模拟燃烧烟气中汞形态转化及脱除技术的实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤汞排放作为大气污染的一个重要来源,其造成的汞污染对生态环境具有很大的直接和潜在的危害。国内外有关燃煤过程中汞的形态转化和控制方法的研究还处于探索阶段,在有效吸附剂的筛选及治汞机理方面的研究也还很薄弱。因此,积极开展汞污染的研究,研究汞脱除的特效吸附剂,研究汞形态的转化规律和合理的治汞方法,对于提高燃烧质量,减轻汞对环境的污染都有重大意义。
     首先对单质汞向氧化态汞转化的影响因素进行了实验研究,采用Ontario Hydro方法作为样品取样方法,分别进行了烟气中氯化氢浓度大小、氧气浓度大小、NO浓度大小、二氧化硫浓度大小、反应器出口温度高低以及汞浓度变化对燃煤烟气中汞形态分布的影响。得出如下结论:HCl是燃煤烟气中与汞发生化学反应的主要物质,在未添加HCl的烟气体系中,随反应温度的升高单质汞向氧化态汞转化的转化率先是升高而后降低,NO、O_2、SO_2的存在可以促进汞的氧化;在添加HCl的烟气体系中,随反应温度的升高汞单质汞向氧化态汞转化的转化率升高,烟气中氯化氢的浓度越大,转化率越大;烟气中其他成分对汞的形态转化有一定的影响,NO、O_2的存在可以促进汞的氧化,SO_2的存在则抑制汞的转化;另外,较高的烟气排放温度会提高单质汞向氧化态汞转化的转化率,Hg浓度升高汞转化率下降。
     建立了燃煤烟气中汞形态转化的动力学模型,在氯化氢存在的情况下烟气中汞均相气相氧化的总反应速率方程为:(~(dC)Hg/dt=-k×C_(Hg)~(1.78)×C_(HCl)~(0.79);总反应速率常数方程为:
     k=0.029858exp(-12787.5/RT)。通过模型计算,选取基本工况,对烟气中汞的反应过程进行了模拟计算,计算结果与实验结果基本吻合;通过模型分析,选取一些重要影响因素,预测了在一定运行条件下汞形态的转化,结果与汞形态转化实验研究的结果一致。该模型可用于定量预测典型燃煤烟气中汞形态转化的程度。
     对吸附剂进行化学改性后,在小型模拟烟气实验台上进行了汞吸附实验筛选,以期获得经济、高效的汞吸附剂。首先进行了吸附剂的改性实验研究。在查阅大量文献基础上,结合现有污水除汞及炼汞工业的废液、废气的除汞方法,尝试性地进行了吸附剂的活性MnO_2浸渍、FeCl_3浸渍、不同温度下渗硫等改性试验。并在固定床上进行了吸附剂的初步筛选。对原吸附剂及其改性吸附剂在固定床上进行了恒温汞吸附实验,初步找出效果较好的吸附剂,筛选出了以下几种有应用前景的吸附剂:活性炭、活性MnO_2浸渍活性炭、三氯化铁浸渍活性炭、600℃渗硫活性炭、活性MnO_2浸渍沸石、活性MnO_2浸渍膨润土、活性MnO_2浸渍蛭石、三氯化铁浸渍蛭石,并研究了不同烟气成分、不同入口汞浓度、不同吸附反应温度、不同炭汞比等因素对汞蒸气吸附作用的影响。
     在燃烧石煤的循环流化床电站锅炉上进行了汞排放及控制试验研究。结果表明汞在燃烧产物中的分布因工况不同而不同,燃烧添加石灰石前后汞的分布发生了较大的变化,比较明显的是ESP灰中汞增加,排放大气总汞减少,炉底灰渣中汞和排放大气总汞中固态汞含量变化不是很大,添加石灰石有利于总汞中零价汞的减少。电站除尘器对汞的排放有一定的控制作用,除尘器后烟气中汞的含量明显低于除尘器前;烟气经过除尘器前后气态汞分布变化不大;排入大气的烟气中主要为单质态汞为主。
    
    浙江大学博士学位论文
     在小型脱汞实验台上进行了燃煤烟气除汞技术的机理试验研究。对固定床实验筛选
    出来的吸附剂进行了脱汞实际应用研究,对各种脱汞操作工况进行了优选,得出对于未
    进行化学改性的吸附剂,半干法除汞是最佳操作方式;对于经过化学改性的吸附剂,干
    喷射吸附剂法除汞是最佳操作方式;由于电厂燃煤烟气除汞过程需要的吸附剂量较大,
    化学改性具有一定的难度,因此就工程实际应用前景来看半干法除汞是最佳的电厂燃煤
    烟气除汞技术;在中型燃油实验台上进行了有关的放大应用实验,主要研究了固定床试
    验所筛选出的几种吸附剂对汞蒸气的吸附效果,以及吸附反应温度、不同碳汞比等因素
    对汞蒸气吸附作用的影响。对吸附汞后的吸附剂进行了稳定性实验,结果表明被吸附后
    的汞比较稳定。
     通过模型计算,选取基本工况,对活性炭半干法中试塔体内部吸附进行了模拟,结
    果基本吻合。通过模型分析,选取某些影响因素,预测了在一定运行条件下活性炭吸附
    剂的吸附量。结果表明,在保证一定C/Hg比的条件下,随着入口浓度增大,单位吸附量
    也相应增大,活性炭的利用率提高了;改变吸附剂喷入量使炭汞比增大到一定程度时,
    吸附量曲线增长缓慢,吸附剂的单位吸附量降低,吸附效率增加。较长的接触时间有利
    于提高吸附效率;在较低的吸附温度下,有利于吸附效率的增加,这是由物理吸附的特
    点决定的。吸附剂颗粒粒径越小越有利于汞的吸附。
     关键词:汞;燃煤锅炉;形态分布;半干法汞排放控制;改性吸附剂;烟气
Mercury emissions from coal-fired power plants as a large emission source to the atmosphere, is recognized the direct and potential risk to both human health and environment. The researches on the methods of mercury control from coal combustion are just carried out in the world. The sifting of effective adsorbents and the researches on the mechanism of mercury speciation transformation and mercury control are very weak too. Therefore it should be done urgently that carrying out the studies on mercury pollution, finding out the effective adsorbents and studying the mechanism of mercury speciation transformation and relevant methods of mercury control. It is very important for improving combustion quality and reducing the environment pollution.A bench-scale experimental is conducted to study effect of flue gas composition on the speciation distribution of mercury in simulated flue gas streams. The test method used here for mercury speciation was the Ontario Hydro Method. The speciation distribution of mercury in different coal-fired flue gas systems including or excluding HC1, different concentration of O2, different concentration of HC1, different temperature at reactor's exit, different concentration of Hg was studied in typical constituent flue gas systems. The conclusions reached were as follows: In coal-fired flue gas systems without HC1, the conversion ratio of Hg2+ to total Hg increases at low temperature and decreases at higher reaction temperature; In the coal-fired flue gas systems containing HC1, the conversion ratio of Hg2+ to total Hg increase with rise of reaction temperature; higher concentration of NO and O2 can enhance oxidation of Hg; the conversion decreases with increase of SO2 concentration, higher temperature at reactor's exit can increase the conversion ratio of Hg2+ to total Hg; the conversion ratio of Hg2+ to total Hg decreases with increase of Hg concentration.A kinetic model was developed to predict mercury speciation transformation based on mercury reaction characteristics as determined in mercury speciation transformation tests atdifferent conditions. The kinetic equation is: ; reaction rate is:k = 0.029858exp(-12787.54/RT). The simulation results indicated that the model is capable ofdescribing the test data. It also showed that the reaction temperature, contact time, HC1 inlet content, influenced the mercury speciation transformation.The modification of adsorbents was studied , then selects out effective adsorbents through the experiment on the experimental set-up which can simulate flue gas conditions in the power plant. The research mainly contains three jobs: Firstly, referring to many literatures and the methods of mercury removal in the industry of refining mercury, the experimental modification of adsorbents is made, which includes the reactive MnO2-impregnated adsorbents, the FeCl3-impregnated adsorbents, the sulfur-impregnated adsorbents at various temperatures, etc. Secondly, the preliminary selection of adsorbents is carried out on a fixed bed. The primary adsorbents and modified adsorbents are tested at the constant temperature. The mechanisms and
    
