苔藓及地衣对凉州明长城的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃凉州明长城属于夯土长城。在长期的风化作用下,其外貌形态发生了较大的变化,诸如剥离、冲沟、坑洞、裂隙、掏蚀以及坍塌等各类病害均有不同程度的发育,加上近年来工业化对环境的影响,使长城的保存受到了挑战。土遗址相关工作人员研究了土遗址的病害类型及形成机理、加固方法、有机及无机等加固材料、各种检测方法等,并取得了一定的成就。但是,对土遗址有影响作用的生物研究相对较少。本研究以“甘肃凉州境内长城、烽燧遗址抢险加固工程”为背景,研究了凉州明长城的保存现状、病害类型以及苔藓及地衣对长城土遗址体的作用。
     在对凉州明长城做现场勘察后发现其大致分东西方向和南北方向两部分。南北方向长城墙体保存现状差,长城断断续续,残缺不全,有墙体存在的地段大部分被风沙掩埋,墙体东西两面各类病害均较发育,尤其以掏蚀、坍塌、冲沟及剥离为严重。东西方向长城墙体保存较南北方向好,长城基本连续,无风沙掩埋,墙体南面病害发育,主要病害为掏蚀、坍塌、冲沟及剥离等;墙体北面有大面积苔藓及地衣覆盖,形成苔藓结皮及地衣结皮,病害发育较轻,主要病害为墙体底部的掏蚀及剥离。经过对比有无苔藓及地衣覆盖墙体的病害发育状况后得出苔藓及地衣对长城墙体有保护作用。
     对苔藓结皮及地衣结皮展开研究可以揭示苔藓及地衣对长城遗址土体的作用机理,从而揭示苔藓及地衣对长城土遗址体的作用。选取东西向长城墙体北面苔藓结皮及地衣结皮试样、南面非结皮试样。对所取苔藓结皮、地衣结皮及非结皮试样进行扫描电镜,化学分析,颗粒分析,X射线衍射等试验。分析试验结果并得到以下结论:
     (1)通过对比苔藓结皮、地衣结皮以及非结皮试样表面电镜照片可以得到:苔藓和地衣在长城墙体表面与土体共同形成一个结构面。此结构面土颗粒较小,颗粒间孔隙被苔藓及地衣或其生成物所填充,因而较为密实,能有效的防止风、雨等因素对墙体造成的破坏。
     (2)化学分析试验表明:苔藓和地衣选择性的吸收了长城遗址土体中的易溶盐离子。苔藓及地衣对土中离子的吸收特别是对钠离子等的吸收,使土体中易溶盐如硫酸钠等的含量大大减小,从而减小了易溶盐的表面富集作用,降低了易溶盐因反复结晶而对长城墙体造成的破坏。
     (3)颗粒分析试验结果表明苔藓和地衣对长城墙体表面土体有一定的改造作用:使土体颗粒减小,形成一个小颗粒的结构层。这能有效的加强遗址表面土体的粘结性,加强遗址体的抗风化作用。
     (4)苔藓和地衣在长城墙体表面与土体形成的较为密实的结构面与结构层共同组成遗址体表面的抗风化系统一苔藓结皮和地衣结皮,有效的减小了长城墙体各种病害的发生和发育。
The Ming Great Wall in Liangzhou district Gansu province belongs to ramming Great Wall. It's Appearance shape has changed greatly in the long-term weathering, such as stripping, gullying, hollowing, fissuring, sapping and sloughing disease are in the different developmental condition, and it was thanks to the industrialization of the impact on the environment in recent years that the preservation of the Great Wall has been challenged. Soil sites staff have researched the disease types and forming mechanism, strengthening methods, organic and inorganic and other reinforcing materials, all kinds of test method, and so on. Of course, they got some achievements in their work. But, the research about influence to soil sites from some other biology is very little. Under the background of "rescue reinforcement engineering of Great Wall and beacons in Liangzhou district. Gansu province", The research studied the save situation and the type of disease of the Great Wall, and the influence from bryophytes and lichens to the Great Wall.
     After the site investigation to the Great Wall of Ming, we found that the Great Walls were constituted by two sections, north-south direction and east-west direction. The north-south direction's present situation was bad. The Great Wall was discontinuous and incomplete, some existing wall was buried by blown sand. All kinds of diseases, such as sapping, sloughing, stripping and gullying, had developped in both sides of the wall. The east-west direction's present situation was better than the north-south direction. The Great Wall was continuous and not was buried by blown sand. Diseases, especially sapping, sloughing, stripping and gullying, had developed in the south side of the wall. The north side was covered by bryophytes and lichen, it had formed bryophytes crust and lichen crust. The major diseases were sapping and stripping in the bottom of the wall. Through comparing the diseases'development state of the walls that were covered by bryophytes and lichen or not we knew that the bryophytes and lichen were beneficial to protect the Great Wall.
