简单公式法中设计降雨厚度(降雨量)取值方法未明确的问题,研究了具体确定方法。根据设计重现期和降雨量公式来确定设计降雨厚度(降雨量),是对现行规范《建筑与小区雨水利用工程技术规范》的很好补充。
     基于流量过程线的概念,探讨了利用模型进行蓄水池容积计算的方法。首次通过降雨量公式、SCS雨型和SWMM模型对蓄水池容积进行计算,并通过模型模拟进行蓄水池容积设计校核,增强了蓄水池容积计算的准确性。引入设计标准(频率或重现期)的概念,为雨洪利用蓄水池进行风险分析奠定了基础。
     (8)初步建立了雨水池设计理论构架,内容包括设计暴雨(资料统计分析、降雨时程分配)、降雨量公式推求、流量过程线计算、雨水池容积计算、计算机模拟等。
     通过本研究为雨水池的容积计算提供了有效方法和技术理论参考,为科学设计雨水池奠定了基础,同时也推动了雨水池设计理论的研究和发展,为国内城市更加深入地开展雨洪管理工作奠定基础。本研究对我国新排水系统规划、设计和管理、城市防灾减灾、水污染控制和可持续发展都具有重要的理论意义和实际使用价值。
Before stormwater management in China due to urban flooding and water shortage, the theory of stormwater detention is almost blank, and the storage volume calculation of stormwater detention tanks in urban drainage is with the use of the formula of the former Soviet Union. In recent years, urban rainwater utilization projects launched in many places, the design of rainwater tanks frequent involved in these projects, so researches on calculation methods of storage volume and related design contents carry out. However, research on the relevant theory of stormwater detention is very few. It will need further study, further enrichment and perfection. According to the current status of stormwater tanks design, studying the theory of design is the goal of this thesis. This study aims to contribute approaches to compute storage volume problems and on this basis to theoretical research on design of stormwater tanks.
     On the basis of previous studies, using the theories and basic principles of hydrology, hydraulics, mathematical statistics, and so on, the relevant theory of stormwater detention is considered, including design storm (rainfall data processing and analysis, temporal distribution), rainfall depth formula, rainfall losses, flow hydrograph, calculation methods of storage volume for different objectives, computer simulations, and so on. It is carried out by comprehensive analysis, theoretical study and example application. The main results and conclusions are as follows:
     (1) Rainfall data statistical method is discussed by using more easily available daily rainfall observed data. On the basis of the comparisons and estimation results, it can be concluded that, if the length of rainfall records is short or the small return period is needed, the annual multi-sampling series method is proposed, otherwise, the annual maximum series (AMS) method is proposed.
     (2) Based on Beijing rainfall data, research on the appropriate distributions for daily rainfall depth is carried out. The result shows that log normal, Pearson III, GEV etc may be used as the appropriate distributions for Beijing. This result gives a reference for selecting the distributions for daily rainfall depth.
     (3) The method and procedure of rainfall depth formula deduction is proposed. Based on Beijing rainfall data, after the proposed procedure of rainfall depth formula deduction, the rainfall depth formula is obtained as D= a_1 + a_2 (ln( P))~(a3). The method of deriving rainfall depth formula may be employed to other city or region. Rainfall depth formula with determined parameters may use to generate daily rainfall depths with different recurrence intervals.
     (4) Instantaneous unit hydrograph method is recommended to flow routing after the comprehensive analysis of flow routing methods. The numerical algorithm of incomplete gamma function in instantaneous unit hydrograph is presented, and the instantaneous unit hydrograph procedure was programmed using Delphi language, then two examples (small catchment and large catchment) were given. The results show the proposed algorithms have good agreement with look-up table method and 34 points Gaussian integral method. The instantaneous unit hydrograph method with proposed algorithms may be used for calculating runoff from small or large catchment.
     (5) The Flow Hydrograph & Model method for detention storage volume calculation, based on the flow hydrograph concept and model, is discussed. The case study is conducted using EPA SWMM. Compared with current design methods, the proposed method not only gets storage volume, but obtains the inflow hydrograph of the tank and the hydraulic status of the whole system. It also can conduct risk analysis and flood computation.
     The Flow Hydrograph & Model method gives a new method for China’s detention storage volume calculation and fixes the weaknesses of the design manual’s formula. It lays the foundation for high design criteria check and risk analysis.
     (6) The Frequency Analysis & Model method is proposed for computing treatment volume for pollution control. Through EPA SWMM, a case study is carried out. Compared with the current methods in China, the proposed method can deal with different environmental protection objectives and consider different runoff pollution water quality. It also can do design check and high return periods risk analysis and obtain the inflow hydrograph of the tank.
     This method gives a new method for China, and fixes the problem of selecting rainfall depth by subjectivism and arbitrariness, and gives a basis for treatment volume calculation.
     (7) A method is proposed for rainfall depth determination. By introducing the concept of design frequency, a rainfall depth formula is deduced. The rainfall depth is obtained from rainfall depth formula with a given return period (frequency). This increases science and rationality of storage volume calculation of storage tank for rainwater reuse.