    rate of elemental mercury (Hg0) capture by activated carbons and some other modified chemically sorbents have been studied using a bench-scale fixed-bed apparatus. We have screened out some efficient sorbents such as activated carbons were impregnated with MnO2, FeCl3 and sulfur at 600癈, zeolite were impregnated with MnO2, roseite were impregnated with MnO2, FeCl3, and bentonite were impregnated with MnO2. The effects of flue gas composition, inlet mercury concentration, adsorption temperature and ratio of C/Hg were investigated to determine the abilities to remove mercury in simulated flue gas streams.The emission study for mercury was conducted at a 6 MW stone-coal-fired plant for the combustion of a coal with mercury concentration of 0.1209mg/kg. The power plant equipped with a cold-side electrostatic precipitator. During full load operation of the boilers samples of the input and output stream such as coal, coal ash, ESP ash and
引文
[1] 徐旭常等,我国燃煤污染控制技术与对策的研究,苏州科技学院学报:工程技术版,2003,16(1),8~15
    [2] 郑楚光,洁净煤技术,武汉:华中理工大学出版社,1996
    [3] 郑楚光,燃煤痕量元素的排放与控制,湖北科学技术出版社,2002.11
    [4] 冯新斌,洪业汤,密闭溶样两次金汞齐冷原子吸收光谱法测定煤中微量汞,分析测试学报,1998
    [5] 联合国环境规划署,世界卫生组织合编,《环境卫生基准(Ⅰ)汞》霍本兴译,中国环境科学出版社,1990
    [6] F. ALBERT COTTON and GEOFFREY WILKINSON, ADVACED INORGANIC CHEMISTRY, Fifth Edition
    [7] 王晓蓉.环境化学[M].南京大学出版社,2000
    [8] 赵天从编,重金属冶金学,北京:冶金工业出版社,1981.
    [9] 王夔主编,生命科学中的微量元素,北京:中国计量出版社,1992.
    [10] 廖自基编著,微量元素的环境化学及生物效应,北京:中国环境科学出版社,1992.
    [11] 柴之芳,祝汉民,微量元素化学概论,北京:原子能出版社,1994.
    [12] [英]格林伍德 N N,厄恩肖 A(著),元素化学(下册)[M],王曾隽,等译.北京:高等教育出版社,1996.449.
    [13] Thomas D. Brown, Dennis N. Smith, Richard A. Hargis, Jr., and Winiam J. O' Dowd, Mercury easurementand Its Control: What We Know, Have Learned, and Need to Furthur Investigate, Journal of the air & waste management association, 1999, 6.
    [14] [英]J.D.李氏原著,张靓华等译,申泮文校,新编简明无机化学,人民教育出版社,1983
    [15] 山县登著,乔志清,乔志源,温宁译,微量元素与人体健康,北京:地质出版社,1987.
    [16] H.A.施罗德著,痕量元素与人,科学出版社,1979.
    [17] 汞,喜田村正次,近藤雅臣,藤井正美等著,原子能出版社,1988,3
    [18] U. S. EPA. Mercury Study Reportto Congress; EPA 452 r R-97-003; U. S. Environmental Protection Agency, Office of Air Quality Planning and Standards and Office of Research and Development, U. S. Government Printing Office: Washington, DC, December 1997.
    [19] 任建莉,燃煤过程中汞析出及模拟烟气中汞吸附脱除实验和机理研究,浙江大学博士学位论文,2003.5
    [20] 王宏,徐智,汞在环境中的污染和迁移转化,内蒙古环境保护,2000,12(1),46-47.
    [21] 陶铿编译,化工生产中汞污染防治,石油化工工业出版社,1978。
    [22] 李香兰等,环境中若干元素的自然背景值及其研究方法.科学出版社,1982.
    [23] J.M.伍德,地理环境与污染研究,科学技术文献出版社,1974.
    