     It revealed the mechanism of the bryophytes and lichen's effect to the Great Wall when we studied bryophytes crust and lichen crust. Selected bryophytes crust and lichen crust specimen from the north side of the east-west direction, and selected no-crust specimen from the south side, and then we did the experiment as follows:particle analysis, chemical analysis, scanning electron microscopy and X-ray diffraction. The results showed the conclusions as follows:
     (1) Contrasted the surface electron microscopy image of the bryophytes crust, lichen crust and no-crust specimen we knew, bryophytes and lichen formed a structural plane together with soil of the Great Wall. Soil particles of the structural plane were less, pores between soil particles were filled by bryophytes or lichen or their secretions. So the structural plane effectively prevent the destruction from wind and rain because it was relatively dense.
     (2) Chemical analysis test showed that bryophytes and lichen selectively absorbed soluble salt that hosted in soil. Bryophytes and lichen The process decreased ions in soil, especially sodium ion,it leaded to decreasing the content of the sodium sulfate. So it stopped or retarded the enrichment of the soluble salt and decreased the destruction caused by repeated crystallization.
     (3) Particle analysis test showed that bryophytes and lichen had transformation effect to the Great Wall's soil. It made soil particles become small and formed a structure layer. The cohesiveness of the soil and the anti-weathering ability of the soil site had been strengthened.
     (4) Both of the structural plane and the structure layer formed the system of resistance to weathering. The system effectively decreased the occurrence and development of the various diseases.
引文
[1]屈建军,王家澄,程国栋,等.西北地区古代生土建筑物冻融风蚀机理的实验研究[J].冰川冻土2002,24(1):51-56.
    [2]屈建军,张伟民,王远萍,等.敦煌莫高窟古代生土建筑物风蚀机理与防护对策的研究[J].地理研究,1994,13(4):98-104.
    [3]严耿升,张虎元,王旭东,等.古代生土建筑风蚀的主要影响因素分析[J].敦煌研究,2007,5:78-82.
    [4]张虎元,刘平,王锦芳,等.士建筑遗址表面结皮形成与剥离机制研究[J].岩土力学,2009,7:1883-1891.
    [5]Chepil W S. Properties of soil which influence wind erosion (Ⅰ) [J]. Soil Sci:1950,69:149-162.
    [6]Chun-Lai Zhang, Xue-Yong Zou, Ping Yang, Yu-Xiang Dong, Sen, Xin-Hu Wei, Shuo Yang, Xing-Hui Pan. Wind tunnel test and 137Cs tracing study on winderosion of several soils in Tibet. Soil & Tillage Research,2007,94 (2):269-282.
    [7]柴新军,钱七虎,杨泽平,等.点滴化学注浆技术加固士遗址工程实例[]].岩石力学与工程学报,2009,28(增1):2980-2985.
    [8]李最雄.应用PS-C加固风化砂岩石雕的研究[J].敦煌研究,1985,(02):156-168.
    [9]赵海英,王旭东,李最雄,等.PS材料模数、浓度对干旱区土建筑遗址加固效果的影响[J].岩石力学与工程学报,2006,25(3):557-562.
    [10]赵海英,李最雄,韩文峰,等.PS材料加固西北干旱区土遗址试验研究[J].湖南科技大学学报(自然科学版),2008,23(1):45-49.
    [11]赵海英,李最雄,汪稔,等.Ps材料加固土遗址风蚀试验研究[J].岩土力学,2008,29(2):392-396.
    [12]和法国,谌文武,赵海英,等.PS材料加固遗址土试验研究[J].中南大学学报(自然科学版),2010,41(3):1132-1138.
    [13]杨涛,李最雄,汪万福.交河故城土体裂隙灌浆材料性能试验[J].岩土力学与工程学报,2009,28(2):3782-3788.
    [14]孙满利,王旭东,李最雄,等.木质锚杆加固生土遗址研究[J].岩土工程学报,2006,28(12):2156-2159.
    [15]孙满利,李最雄,王旭东,等.南竹加筋复合锚杆加固土遗址研究[J].岩石力学与工程学报,2008,27(增2):3381-3385.
    [16]王晓东,张虎元,吕擎峰,等.楠竹加筋复合锚杆管材力学性能试验研究[J].岩石力学与工程学报,2009,28(增1):2941-2946.
    [17]张虎元,王晓东,王旭东,等.楠竹加筋复合锚杆内部界面黏结滑移模型[J].岩土力学,2011,32(3):789-796.