     Based on flow hydrograph concept, the method using model for storage volume calculation is discussed. The volume of the storage tank is computed through rainfall depth formula, SCS rainfall distributions and SWMM. Then the design check is conducted by model simulation. This improved the accuracy of the storage volume calculation. The introduction of the concept of design criteria lays the foundation of risk analysis for the storage tank.
     (8) The stormwater tanks design theory has been preliminarily established, which including design storm (rainfall data processing and analysis, temporal distribution), rainfall depth formula, rainfall losses, flow hydrograph, calculation methods of storage volume for different objectives, computer simulations, and so on.
     This study provides effective methods and theoretical references for stormwater tanks sizing, and lays the foundation for the scientific design of stormwater tanks. The achievements in the study will promote the research and development of stormwater tanks design theory, and lay the foundation for the further work of stormwater management in China. The research work is of great theoretical and practical value to our planning, design and management of new drainage system, urban disaster prevention and reduction, water pollution control and sustainable development.
引文
1 钱正英, 张光斗. 中国可持续发展水资源战略研究综合报告及各专题报告. 中国水利水电出版社. 2001:28~31, 1~3
    2 敬正书. 关于水资源可持续利用战略的思考. 中国水利. 2002, 23(1):61~63
    3 孙宏波, 兰驷东. 城市雨洪现状分析与收集利用. 北京水务. 2007, (5):13~16
    4 韩宏大. 安全饮用水保障集成技术研究. 北京工业大学博士论文. 2004:1
    5 王连生. 环境化学进展. 化学工业出版社. 1995:18~20
    6 民政部国家减灾中心灾害信息部. 全国灾害实录:灾害信息. 2004, (8):63~64
    7 民政部国家减灾中心灾害信息部.全国灾害实录:灾害信息. 2004, (10):61~64
    8 刘秋锋, 赵建, 康慕谊. 济南市城市扩展与城市暴雨洪灾. 灾害学. 2005, 20(4):39~42
    9 刘忠阳, 杜子璇, 刘伟昌, 杨海鹰, 田宏伟. 城市洪灾及城市防洪规划探讨. 气象与环境科学.2007, 30(增刊):5~8
    10 张志华. 城市化对水文特性的影响. 城市道桥与防洪. 2000, 2:28~30
    11 周玉文. 城市雨洪利用问题的探讨. 给水排水. 2007, 33(7):1~3
    12 张杰, 陈立学, 熊必永, 李捷. 我国水环境与水循环的健康之路. 给水排水.2005, 31(5):19~25
    13 熊必永, 张杰. 大连中心城市水资源可持续利用策略. 给水排水. 2005, 33(增刊):196~199
    14 刘鹏, 赵昕, 郭汝艳. 国家体育场雨洪利用初步设计简介. 给水排水. 2004, 30(7):79~82
    15 赵昕, 刘鹏. 国家体育场雨水收集池设计.给水排水. 2006, 32(9):73~76
    16 刘鹏 , 郭汝艳 . 国家体育场雨水收集量确定方法 . 给水排水 .2006, 32(10):82~89
    17 刘鹏, 郭汝艳, 赵昕, 朱跃云. 国家体育场雨洪利用系统自控与维护要求.给水排水. 2006, 32(11):79~83
    18 周玉文, 邴守启, 赵树旗, 汪明明, 丁年, 刘江涛. 深圳市雨洪利用规划探讨. 给水排水. 2007
    19 R. Hopper, H. Arisz. Vital need for municipal stormwater management. Environmental Science & Engineering. www.esemag.com. January 2006
    20 B. Urbonas, P. Stahre. Stormwater: best management practices and detention for water quality, drainage,and CSO management. Prentice Hall.1993:xix
    21 V. Novotny, G. Chester. Hand of Nonpoint Pollution: Source and Management.Van Nostrand Reinhold compand,1981 林芳荣, 等译, 面源污染管理与控制手册. 广州:科学普及出版社广州分社, 1987
    22 陈玉成, 李章平, 李章成, 许红艳. 城市地表径流污染及其全过程削减. 水土保持学报. 2004, 18(3):133~136
    23 王晓峰, 王晓燕. 国外降雨径流污染过程及控制管理研究进展. 首都师范大学学报(自然科学版). 2002, 23(1):91~96
    24 J.H. Lee, K.W. Bang. Characterization of urban stormwater runoff. Water Research. 2000, 34(6):1773~1780
    25 V. Novotny, H. Olem. Water Quality: Prevention,identification,and management of diffuse pollution. New York:Van Nostrand Reinhold compand, 1993
    26 USEPA. National water quality inventory. Report to Congress Executive Summary. Washington DC:USEPA. 1995, 497