    [24] J. O. Nriagu, J. M. Pacyna, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 1988, 134.
    [25] J. M. Pacyna, J. Munch, Anthropogenic mercury emission in Europe, Water, Air and Soil Pollution, 56, 1991, 51-61.
    [26] Mercury atmospheric processes: A synthesis report, EPRI/IR-104214, EPRI palo. Alto. CA, 1994.
    [27] 周劲松,骆仲泱,任建莉等.燃煤汞排放的测量及其控制技术[J].动力工程,2002,32(5)
    [28] 周劲松,骆仲泱,任建莉,岑可法,煤裂解或燃烧条件下汞的析出规律研究,燃烧科学与技术,Vol.8,No.2,2002.4,pp103-108
    [29] ZHOU jinsong, LUO zhongyang, REN jianli, CEN kefa, Mercury transport during coal combustion and pyrolysis, The 26th International Technical Conference on Coal Utilization & Fuel Systems
    [30] 王泉海,邱建荣,吴昊,煤燃烧过程中汞释放的研究现状,热能动力工程,2002,17,547-550.
    [31] 任建莉 周劲松 骆仲泱 岑可法,煤中汞燃烧过程析出规律试验研究,环境科学学报2002,22(3),289-293.
    [32] 王起超,马如龙,煤及灰渣中的汞,中国环境科学,1997;17(1),76-79.
    [33] 施正伦,骆仲泱,周劲松,程乐鸣,王勤辉,方梦样,岑可法,石煤流化床燃烧重金属排放特性试验研究,煤炭学报,2001,26(2),209-212.
    [34] 任建莉 周劲松 骆仲泱 岑可法,燃煤过程中汞的析出规律试验研究,浙江大学学报,2002,36(4),397-403.
    [35] B. Hall, P. Schager, O. Lindqvist, Chemical reactions of mercury on combustion flue gases, Water, Air, and Soil Pollution, 1991: 56, 3-14.
    [36] J. M. Pacyna, J. Munch, Anthropogenic mercury emission in Europe, Water, Air and Soil Pollution, 56, 1991, 51-61.
    [37] 刘俊华,王文华,彭安,北京市二个主要工业区汞污染来源的初步研究,环境科学学报,1998,18(3):331-336.
    [38] Lipfert, F. W., Moskowitz, P. D., Ftherakis, V., Dephillips, M., Viren, J. and Saroff, L., Assessmentof adult risks of paresthesia dueto mercury from coal combustion, Water, Air and Soil Pollution, 80(1-4), 1995, 1139.
    [39] R. Chang, G. R. Offen, Power Engineering, 1995(51), 51-57.
    [40] B. C. Young, S. J. Miller, D. L. Laudal, The 1994 Pittsburgh coal conference, Pittsburgh, PA, Sep1994.
    [41] Y. Otani, C. Kanaoka, C. Usui, S. Matsui, Environmental Science Technology, 1986 (20), 735.
    [42] W. Jozewicz, S. V. Krishnan, B. K. Gullett, Bench-scale investigation of mechanism of elemental mercury capture by activated carbon, Second international conference: managing hazardous air pollutants, Washington, DC, July 1993.
    [43] Matsumura, Y., Adsorption of Mercury Vapor on the Surface of Activated Carbons Modified by Oxidation or Iodization [J], Atmospheric Environment, 1974, 8:1321-1327.
    [4
    
    [44] K. Felvang, R. Gleiser, G.. Juip, K. Nielsen, Activated carbon injection in sprey Dryer/ESP/FF for mercury and toxics control, Proceedings of the second international conference on managing hazardous air pollutants, Washington, DC, July1993.
    [45] T. Marshall, The useof activated carbon for flue gas treatment, First international symposium on incineration and flue gas treatment technologies, Sheffield, UK, July1997.
    [46] D. Karatza, A. Lancia, D. Musmarra, F. Pepe, Adsorption of metallic mercury on activated carbon, Twenty-sixth symposium on combustion, Pittsburgh, PA, July1996a.
    [47] Y. H. Li, C. W. Lee, B. K. Gullett, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption, Fuel, 2003, 82, 451-457.
    [48] T. G. Brna, J. D. Kilgroe, the impact of particulate emissions control on the control of other MWC air emissions, Journal of the air & waste management association, 1990, 40(9), 1324-1328.
    [49] S. J. Miller, D. L. Laudal, R. Chang, P. D. Bergman, Laboratory-scale investigation of sorbents for mercury control. The 87th annual meeting and exhibition of the air & waste management association, Cincinnati, OH, June 1994.
    [50] S. J. Miller, D. L. Laudal, G. E. Dunham, R. Chang, P. D. Bergman, Piolt-scale investigation of mercury control in baghouses, In Proceddings of the ERPI/DOE international Conference on managing Hazardous and particulate pollutants, Toronto, Canada, August 15-17, 1995.
    [51] 任建莉 周劲松 骆仲泱 岑可法 活性炭吸附烟气中气态汞的试验研究 中国电机工程学报,2004,2
    [52] Sinha, R. K. and Walker, P. L., Removal of Mercury by Sulfurized Carbons, Carbon, Vol. 10, (1972), pp. 754-756.
    [53] Y. Otani, H. Emi, C. Kanaoka, Environmental Science Technology, 1988(22), 708
    [54] S. V. Krishnan, B. K. Gullett, Wojciech Jozewicz, Sorption of elemental mercury by activated carbons. Environmental Science Technology. 1994, 26, (8), 1506-1512.
    [55] C. D. Livengood, H. S. Huang, J. M. Liu, The 87th annual meeting and exhibition of the air & waste management association, Cincinnati, OH, June 1994.
    [56] R. D. Vidic, J. B. Mclaughlin, Uptake of Elemental Mercury Vapors by Activated Carbons. Jounal of air & waste management association, 1996(46), 241-250.
    [57] P. Schager; B Hall; O. Linquist, Retention of gaseous mercury on fly ashes, Second international conference on mercury as a Global pollutant, Monterey, CA, June 1992.
    [5
    