    [18]Selwitz C, Coffman R, Agnew N. The getty adobe research project at Fort Selden III:an evaluation of the application of chemical consolidants to test walls[C]. Los Angeles, USA:[S. n.], 1990,255-260.
    [19]Li Z X. Consolidation of Neolithic earthen sire with potassium[C]. Los Angeles, USA:[S. n.],1990, 295-301.
    [20]Agnew N, Preusser F, Druzik J R. Strategies for Adobe Preservation-The Getty Conservation Institute Research Program[C]. Rome, Italy:[S. n.],1988,3-11.
    [21]Chiari G. Chemical surface treatments and capping techniques of earthen structures:a long term evaluation[C]. Los Angeles, USA:[S. n.],1990,267-273.
    [22]员雪梅,赵朝洪,王金平,等.侯马东周祭祀遗址出土玉器材质的矿物学测试及产源分析[J].中原文物,2007,(1):88-95.
    [23]孙博.土遗址表面温度变化规律及预报模型[D].兰州大学,2010.
    [24]周仲华,郑龙,孙博.土遗址墙体含水量与电阻率关系研究[J].岩石力学与工程学报,2009,28(增2):4054-4058.
    [25]崔凯,谌文武,张景科,和法国,任非凡.交河故城台地土体结构面的面波探测方法初步研究[J].敦煌研究,2007,(5):74-77.
    [26]Kevin Hall, Ian Meiklejohn, Joselito Arocena. The thermal responses of rock art pigments: Implications for rock artweathering in southern Africa[J]. Geomorphology,2007,91:132-145.
    [27]田中琢.文物保护的思想[J].考古与文物,1995,(2):86-90.
    [28]世界各国文物保护的历史发展概况[J].了望,1994,(3):17-18.
    [29]孙满利.土遗址保护研究现状与进展[J].文物保护与考古科学,2007,19(4):64-69.
    [30]徐雁飞,王磊.论文物保护中的“真实性”[J].建筑学报,2011,(S1):85-87.
    [31]鲍小会.中国现代文物保护意识的形成[J].文博,2000,(3):75-80.
    [32]黄克忠.走向二十一世纪的中国文物科技保护[J].敦煌研究,2000,(1):5-9.
    [33]王旭东.西北地区石窟与土建筑遗址保护研究的现状与任务[J].敦煌研究,2007,(5):6-11.
    [34]赵海英,李最雄,韩文峰,等.西北干旱区土遗址的主要病害及成因[J].岩石力学与工程学报,2003,22(增2):2875-2880.
    [35]赵海英,李最雄,韩文峰,等.甘肃境内长城遗址主要病害及保护研究[J].文物保护与考古科学,2007,19(1):28-32.
    [36]孙满利,王旭东,李最雄,等.西北地区土遗址病害[J].兰州大学学报(自然科学版),2010,46(6):41-45.
    [37]梁涛.新疆地区土遗址病害类型及成因初步分析[J].考古与文物,2009,(5):103-106.
    [38]黄四平,李玉虎,肖娅萍,等.生物病害对唐皇城含光门土遗址的危害及防治措施研究[J].文物保护与考古科学,2010,22(2):6-11.
    [39]杨梦妮,杨清龙,黄四平,等.土遗址盐分抑制保护研究进展及其发展趋势[J].丝绸之路,2011,(2):30-32.
    [40]赵胜杰,陈平.BS-A加固高昌古城土遗址室内试验研究[J].路基工程,2009,(5):165-167.
    [41]王赞.硅丙乳液加固土遗址的试验研究[J].低温建筑技术,2010,(1):58-60.
    [42]李最雄.丝绸之路古遗址保护[J].中国文化遗产,2004,(3):118-122.
    [43]陆彩飞,罗宏杰,李伟东,等.PS材料加固土遗址的微观机理研究[C].//2008古遗址保护国际学术讨论会暨国际岩石力学学会区域研讨会.甘肃:敦煌研究院,2008,767-774.
    [44]王亚清,武毅,查恩来.探地雷达技术在山海关古城墙隐伏缺陷探测中的应用研究[J].工程地球物理学报,2010,7(1):93-96.
    [45]席道瑛,宛新林,薛彦伟,等.用地质雷达寻找宋代钧窑遗址[J].岩石力学与工程学报,2004,23(1):112-115.
    [46]中国科学院自然科学史研究所.中国古代建筑技术史[M].科学出版社,2000.
    [47]徐杰,白学良,田桂泉,等.干旱半干旱地区生物结皮层藓类植物氨基酸和营养物质组成特征及适应性分析[J].生态学报,2005,25(6):1247-1255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700