    27 韩冰, 王效科, 欧阳志云. 城市面源污染特征的分析. 水资源保护, 2005, 21(2):1~4
    28 夏青. 城市径流污染系统分析. 环境科学学报. 1982, 2(4):271~278
    29 车武, 刘燕等. 北京城区面源污染特征及其控制对策. 北京建筑工程学院学报. 2002, 18(4):5~9
    30 汪慧贞, 李宪法. 北京城区雨水径流的污染及控制. 城市环境与城市生态. 2002, 15(2):16~18
    31 张思聪, 姚文峰, 吕贤弼. 北京市公路路面径流水质分析. 2002 北京雨水与再生水利用国际研讨会论文集. 北京, 2002:138~142
    32 张思聪, 惠士博, 谢森传, 等. 北京市雨水利用. 北京水利. 2003, (4):20~22
    33 王祖琴, 吴今明,等. 上海市雨水污染控制初探. 上海环境科学. 2002, 21(5):305~307
    34 赵剑强, 等. 城市路面径流污染的调查. 中国给水排水. 2002, 17(1):33~35
    35 王健华. 太湖流域面源污染控制对策研究. 环境保护科学. 2003, 29(2):16~17
    36 张毅敏, 张永春, 左玉辉. 前置库技术在太湖流域面源污染控制中的应用探讨. 环境污染与防治. 2003. 25(6):342~344
    37 杨林章, 王德建, 夏立忠. 太湖地区农业面源污染特征及控制途径. 中国水利.2004, (20):29~30
    38 陈吉宁, 李广贺, 王洪涛. 滇池流域面源污染控制技术研究. 中国水利. 2004, (9):47~50
    39 桂萌, 祝万鹏. 滇池流域农田大棚区面源污染控制研究. 给水排水. 2003, 29(12):103~103
    40 汪明明. 北京城区东南部降雨与径流水质分析与评价. 北京工业大学硕士学位论文, 2004.7
    41 USEPA. Preliminary Data Summary on Urban Stormwater Best Management practices. EPA-821-R-99-012. Office of Water, Washington, D.C. 1999
    42 USEPA. 1993. Handbook – Urban Runoff Pollution Prevention and Control Planning. EPA-625-R-93-004. Washington, D.C.
    43 T.C. Brown, D. Brown and D. Binkely. Law and programs for controlling nonpoint source pollution in forest areas. Water Resource Bulletin. 1993, 29:1-3
    44 汪达. 美国非点源水污染问题及其对策综述. 水系污染与保护. 1994
    45 郭青海, 马克明, 赵景柱, 等.城市非点源污染控制的景观生态学途径.应用生态学报. 2005, 16(5):977~981
    46 A. Taylor, T. Wong. Nonstructural Stormwater Quality Best Management Practices – An Overview of their Use, Cost, and Evaluation. Technical Report 2/11. Cooperative Research Center for Catchment Hydrology, Victoria, NZ. 2002
    47 MWLAP. Best Management Practices to Protect Water Quality, Ministry of Water, Land and Air Protection, Government of British Columbia. http://wlapwww.gov.bc.ca/wat/wq/nps/BMP_Compendium/BMP_Introduction/bmphome.htm. 1992
    48 Maryland Department of the Environment (MDE). Maryland Stormwater Design Manual Volumes I & II. Center for Watershed Protection and Maryland Department of the Environment, Baltimore, MD. http://www.mde.state.md.us. 2000
    49 M. Clar, B.J. Barfield, and S. Yu. Considerations in the design of treatment best management practices (BMPs) to improve water quality. EPA/600/R-03/103. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH. 2003
    50 尹澄清, 毛战波. 用生态工程控制农村非点源水污染. 应用生态学报. 2002, 13(2):229~232
    51 J. Marsalek. Urban drainage systems:design and operation. Wat. Sci. Technology. 1993, 27(12):31~70
    52 Pamela Deahl and Michael G. Faram. Treatment, Storage and Control of Stormwater in Urban Developments. Proceedings of the Ninth International Conference on Urban Drainage, Sept. 8~13, 2002, Portland, Oregon
    53 R.P.M. Smisson. The Single Pipe System for Stormwater management’ Progress at Technology. 1980.Vol. 13, Brighton, pp. 203~214.
    54 B. Urbonas, P. Stahre. Stormwater Best Management Practices and Detention forWater Quality, Drainage and CSO Management. Prentice Hall, New Jersey. 1993
    55 Andoh, R. Y. G. and Declerck, C. Source Control and Distributed Storage ~ A Cost Effective Approach to Urban Drainage for the New Millennium? 8th International Conference on Urban Storm Drainage, Sydney, Australia, 30 August 3 September, 1999. pp. 1997~2005.