    [58] E. J. Granite, H. W. Pennline, R. A. Hargis, Novel sorbents for mercury removal from flue gas, Industrial & engineering Chemistry Research, v39, 1020-1029, April 2000.
    [59] M. Van Wormer, Control of Mercury Emissions From Combustion Applications. Presented at 1992 AIChE National Meeting, August 1992.
    [60] 彭苏萍,王立刚,燃煤飞灰对锅炉烟道气的吸附研究,煤炭科学技术,2002,30 (9),33-36.
    [61] W. D. Owens, A. F. Sarofim, D. W. Pershing, The use of recycle for enhanced volatile metal capture, Trece elements transformation in coal-fired power systems workshop, Scottsdale, AZ, April1993.
    [62] D. M. White, W. E. Kelly, M. J. Stucky, J. L. Swift, M. A. Palazzolo, Emission test report, Field test of carbon injection for mercury control, Camden county municipal waste combustor, U. S.
    [63] D. M. White, K. L. Nebel, J. D. Kilgroe, Parametric evaluation of powdered activated carbon injection for control of mercury emissions from a municipal waste combustor, AWMA 85" Annual meeting and exhibition, Kansas city, MO, June 1992.
    [64] J. Bergstrom, Waste management and research, 1986, 4, 57-64.
    [65] M. S. Devito, P. R. Tumati, R. J. Carlson, N. Bloom, Sampling and speciation studies at coal-fired utilities equipped wet scrubbers, Presented at the fourth EPRI international conference on managing hazardous air pollutants, Washington, SC, November 1997.
    [66] M. S. Devito, W. A. Rosehoover, Hg flue gas measurements from coal-fired utilities equipped wet scrubbers, Presented at the 92nd Annual meeting and exhibition of the air & waste management association, St. Louis, MO, June1999.
    [67] Tanaporn Sakulpitakphon, James C. Hower, Alan S. Trimble, William H. Schram, and Gerald A. Thomas, Mercury Capture by Fly Ash: Study of the Combustion of a High-Mercury Coal at a Utility Boiler, Energy & Fuels 2000, 14, 727-733.
    [68] D. J. Hassett, K. E. Eylands, Mercury capture on coal fly ash, Fuel, 1999, (78), 243-248.
    [69] 朱珍锦,薛来,谈仪,负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究,中国电机工程学报,2001,21(7),87—90.
    [70] R. A. Hargis, H. W. Penniline, Trace elements distribution and mercury speciation in a pilot-scale coal combustor burning Blackville coal, Presented at the 90th annual meeting and exhibition of the air & waste management association, Toronto, Canada, June1997, Paper No. 97-WP72B. 04.
    [71] Dennis J. Helfritch, Paul L. Feldman, The use of a Circulating fluid bed for mercury adsorption and particle agglomeration, The air & waste management association's 92nd annual meeting & exhibition, June20-24, 1999, St. Louis, Missouri.
    
    [72] E. G. Waugh, Mercury and acid gas control in utility baghouses through sorbent injection pilot-scale demonstration, Presented at the power-gen .international' 97, Dallas, TX, December9-ll, 1997.
    [73] K. E. Redinger, A.Evans, R. Bailey, Mercury emissions control in FGD systems,Presented at the EPRI/DOE/EPA combined air pollutant control symposium, Washington,DC, August, 25-29,1997.
    [74] T. R. Carey, 0. W. Hargrove, T. D. Brown, Enhanced control of mercury in wet FGD systems, Presented at the first joint DOE-PETC power and fuel systems contractors conference, U.S. Department of energy, Pittsburgh, PA, July9-11, 1996.
    [75] K. C. Galbreath, C. J. Zygarlicke, Mercury transformation in coal combustion flue gas, Fuel processing technology, 2000, 65-66, 289-310.
    [76] S. V. Krishnan, B. K. Gullett, W. Jozewicz, Mercury control in municipal waste combustion and coal-fired utilities, Environmental Progress, 1997,16,47-53.
    [77] A. Lancia, D. Musmarra, F. Pepe, G. Volpicelli, Adsorption of mercuric chloride vapours from incinerators flue gases on calcium hydroxide particles,Combustion Science, 1993, 93, 277-289.
    [78] W. Jozewicz, B. K. Gullett, Reaction mechamisms of dry Ca-based sorbents with gaseous HC1, Ind. Eng. Chem. Res., 1995, 34, 607-612.
    [79] V. L. Shashkov, L. P. Mukhlenov, E.Ya Benyash, V. L. Ostanina, Effect of mercury vapors on the oxidation of sulfur dioxide in a fluidized bed of vanadium catalyst, Khim. Prom-st (Moscow), 1971, 47, 288-290.
    [80] L. L. Zhao, G. T. Rochelle, Mercury adsorption in aqueous oxidants catalyzed by mercury (II), Ind. Eng. Chem. Res., 1998, 37, 380-387.
    [81] S. V. Krishnan, B. K. Gullett, W. Jozewicz, Mercury sorption mechanisms and control by calcium-based sorbents, The 89th air & waste management association annual meeting, paper No. 96-WP64B. 05, Nashvile, TN (1996.)
    [82] S.B. Ghorlshi, B. K. Gullett, An experimental study on mercury sorption by activated carbons and calcium hydroxide, The fifth annual north American waste-to-energy conference, Research Triangle Park, NC (April 1997).
    [83] E. G.Waugh, et al. Mercury control on coal-fired flue gas using dry carbon-based injection pilot-scale demonstration, The AWMA annual meeting, San Diego, CA (June 1998).
    [84] S. Nelson, J. Miller, New mercury control technologies for the Ft. Dix waste .to energy plant, The fifth annual north American waste- to-energy conference,Research Triangle Park, NC(April 1997).
    [85] S. B. Ghorishi, C. F. Singer, C.Sedman, Preparaation and evaluation of modified lime and silica-lime sorbents for mercury vapor emission control,EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta, Georgia.
    [8
    
    [86] S. B. Ghorishi, C. F. Singer, C. Sedman, Preparaation and evaluation of modified lime and silica-lime sorbents for mercury vapor emission control, EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta, Georia
    [87] 北川浩,铃木谦一郎著,鹿政理译,吸附的基础和设计,北京:化学工业出版社,1983。
    [88] D. W. Breck, Zeolite Molecular Sieves: structure, chemistry and use, Wiley:New York, 1974.
    [89] W. M. Mieer, D. H. Olson, C. Baerlocher, Atlas of zeolite structure types, 4th ed. Elsevier: London, 1996.
    [90] H. Van Bekkum, E. M. Flanigan, J. C. Jansen, Introduction to zeolite science and pratice. Amsterdam, 1991, (58).
    [91] J. R. Morency, T. Panagiotou, Control of mercury emissions in utility power plants, EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta, Georgia
    [92] C. Y. Wu, T. G. Lee, E. Arar, P. Bismas, Novel in situ generated sorbent methodology and. UV irradiation For mercury capture in combustion environments, EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1997, Washington, DC
    [93] Shannon D. Serre, Adsorption of elemental mercury on pulverized flyash, Dissertation, Uni. Utah, August 1999.
    [94] C. S. Turchi, J. Albiston, T. E. Broderick, R. M. Stewart, Removal of mercury from coal-combustion flue gas using regenerable sorbents, The air& waste management assiciation' s 92nd annual meeting & exhibition, St. Louis, Missouri, June 20-24, 1999, 99-121-1.
    [95] O. Aeschliman, G. Norton, collection and thermal evolution behaviors of different mercury species captured with gold, Environmental science technology, 1999, (33), 2278-2283.
    [96] T. R. Carey, C. F. Richardson, Stability of mercury captured on sorbent surfaces, The air& waste management assiciation' s 92nd annual meeting & exhibition, St. Louis, Missouri, June 20-24, 1999, 99-82-1.
    [97] 罗颖都,李忠民等编译,煤的化学和物理脱硫,煤炭工业出版社。
    [98] 毛健雄,毛健全,赵树民,编著,煤的清洁燃烧,北京:中国科学出版社,2000。
    [99] 曹征彦,汪肇平,沈嘉龙 等编,中国洁净煤技术,北京:中国物资出版社,1998。
    [100] 曾汉才,燃烧与污染,武汉:华中理工出版社,1992。
    [101] B. Toole-O' neil, S. J. Tewalt, R. B. Finkleman, Mercury concentration in coal — unraveling the puzzle. Fuel. 1999, (78), 47-74.
    [102] F. J. Smit, N. Moro, G. L. Shields, Reduction of toxic trace elements in coal by advanced coal cleaning, in proceedings of 13th annual international Pittsburgh coal conference, Pittsburgh, PA. 1996, (2), 879-884.
    [1
    
    [103] D.D. Ferris, Engineering development of advanced physical fine coal cleaning technologies - Froth flotation, ICF Kaiser engineers final report for DOE contract.
    [104] D. J. Akers, C. E. Raleigh, The mechanisms of trace element removal during coal cleaning. Coal Preparation. 1998, (19), 3-4.
    [105] C. D. Livengood, H. S. Huang, M. H. Mendelsohn, J. M. Wu, 1996, Enhancement of Mercury Control in Flue-Gas Cleanup Systems, Proc. U. S. DOE/PETC First Joint Power & Fuel Systems Contractors Conference, Pittsburgh, Penn., July 9-11.
    [106] S. J. Miller, D. L. Laudal, G.E. Dunham, K. Walker, H. Krigmont, Advanced Hybrid particulate collector, A new concept for air toxics and fine particulate control, the EPRI-DOE-EPA combined utility air pollutant control symposium, Washington D. C., August 1997.
    [107] J. D. Kilgroe, R. K. Srivastava, Control of mercury emission from coal-fired electric utility boilers, Technical memorandum, October 2000.
    [108] R. Meij, The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization, Water, Air, and Soil Pollution, 1991; 56: 21-33.
    [109] R. Chang, D. Owens, EPRI J. 1994, July/Aug, 46.
    [110] Chang, R.; Hargrove, B.; Carey, T.; Richardson, C.; Meserole, F., 1996, Power Plant Mercury Control Options and Issues, Proc. POWER-GEN' 96 International Conference, Orlando, Fla., Dec. 4-6.
    [111] Huang, H. S.; Wu, J. M.; Livengood, C. D., Development of Dry Control Technology for Emissions of Mercury in Flue Gas. Proc. The Fourth International Congress on Toxic Combustion Byproducts. Berkeley, Calif. June1995, 5-7.
    [112] S. B. Ghorishi, C. W. Lee, J. D. Kilgroe, Mercury Speciation in Combustion Systems: Studies with Simulated Flue Gases and Model Fly Ashes, Paper # 99-651 Presented at the 92nd Annual meeting of Air and Waste Management Association, June 20-24, St. Louis, MO, 1999.
    [113] B. K. Gullett, S. B. Ghorishi, W. Jozewicz, The advantage of Illinois coal for FGD removal of mercury, Final technical report, November 1, 2000, through October 31, 2001.
    [114] 周劲松 午旭杰 高洪亮 骆仲泱 岑可法,燃煤循环流化床锅炉汞排放及控制试验研究,热力发电,2004,1
    [115] C. D. Livengood, M. H. Mendelsohn, Progress for combined control of mercury and nitric oxide, EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta, Georgia
    [116] Mendelsohn, M. H.; Harkness, J. B. L., Enhanced Flue-Gas Denitrification Using Ferrous·EDTA and a Polyphenolic Compound in an Aqueous Scrubber System. Energy & Fuels, 1991, 5(2):244-247.
    [117] Mendelsohn, M. H.; Wu, J.; Huang, H.; Livengood, C. D., Elemental Mercury Removals Observed in a Laboratory-Scale Wet FGD Scrubber System. Emerging Clean Air Technologies and Business Opportunities, Toronto, Canada, Sept. 1994, 26-30:
    [1
    