    56 Funayama, Y., Shinkawa, M., Takagi, K., Ishizuka, O. Stormwater Control Using Storage and Networking Techniques. Proceedings of the Ninth International Conference on Urban Drainage, Sept. 8-13, 2002, Portland, Oregon
    57 尹炜, 李培军, 可欣, 等. 我国城市地表径流污染治理技术探讨. 生态学杂志. 2005, 24(5):533~536
    58 C.H. Liaw, Y.L. Tsai, M.S. Cheng. Assessing flood mitigation alternatives in Shijr area in metropolitan Taipei. J. Am. Water Resour. Assoc. 2006, 42(2):311~322
    59 C.H. Liaw, Y.L. Tsai, W.M. Huang, M.S. Cheng, Hydrology and storage capacity analysis of rainwater retarding practices for flood mitigation in urban area. (In Chinese). Shuikexue Jinzhan/Adv. Water Sci. 2006, 17(4):538~542
    60 K.M. Goff, R.W. Gentry. The influence of watershed and development characteristics on the cumulative impacts of stormwater detention ponds. Water Resour. Manage. 2006, 20(6):829~860
    61 Hong, Y.-M.; Yeh, N.; Chen, J.-Y. The simplified methods of evaluating detention storage volume for small catchment. Ecological Eng. 2006, 26(4):355~364
    62 Sabadox, A.J. Private project stores public stormwater. CE News. 2006, 17(12):31~32
    63 Mourad, M.; Bertrand-Krajewski, J.-L.; Chebbo, G. Design of a retention tank: Comparison of stormwater quality models with various levels of complexity. Water Sci. Technol. 2006, 54(6~7):231~238
    64 Kazemi-Yazdi, S.; Scholz, M. Design comparison of experimental stormwater detention systems treating concentrated road runoff. Adv. Technol Environ. Field: Second IASTED Internat. Conf. Proc. 2006, np
    65 Emerson, C.H.; Welty, C.; Traver, R.G. Watershed-scale evaluation of a system of storm water detention basins. J. of Hydrologic Engineering. 2005, 10(3):237~242
    66 Mascarenhas, F.C.B.; Miguez, M.G.; De Magalhaes, L.P.C.; Prodanoff, J.H.A. On-site stormwater detention as an alternative flood control measure inultra-urban environments in developing countries. IAHS-AISH Publication. 2005, 293:196~202
    67 Anonymous. Storm is brewing. Highways. 2005, 75(10):12
    68 Yurdusev, M.A.; Kumanlioglu, A.A.; Solmaz, B. Assessment of retention basin volume and outlet capacity in urban stormwater drainage systems with respect to water quality. Sadhana - Academy Proc. in Engineering Sciences. 2005, 30(6):723~734
    69 Ortell, Z. Chapter 26: Upgrading the Belhar Stormwater System to Combat Pollution of the Kuils River. Innovative Modeling of Urban Stormwater Systems, Monograph 12. Edited by W. James, CHI, Inc. 2004, 543~558
    70 German, G. Reducing Stormwater Pollution - Performance of Retention Ponds and Street Sweeping. Doktorsavhandlingar vid Chalmers Tekniska Hogskola. 2003, 1997:73p
    71 Darnell, C.M.; Lootah, H.; and Al Maidoor, E.A. Stormwater Management Using Detention Ponds. WEFTEC 2001 Conf. Proc. CD-ROM. 2001
    72 Fennessey, L.A.J.; Hamlett, J.M.; Aron, G.; and Lasota, D. Changes in Runoff Due to Stormwater Management Pond Regulations. J. Hydrol. Eng. 2001, 6:317
    73 Heitz, L.F.; Khosrowpanah, S.; and Nelson, J. Sizing of Surface Water Runoff Detention Ponds for Water Quality Improvement. J. Am. Water Resour. Assoc. 2000, 36, 541
    74 Newman, T.L, II.; Omer, T.A.; and Driscoll, E.D. SWMM Storage-treatment of Analysis/design of Extended detention Ponds. Applied Modeling of Urban Water Systems, Proceedings of the Conference on Stormwater and Urban Water Systems Modeling, February 1999, Toronto, Ontario. W. James, Ed. CHI, Guelph, Ont. Canada, Ch. 17. 2000
    75 Papa, F.; Adams, B.J.; and Guo, Y.P. Detention Time Selection for Stormwater Quality Control Ponds. Canadian J. Civil Eng., 1999, 26, 1, 72
    76 Gupta, K., and Saul, A.J. Suspended Solids in Combined Sewer Flow. Water Sci. Technol. (G.B.), 1996, 33, 9, 93
    77 Nix, S.J., and Durrans, S.R. Off-line Stormwater Detention Systems. Water Resour. Bull., 1996, 32, 6, 1329
    78 Livingston, E. Stormwater Reuse: An Added Benefit of Wet Detention Systems. Comprehensive Stormwater & Aquatic Ecosystem Manage. Conf. Papers First South Pacific Conf., Auckland, New Zealand. 1999
    79 Wada, Y., and Miura, H. Combined Sewer Overflow Control Using Large-ScaleStorage Pipe for Flood Control. Proc. the Eighth International Conference on Urban Storm Drainage. August 30 – September 3, 1999, Sydney, Australia. Edited by IB Joliffe and JE Ball. The Institution of Engineers Australia, The International Association for Hydraulic Research, and The International Association on Water Quality.1963. 1999