    [118] C. D. Livengood, H. S. Huang, M. H. Mendelsohn, Enhancement of mercury control in flue-gas cleanup systems, Technical report, Argonne National Laboratory.
    [119] C. D. Livengood, M. H. Mendelsohn, Investigation of modified speciation for enhanced control of mercury, Technical report, Argonne National Laboratory.
    [120] C. D Livengood, M. H Mendelsohn, H. S. Huang, J. M. Wu, Development of Mercury Control Techniques for Utility Boilers. 88th Annual Meeting Air & Waste Management Association, San Antonio, Texas, 1995, June 18-23.
    [121] M. G. Milobowski, G. T. Amrhein Barberton, G. A. Kudlac, D. M. Yurchison, Wet FGD enhanced mercury control for coal-fired utility, The U.S. EPA/DOE/EPRI Combined Power Plant Air Pollutant Control Symposium: "The Mega Symposium" August 20-23, 2001, Chicago, Illinois, U. S. A.
    [122] C. Ramsay, R. George, Mercury emission control technologies: an EPRI synopsis, Power Engineering, 1995, (11), 51-57.
    [123] B.E.戈兰特,等离子体物理基础,北京:原子能出版社,1993.
    [124] 林赫,直流电晕放电诱导自由基簇射烟气脱销试验和机理研究,浙江大学博士学位论文,2002,5
    [125] Tomio Fujii, Removal of NOx by DC Corona Reactor with Water, Journal of Electrostatics, 2001, 51, 8-14.
    [126] Mizuno, A., et al., A Device for Removal of Sulfur Dioxide Exhaust Gas by Pulsed Energixation of Free Electrons, Proc. of IEEE/IAS, 1984 Annual Conf., 1984. 1025-1182.
    [127] 吴彦,占部武生,脉冲放电法消除汞蒸气的试验研究,环境科学学报,1996,16(2),221-225.
    [128] 吴彦,增田闪一,环境科学学报,1989,9(4),381。
    [129] C. McLarnon, B. Penetrante, Effect of Reactor Design on the Plasma Treatment of NOx, SAE Technical Paper Series 982434, San Francisco, CA, October 1998.
    [130] C. R. Mclarono, M. D. Jones, Electro-Catalytic Oxidation Process for Multi - Pollutant Control at FirstEnergy' s R. E. Burger Generating Station, Presented at Electric Power 2000 Cincinnati Convention Center April 5, 2000.
    [131] U. Kogelschatz, B. Eliasson, W. Egli, Dielectric-Barrier Discharges Principle and Applications, International Conference on Phenomena in Ionized Gases, Toulouse, France, July 1997.
    [132] F. Alix, S. Neister, C. McLarnon, Barrier Discharge Conversion of SO2 and NOx to Acids, U. S. Patent No. 5, 871, 703, February, 1999.
    [133] Monroe L., Cushing K., Harrison W. and Altman R., Testing of a Combined Dry and Wet Electrostatic Precipitator for Control of Fine Particulate Emissions from a Coal-Fired Boiler, Presented at the EPRI-DOE-EPA Combined. Utility Air Pollutant Control Symposium, Washington D. C., August 1997.
    [1
    
    [134] Alix F., Neister S. and McLarnon C., Barrier Discharge Conversion of SO2 and NOx to Acids, U. S. Patent No. 5, 871, 703, February, 1999.
    [135] C. McLarnon, Nitrogen Oxide Decomposition By Barrier Discharge, Dissertation for Doctor of Philosophy Degree in Chemical Engineering, University of New Hampshire, May 1996.
    [136] CR. McLarnon, ML. Horvath, Electro-Catalytic Oxidation Technology Applied to Mercury and Trace Elements Removal from Flue Gas, Presented at Conference on Air Quality Ⅱ McLean, VA September 20, 2000
    [137] T. D. Brown, D. N. Smith, W. J. O' Dowd, R. A. Hargis Jr, Control of mercury emissions from coal - fired power plants: a preliminary cost assessment and the next steps for accurately assessing control costs, Fuel Processing Technology, 2000, (65-66) 311-341.
    [138] T. D. Brown, W. J. O' Dowd, R. B. Reuter, D. N. Smith, Control of mercury emissions from coal-fired power plants: a preliminary cost assessment, in: Proceedings of the U. S. Department of Energy/National Energy Technology Laboratory Advanced Coal-Based Power and Environmental Systems' 98 Conference, July 21-23, 1998.
    [139] Tai-Gyu Lee, Study of mercury kinetics and control methodologies in simulates combustion flue gases, dissertation, University of Cincinnati, 1999.
    [140] EPRI, Electric utility traces substances synthesis report, EPRITR-104614-V3, 3(Appendix 0), 1995.
    [141] R. Chang, G. R. Offen, Power engineering, 1995, 5, 51-57.
    [142] R. Chang, D. Owens, EPRI J., 1994, July/August 46-49.
    [143] REN Jianli, ZHOU Jinsong, LUO Zhongyang, CEN Kefa, Investigation into mercury transformation mechanisms in laboratory combustion systems, No. 375-5., International Conference on Energy and the Environment, 2003, Shanghai, China
    [144] 高翔、骆仲泱等,喷钙脱硫系统中增湿活化装置的脱硫性能研究—试验结果及分析,中国电机工程学报,Vo1.19,No.2,P:10-15
    [145] 王乃华,新型半干法烟气脱硫的试验及机理研究,浙江大学博士学位论文,2001,3;
    [146] 滕斌,半干法烟气脱硫的试验及机理研究,浙江大学博士学位论文,2004,3
    [147] 濮洪九.推进洁净煤技术产业化是适合国情的能源结构优化措施.中国煤炭学会第二次洁净煤技术研讨会,杭州,2001
    [148] 岑可法院士,洁净煤燃烧发电技术报告.中国煤炭学会第二次洁净煤技术研讨会,杭州,2001
    [149] D J. Swaie, Trace elements in coal. London: Butterworth, 1990,109-113
    [150] EPA. Mercury Study Report to Congress. 1997.
    [151] www. epa. gov /mercury/general Information.
    
    [152] EPA technical information, EPA to regulate mercury and other air toxics emissions from coal-and oil-fired power plants. 14 December 2000.
    [153] EPA Research and development, Control of mercury emissions from coal-fired electric utility boilers: interim reports, including errata dated March 21, 2002.
    [154] 生活垃圾焚烧污染控制标准,国际环境保护总局文件,环发[2000]46号,2000.3.1。
    [155] Shell, K. J. & Anderson-Carnahan L, A multi-media approach to permitting mercury releases from coal-fired power plants, Water, Air and soil Pollution, 80(1-4), 1995, 1161.
    [156] CARPI. A, Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere, [J], Water, Air and Soil Pollution, 1997, 98(9):241~254
    [157] P. Schager, Report No. FBT-91-20, Statens enengiverk National Energy Administration: Sweden, 1990.
    [158] B. Ha11, O. Lindqvist, S. E. Ljung, Mercury chemistry in simulated flue gases related to waste incineration conditions, Environmental science and technology, 1990, 24(1), 108-111.
    [159] P. schager, The Behavior of Mercury in flue gases, Department of Inorganic Chemistry, University of Goteburg, Report OOK 90 : 07, Goteburg, Sweden, 1990.
    [160] S. B. Ghoristhi, Fundamentals of Mercury speciation and Control in Coal-fired Boilers, EPA-600/R-98-014, February, 1998.
    [161] B. Hall, P. Schager, E. Ljungstrom, The gas phase oxidation of elemental mercury by ozone, Water, Air and Soil Pollution, 1995 (80), 301-315.
    [162] Rebecca N. Sliger, John C. Kramlich, Nick M. Marinov, Towards the development of a Chemical kinetic model for the homogeneous oxidation of mercury by chlorine species, Fuel Processing Technology, 2000, (65-66), 423-438.
    [163] 刘迎晖 郑楚光 游小清 邱建荣,氯元素对烟气中汞的形态和分布的影响,环境科学学报,2001 Vol. 21 No.1 P. 69-73
    [164] Radian International LLC et al. Enhanced Control of Mercury and Other Haps by Innovative Modifications to Wet FGD Process; Final, Report under Phase I DOE/FETC Mega PRDA Program (period of performance, September 1995 to July 1997) September 1997.
    [165] Standard test method for mercury from coal-fired stationary sources (Ontario Hydro Method),July7, 1999, EPA USA
    [166] Lancia, A. Musmarra, D., Pepe, F., Volpicelli, et. al. Adsorption of mercuric chloride vapours from incinerator flue gases on calcium hydroxide particales. [J] Combustion Scince Technology, 1993, 93:277-289.
    [167] Sliger R., Kramlich J., et al. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. [J] Fuel Processing Technology, 2000, 65:423-424
    [1
    
    [168] Ghorishi S. B., C. W. Lee, and J. D. Kilgroe. Mercury speciation in combustion systems: studies with simulated flue gases and model fly ashes. The 92nd Annual Meeting of Air & Waste Management Association, Louis, June, 1999:20-24
    [169] Niksa S, J. J. Helble, N. Fujiwara. Interpreting laboratory test data on homogeneous mercury oxidation in coal-derived exhausts. The 94th Annual Meeting of the Air & Waste Management Association, Orlando, June 24 -28, 2001.
    [170] STEPHEN NIKSA, Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H_2O in predicting oxidation in coal-derived system, Environ. Sci. Technol., 2001, 35, 3701~3706
    [171] D. DAJNAK and F. C. LOCKWOOD, MODELLING OF TOXIC HEAVY METAL MERCURY PARTITIONING FROM PULVERISED FUEL COMBUSTION, IFRF Combustion Journal Article Number 200103, March 2001
    [172] C. L. Senior, A. F. Sarofim, T. Zeng, et al., Gas-phase transformations in coal-fired Dower plants. Fuel Processing Technology. 2000. 63. 197-213.
    [173] 徐明厚、郑楚光等,煤燃烧过程中痕量元素排放的研究现状,中国电机工程学报,2001。21(10):33~38
    [174] Mallard W G, Westley F, Horn J T el., NIST Chemical Kinetic Database (Version 2Q98),1998
    [175] Widmer N C, West J, Thermochemical Study of Mercury Oxidation in Utility Boiler Fuel Gases [R], 93rd Annual Meeting, Air & Waste Management Association, Salt Lake City, Utah, 2000
    [176] Sliger R N, Kramlich J C, Marinov N M, Paper 99F-072, Fall 1999 meeting of the western states section/The combustion institute, University of California, Irvine, California, October 25~26, 1999
    [177] Tai Gyu Lee, Hg Reactions in the Presence of Chlorine Species: Homogeneous Gas Phase and Heterogeneous Gas-Solid Phase, J. Air & Waste Manage. Assoc. 52:1316-1323
    [178] C. Senior, D. Senior, D. Lignell Lignell, B., B. Shiley Shiley, Z. Chen and A. Z. Chen and A. Sarofim, Kinetic Models for Predicting the Behavior of Mercury in Coal-Fired Power Plants, ACERC Annual Conference February 19-20, 2003
    [179] 刘晶,王满辉,郑楚光,煤燃烧中汞与含氯气体的反应机理研究,工程热物理学报,2003,Vol.24,No.1
    [180] 赵峰华,任德貽等,燃烧产物中砷的物相研究,中国矿业大学学报,1999,(4):366~367
    [181] Mamani-Paco R M, Helble J J. Bench-scale examination of mercury oxidation under non-isothermal conditions, 93rd Annual Meeting, Air & Waste Management Association, Salt Lake City, Utah, 2000
    [182] QM201H燃煤烟气测汞仪说明书
    [183] Senior, C. L., L. E. Bool Ⅲ, G. P. Huffman, F. E. Huggins, N. Shah, A. F. Sarofim, I. Olmez, and T. Zeng, A Fundamental Study of Mercury Partitioning in Coal Fired Power Plant Flue Gas, Annual Meeting of Air & Waste Mgmnt. Assocn., Paper 97-WP72B. 08, Toronto, Canada (1997).
    [1
    
    [184] Hall, B., P. Schager, and E. Ljungstr(?)m, An Experimental Study on the Rate of Reaction between Mercury Vapour and Gaseous Nitrogen Dioxide, Water, Air and Soil Pollution, 81, 121 (1995).
    [185] Stephen Niksa, N. Fujiwara, Y. Fujita, and K. Tomura, A Mechanism for Mercury Oxidation in Coal-Derived Exhausts, J. Air & Waste Manage. Assoc. 52:894-901, 2002
    [186] 刘迎晖,煤燃烧过程中痕量元素的迁徙变化行为,华中科技大学博士学位论文,2002,4
    [187] L. Liberti, M. Notarnicola, V. Amicarelli, V. Campanoro, F. roethel, L. Swanson, Waste management research, 1998, (16), 183-189.
    [188] D. Karatzaa, A. Lancia, D. Musmarra, C. Zucchini, Study of mercury absorption and desorption on sulfur impregnated carbon Experimental Thermal and Fluid Science, 2000, (21), 150-155
    [189] W. Liu, Radisav D. Vidic, Optimization of sulfur impregnation protocal for fixed bed application of activated carbon-based sorbents for gas-phase mercury removal, Environmental Science Technology, 1998, (32), 531-538.
    [190] S. J. Miller, G. E. Dunham, E. S. Olson, T. D. Brown, Flue gas effects on a carbon - based mercury sorbent, Fuel Processing Technology, 2000, 65 - 66, 343 - 363.
    [191] D. L. Roberts, R. M. Stewart, Novel Process for Removal and Recovery of Vapor Phase Mercury. Presented at First Joint Power&Fuel Systems Contractors conference, Pittsburgh, PA, July 1996.
    [192] T.Y. Yan, A Novel Process for Hg Removal from Gases. Ind. Eng. Chem. Res. 1994, (33), 3010.
    [193] B. Ghorishi, W. Jozewicz, B. K. Gullet, C. B. Sedman, Mercury Control:Overview of Bench-Scale Research at EPA/APPCD. Presented at the First Joint Power & Fuel Systems Contractors Conference, Pittsburgh, PA, July 1996.
    [194] S. J. Miller, E. S. Olson, G. E. Dunham, R. K. Sharma, Preparation Methods and Test Protocol for Mercury Sorbents, Presented at the Air and Waste Management Association 91st Annual Meeting and Exhibition, San Diego, CA, June 14 - 18, 1998.
    [195] G. E. Dunham, S. J. Miller, R. Chang, P. Bergman, Mercury Capture by an Activated Carbon in a Fixed-Bed Bench-Scale System, Presented at the Air and Waste Management Association 90th Annual Meeting and Exhibition, Toronto, ON, Canada, June 8 - 13, 1997.
    [196] Matsumura, Y. Atmos. Environ., 1974, 8, 1321-1327.
    [197] A. J. Teller, J. M. Quimby, 84th annual meeting and exhibition, AWMA, Vanciuver, BC, 1991, 91-35. 5.
    