    80 Cabot, P.J.; Raso Quintana, J.; Sindreau Fernandez, J.; Malgrat Bregolat, P.; Marti Marques, J.; and Gutierrez Fernandez, L. Detention tank Sizing Using a Long-Term Simulation Model. Proc. the Eighth International Conference on Urban Storm Drainage. August 30 – September 3, 1999, Sydney, Australia. Edited by IB Joliffe and JE Ball. The Institution of Engineers Australia, The International Association for Hydraulic Research, and The International Association on Water Quality, 10.1999
    81 Despotovic, J.; Petrovic, J.; Zlatanoiv, V.; Jacimovic, V., Djordjevic, S.; Jovanovic, M.; Djukic, A.; Babic, B.;and Prodanovic, D. Preliminary Design for Reconstruction of Stormwater and Wastewater System in a Developed Area – a Case Study. Proc. the Eighth International Conference on Urban Storm Drainage. August 30 – September 3, 1999, Sydney, Australia. Edited by IB Joliffe and JE Ball. The Institution of Engineers Australia, The International Association for Hydraulic Research, and The International Association on Water Quality, 721. 1999
    82 Henderson, F. 10th Street Detention Basin and Recreation Facility. Proc. 24th Water Resour. Plann. Manage. Conf. Aesthetics in the Constructed Environment, Houston, Tex., 217. 1999
    83 Sela, E., and Chidananda, B.N.R. Multi-Purpose Use of Site Stormwater Detention in the Urban Environment- Environmental Benefits and Design Lessons. Proc. 24th Water Resour. Plann. Manage. Conf. Aesthetics in the Constructed Environment, Houston, Tex., 223. 1997
    84 Yeh, C.H., and Labadie, J.W. Multiobjective Watershed-level, Planning of Storm Water Detention Systems. J. Water Resour. Plann. Manag. 1997, 123, 6, 336
    85 Smith, D., and Silva, S. Case Study of an In-stream Water Quality Pond. Proc. 24th Water Resour. Plann. Manage. Conf. Aesthetics in the Constructed Environment, Houston, Tex., 278. 1997
    86 Guo, J.C.Y. Detention Storage Volume for Small Urban Catchments. J. Water Resour. Plann. Manage.- ASCE. 1999. 125, 6, 380
    87 Guo, Y., and Adams, B.J. Analytical Probabilistic Approach to Sizing Flood Control Detention Facilities. Water Resour. Res..1999. 35, 8, 2457
    88 Guo. Y.P., and Adams, B.J. Analysis of Detention Ponds for Storm Water Quality Control. Water Resources Research. 1999, 35, 8, 2447
    89 Guo, J.C., and Urbonas, B.R. (1996) Maximized Detention Volume Determined by Runoff Capture Ratio. J. Water Res. Plan. and Mgmt., 1996, 122, 1, 33
    90 Abdullah, D.K.B.; Sivaligam, P. Project criteria. Tunnels Tunnelling Int. 2006, May: 5-6
    91 Kuang, C.-P.; Lee, J.H.-W.; Chan, H.-C.; Clark, P.; Townsend, N.; Raymond, S. Numerical study of the Tai Hang Tung storage Scheme, Hong Kong. (In Chinese). Shuikexue Jinzhan/Adv. Water Sci. 2006, 17(3):334~341
    92 Crist, M. Renovation without repercussions. Dredging Port Construction. 2006, FEB.:37~40
    93 Nehrke, S.M.; Roesner, L.A. Effects of design practice for flood control and best management practices on the flow-frequency curve. J. Water Resour. Plan. Manage. 2004, 130(2):131-139.
    94 Rowe, R.; Pla, M.; Schultz, N. Using water quality as the basis for hydraulically sizing conveyance systems under the proposed SSO rule provides multiple benefits to municipalities. Collection Systems Conf. 2003: cMOM Go! Proc. Water Environment Federation. CD-ROM. 2003.
    95 Pazwash, H., and Boswell, S.T. Design of Stormwater Management Systems; Suggested Improvements. Proc. ASCE EWRI Conf. - Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. CDROM. 2001.
    96 Glazner, M.K. Restoring Runoff to Predeveloped Conditions: Fact or Fiction? Proc. ASCE EWRI Conf. – Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. CD-ROM. 2001.
    97 Guo, Y. Hydrologic Design of Urban Flood Control Detention Ponds. J. Hydrol. Eng. 2001, 6:472.
    98 Ovcharovichova, J. Consequences of Flexibility’s in Drainage Area Delineation. Proc. ASCE EWRI Conf. - Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. CD-ROM. 2001.
    99 刘鹏, 赵昕, 郭汝艳. 国家体育场雨洪利用初步设计简介. 给水排水, 2004, 30(7):80-82
    100 刘鹏, 赵昕. 国家体育场初期雨水弃流方式的比较与选择. 给水排水, 2004, 30(7):82-84
    101 刘鹏, 郭汝艳. 国家体育场雨水收集量的确定方法. 给水排水, 2006,32(10):82-89.
    102 李俊奇, 余苹, 车伍, 邱少强. 城市雨水集蓄利用工程规模的优化. 中国给水排水, 2005,(03):49-52.
    103 李俊奇, 孟光辉, 车伍. 城市雨水利用调蓄方式及调蓄容积实用算法的探讨. 给水排水. 2007, 33(10):42-46.
    104 宁静, 李田. 上海市降雨特性统计与雨水存储池容积计算. 中国给水排水, 2006, (04): 48-51.
    105 《建筑与小区雨水利用工程技术规范》(GB50400-2006)
    106 陈捷, 赵国志, 王彬, 尤文玮. 调蓄池及其在苏州河治理中的应用. 中国市政工程. 2004, (04):37-40,72
    107 徐贵泉, 陈长太, 张海燕. 苏州河初期雨水调蓄池控制溢流污染影响研究.水科学进展. 2006, (05):705-708
    108 李春光. 合流污水系统调蓄池的设置及建议. 上海建设科技. 2004, (4):19-20
    109 李田, 曾彦君, 宁静. 排水系统截流调蓄设施运行效率的概率分析方法. 给水排水. 2007, 33(06):108-112.
    110 《石油化工企业环境保护设计规范》(SH3024-1995)
    111 张加伟. 合流制系统中初期污染雨水的排放设计. 工业用水与废水, 2003, 34(5):57-58
    112 崔海云. 论初期污染雨水,后期清净雨水自然分流切换设计.给水排水, 1997, 23(8):30-31
    113 徐冬喜. 石油化工企业消防污水收集与处理初探. 工业用水与废水, 2000, 31(1):51-52
    114 谭琼, 李田, 张建频, 时珍宝. 调蓄池提高已建系统排水能力的水力模拟研究. 给水排水, 2006,(09):34-38
    115 岑国平,沈晋,范荣生.城市设计暴雨雨型研究.水科学进展.1998, 9(1):41-46
    116 Ben Urbonas. Reliability of design storms in modeling. International Symposium on Urban Storm Runoff. University of Kentucky, Lexington, KY, July 23-26, 1979
    117 岑国平. 暴雨资料的选样与统计方法. 给水排水.1999,25(4):1-4
    118 Chow Ver-te. A general formula for hydrologic frequency analysis. Trans, AGU, 1951, Vo1.32.
    119 A V Harames et al. Review of rainfall data application for design and analysis (J], Water Science an d Technology.1984, 16(8/9).
    120 邓培德. 雨水沟道设计暴雨的统计方法. 给水排水. 1979, (4).
    121 邓培德. 暴雨选样与频率分布线型及应用. 给水排水, 1990, (2).
    122 黄会明,邓丽,王立宏,史凯. 城市设计暴雨和设计雨型的推求及应用.中国农村水利水电. 2004, (3):35-37, 40.
    123 夏宗尧. 编制暴雨公式中应用 P-III 曲线及指数曲线的比较. 中国给水排水. 1990, (3).
    124 邓培德. 极值分布与指数分布的降雨公式的统计方法. 西南给水排水. 1982, (4).
    125 邓培德. 城市暴雨公式统计中的若干问题. 中国给水排水. 1992, (3).
    126 夏宗尧. 求指数曲线及 P-III 曲线与经验点最佳拟合参数解中一些问题. 湖南给水排水 1997, (3).
    127 Chow Venler. Frequency analysis of hydrologic data with special application to rainfall intensities, University of Illions Bulletin, July, 1953.
    128 Landurehr, J.M., et al. probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quintites.Water Res., 1979, 15(5).
    129 Ding. J., et al. Expressions relating probability weighted moments to parameters of several distributions inexpressible in inverse form. Journal of hydrology. 1989, 110(3-4).
    130 李松仕. 概率权重矩法推求 P-III 曲线分布参数新公式. 水利学报. 1989,(S).
    131 金光炎.论水文频率计算中的适线法. 水文. 1992, (4).
    132 华东水利学院. 水文学的概率统计基础.北京:水利出版社. 1981.
    133 周玉文, 李玉华. 极大似然法求城市暴雨公式 P-III 分布的可行性. 1996,(5).
    134 Tefaruk Haktanir. Practical computation of gamma frequency factors. Journal of hydrology. 1991, 36(6).
    135 刘治中.数值积分权函数法推求 P-III 曲线分布参数.水文.1994, 36(7).
    136 任伯帜,龙腾锐. P-Ⅲ型分布参数估计的改进混合遗传优化适线法. 重庆大学学报(自然科学版), 2005,28(4):82-85
    137 李树常. 用麦夸尔特法推求暴雨强度公式参数. 给水排水.1999, 25(2):26-28.
    138 任伯帜. Marqarat-Hartley 算法在现代城市暴雨公式参数. 湖南大学学报(自然科学版).2002, (3)
    139 李柞泳, 高攀宇, 灯新民. 基于遗传算法的暴雨强度公式参数的优化. 高原气象. 2003, 22(6):637-639
    140 Huff, F.A. Time distribution of rainfall in heavy storms.Water Resources Research. 1967, 3(4):1007-1019
    141 Pilgrim, D.H. and Cordery,I. Rainfall temporal patterns for design floods. Journal of the Hydraulics Division, ASCE. 1975, 101(HY1):81-95
    142 Rao, D.V. and Clapp, D. Rainfall Analysis for Northest Florida, Part I: 24-hours to 10-days Maximum Rainfall Data. Technical Publication SJ 86-3. St. Johns River Water Management District, Palatka, Florida. 1988
    143 Yen, B.C. and Chow, V.T. Design hyetographs for small drainage structures. Journal of the Hydraulics Division, ASCE. 1980, 106(HY6):1055-1076
    144 郑克声, 许恩菁, 叶惠中. 具随机碎形特性之设计暴雨雨型. 台湾水利. 1999, 47(3):43-45
    145 王敏, 谭向诚. 北京城市暴雨和雨型研究. 水文. 1994, (3):1-6
    146 张景国. 雨水地面径流的改进推理法. 给水排水. 1993, (5)
    147 周玉文, 孟昭鲁. 城市雨水口流域等流时线法降雨径流模拟模型,沈阳建筑工程学院学报. 1994, 10(4):339-344
    148 周玉文, 赵洪宾, 李玉华. 瞬时单位线法求雨水管网系统入流流量过程线的数值计算方法. 哈尔滨建筑大学学报. 1997, 30(5):41-45
    149 Clark C.O. Storage and unit hydrograph. ASCE. 1945, Vo1.110.
    150 聂亚琴, 张景国. 利用运动波法模拟雨水地面径流. 西安建筑科技大学学报. 1994, (3)
    151 Grayman, W.M., P.S. Eagleson. Evaluation of radar and raingage systems for flood forecasting, P.M.P. Lab. Rep.91, Mass. Inst. Of Technol., Cambridge, Mass., 1971
    152 Eagleson, P., Climate, soil, and vegetation, 2, the distribution of annual precipitation derived from observed storm sequences, Water Resour. Res., 1978, 14(5):713-721
    153 Wang, C.T., V.K. Gupta, E. Waymire. A geomorphologic synthesis of nonlinerity in surface runoff, Water Resour. Res., 1981, 17(3):545-554
    154 Crovelli, R.A. Stochastic models for precipitation. Ph.D. dissertation, Dep. of Statistics, Colo. State Univ., Fort Collins, 1971
    155 Todorovic, P., D.A. Woolhiser. Stochastic models of daily rainfall. USDA Misc. Publ. U.S. Dep. Agric., 1974, 1275:232-246
    156 周玉文, 赵洪宾. 排水管网理论与计算. 北京:中国建筑工业出版社, 2000
    157 林齐, 傅金祥. 铁岭市暴雨强度公式的推求与优化. 沈阳建筑大学学报:自然科学版, 2006, 22(4):613-616.
    158 Zalina M D, Desa M N M, Nguyen V-T-V. Selecting a probability distribution for extreme rainfall series in Malaysia. Water Science and Technology, 2002, 45(2):63-68.
    159 Petrovic J, Despotovic J, Vukmirovic V. Some consideration of urban drainagedesign practice using experiment data. Atmospheric Research, 1996,42:279-292.
    160 Raso J, Malgrat P, Castillo F. Improvement in the selection of design storms for the new master drainage plan of Barcelona. Water Science and Technology, 1995, 32(1):217-224.
    161 梁季阳, 谢明. 水文频率曲线线型的研究. 地理研究, 1986, 5(2):66-73.
    162 周玉文, 周胜昔, 曹丽虹.极大似然法求皮尔逊 III 型分布参数. 给水排水, 1997, 23(6):19-21.
    163 金光炎. 城市设计暴雨频率曲线线型的研究. 水文, 2002, 22(1):20-26.
    164 朱元生, 金光炎. 城市水文学. 北京:中国科学技术出版社.1991:116-128.
    165 Department of Irrigation and Drainage, Malaysia. Urban Stormwater Management Manual for Malaysia. http://www.water.gov.my/images/pdf/stormwater/flow_estimation.pdf
    166 任伯帜, 周赛军, 邓仁建. 城市地表产流特性与计算方法分析. 南华大学学报:自然科学版, 2006.
    167 白国营. 城市发展对洪水的影响分析. 2002 北京雨水与再生水利用国际研讨会论文集, 北京, 2002:167-173.
    168 周玉文,孟昭鲁.瞬时单位线法推求雨水管网入流流量过程线的研究,给水排水,1995,21(3):5-9
    169 何光渝, 雷群. Delphi 常用数值算法集. 北京:科学出版社, 2001:170-184.
    170 耿鸿江. 工程水文基础. 北京:中国水利水电出版社, 2002:88-89.
    171 周玉文 . 城市雨水道设计理论的研究 . 哈尔滨工业大学硕士论文 , 1984:77-79.
    172 Haestad and Durrans. 2003. Stormwater Conveyance Modeling and Design. Waterbury, CT: Haestad Press.
    173 D. Butler, W.D. John. Urban Drainage. E & FN SPON.2000.
    174 千葉県県土整備部.千葉県における宅地開発等に伴う雨水排水?貯留浸透計画策定の手引.平成18年9月.
    175 Section 2.2 Storage design .Georgia Stormwater Management Manual. (http://www.georgiastormwater.com/vol2/2-2.pdf)
    176 Nie, L.M. Flooding Analysis of Urban Drainage Systems. http://urn.ub.uu.se/resolve?urn=urn:nbn:no:ntnu:diva-308:40-41
    177 汪明明, 周玉文, 赵树旗, 谢善斌, 胡伟. 北京天然降雨的营养物质来源分析. 2006 全国博士生学术论坛(力学、土木工程、水利工程)论文集. 大连理工大学. 2006.
    178 周玉文, 汪明明, 赵树旗. 城市地表径流对城市水体富营养化的影响研究.北京绿色奥运环境保护技术与发展. 国家环境保护总局科技标准司,北京市环境保护科学研究院,国家环境保护工业废水污染控制工程技术(北京)中心组编. 北京:中国水利水电出版社, 2006, p250-255.ISBN:7-5084-3801-9
    179 CIRIA. Sustainable Urban Drainage Systems - Design Manual for England and Wales. Report No. C522. London, 2000.
    180 Stormwater Manager's Resource Center (SMRC), U.S. EPA. Options for Water Quality Volumes. http://www.stormwatercenter.net/Manual_Builder/Sizing_Criteria/Water%20quality/Options%20for%20Water%20Quality%20Volumes.htm
    181 County of Berks, Pennsylvania. Appendix D Water Quality Volume Analysis. (http://www.co.berks.pa.us/planning/lib/planning/stormh2o/sacony/saconyv3-_vol_iii_appendixd_-_water_quality_analysis.pdf)
    182 Center for Transportation Research and Education (CTRE) of Iowa State University. Iowa Stormwater Management Manual. (http://www.ctre.iastate.edu/PUBS/stormwater/documents/2C-2RainfallandRunoffAnalysis.pdf)
    183 Chang, G., J. Parrish and C. Souer, 1990. The first flush of runoff and its effect on control structure design. Environmental Resource Management Division. Department of Environmental and Conservation Services, City of Austin, Austin, TX, pp. 18 (http://www.ci.austin.tx.us/watershed/firstflush.pdf).
    184 Section 1.3 - Unified Stormwater Sizing Criteria .Georgia Stormwater Management Manual. (http://www.georgiastormwater.com/vol2/1-3.pdf)
    185 A. Fewkes. Modelling the performance of rainwater collection systems: towards a generalized approach. Urban Water 1 (1999):323-333
    186 周玉文. 城市排水管网非恒定流模拟技术的实用意义与应用前景. 给水排水. 2000, 26(5):14-16
    187 Wangwongwiroj, N., Schlutter, F. and Mark, O. Application of an automatic calibration scheme for urban rainfall-runoff models in MOUSE. The 4th DHI Software Conference, June 6-8, 2001. Helsingor, Denmark
    188 Refsgaard, J. C. Set-up, calibration and validation of hydrological models. Danish Hydraulic Institute, Denmark.1995.
    189 D. Butler, N.J.D. Graham. Modeling dry weather wastewater flow in sewer networks. ASCE, Journal of Environmental Engineering Division. 1995, 121(2),161-173
    190 (英)帕金森,马克著;周玉文,赵树旗等译.发展中国家城市雨洪管理.中国建筑工业出版社,2007:126
    191 Lewis A. Rossman. Storm water management model user’s manual. Version 5.0. EPA/600/R-05/040. Revised June 2007.
    192 Star, J. and Estes, J. Geographical Information System: an Instruction, Published by Prentice Hall, Englewood Cliffs and New Jersey, 1999.ISBN: 0-13-351123-5.
    193 Worboys, Michael F. GIS: a Computing Perspective, published by London: Taylor & Francis, 1995. ISBN: 0-7484-0064-8, 0-7484-0065-6.
    194 M.M. Wang, Y.W. Zhou, S.Q. Zhao. Modeling of urban surface runoff based on GIS. 2nd German/Chinese/Polish Symposium on Environmental Technology. September 19-21, 2006. Proceedings of 2006 Beijing international environmental technology conference. 2006:350-359
    195 邓培德. 雨水沟道容量平衡调节法设计流量的研究.土木工程学报. 1983, 15(1):63-74
    196 孟昭鲁,曲祥瑞.关于 q=A-(t+b)~n 型暴雨强度公式雨水管渠空隙容量利用的讨论. 土木工程学报.1983, 15(1):75-87
    197 北京市市政设计院. 城市雨水沟管空隙容量的利用. 土木工程学报. 1983, 15(1):91-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700