    [198] S Evan J.Granite, Henry W. Pennline, Richard A. Hargis, Novel sorbents for mercury removal from flue gas, Industrial & engineering Chemistry Research, v39, 1020-1029, April 2000.
    [199] 蒋维钧,雷良衡,戴遒元 主编,新型传质分离技术,北京:化学工业出版社,1992。
    [200] 张铨昌 杨华蕊,韩成,天然沸石离子交换性能及其应用,科学出版社。
    [201] H. Van Bekkum, E. M. Flanigan, J. C. Jansen, Introduction to zeolite science and pratice. Amsterdam, 1991, (58).
    [202] 徐采栋,汞冶金的理论基础,上海科学技术出版社,1964年
    [203] 曹清华等,粘土—无机层间化合物的制备、表征和应用,非金属矿,1998,(3),8。
    [204] G.. Sposito, The surface chemistry of soils, Oxford Press, New York, 1984.
    [205] 徐丁苗.无机化学[M],北京:人民卫生出版社,1987:273
    [206] 吴执中.职业病[M].北京:人民卫生出版社,1984:118~124
    [207] M. W. Chase, C. A. Davies, D. J. Downey, Syverd AN. JANAF thermodynamics tables. Journal of physical and chemical reference data. 1985, (14), 1-1856
    [208] P. J. M. Carrott, M. M. L. R. Carrott, J. M. V. Nabais, Influence of Surface Ionization On The Adsorption Of Aqueous Mercury Chlorocomplexes By Activated Carbons. Carbon, 1998, 36(1-2), 11.
    [209] Sinha, R. K. and Walker, P. L., "Removal of Mercury by Sulfurized Carbons," Carbon, Vol. 10, (1972), pp. 754-756.
    [210] Gullett, B. K.; Jozewizy W. , Bench-Scale Investigation of Mechanisms of Elemental Mercury Capture by Activated Carbon[A], Proceedings of the 1993 International Conference on Managing Hazardous Air Pollutions[C], Washington, DC, July 13-15, 1993, pp. Ⅶ-85 - Ⅶ-99.
    [211] Carley, T. R., Hargrove, jr., W. O., Richrdson, C. F., Factors Affecting Mercury Control in Utility Flue Gas Using Sorbent Injection[A], Proceedings of the 90th Annual Meeting & Exhibition on the Air and Waste Management Association[C], Toronto, Ontario, Canada, July 8-13, 1993:14-18
    [212] Liu, W., Development of Novel Adsorbents for the Control of Vapor-Phase Mercury Emissions[D], Department of Civil and Environmental Engineering, School of Engineering, University of Pittsburgh, 1998:25-49.
    [213] Miller, S. J., Dunham, Grant E., 01son, Edwin S., Mercury Sorbent Development for Coal-Fired Boilers[R], Energy & Environmental Research Center, University of North Dakota:2—6
    [214] Teller, A. J. and Quimby, J. M., Mercury Removal from Incineration Flue Gas[A], Somerville, NJ: Air and Water Technologies[C], Co, 1991:1-21
    [215] P. Chu, D. B. Porcella, Mercury stack emissions from U. S. A. electric utility power plants, Water, air and soil pollution, 1995, 80, 135-144.
    [216] 黄文辉,杨宜春,中国煤中的汞,中国煤田地质,2002,14卷增刊,37-40。
    
    [217] M. Prestbo, S. Bloom, Mercury speciation adsorption (MESA) method for combustion flue gas: Methodology, artifacts, inter-comparison, and atmospheric implications, Water, Air, and Soil Pollution, 1995, 80, 145-148.
    [218] T. D. Brown, W. J. O' Dowd, R. B. Reuter, D. N. Smith, Control of mercury emissions from coal-fired power plants: a preliminary cost assessment, in: Proceedings of the U. S. Department of EnergyrNational Energy Technology Laboratory Advanced Coal-Based Power and Environmental Systems' 98 Conference, July 21 - 23, 1998.
    [219] 王起超,沈文国,麻壮伟,中国燃煤汞排放量估算,中国环境科学,1999;(194):318~321
    [220] 冯新斌,洪业汤,倪建宇,贵州煤中汞的分布、赋存形态及对环境的影响,煤田地质与勘探,1998,26(2),12-14。
    [221] 3012H系列型自动烟尘(气)测试仪技术说明书
    [222] 岑可法,锅炉燃烧试验研究方法及测量技术,浙江大学
    [223] 于正然,刘光铨,单嫣娜,常德华,烟尘烟气测试实用技术,中国环境科学出版社,1990
    [224] Takahisa Yokoyama, Kazuo Asakura; Mercury emissions from a coak-fired power plant in Japan: The Science of the Total Environment 259(2000) 97—103
    [225] Yoshio Otanl Et A1.; Adsorption of Mercury Vapor on Particles; Environmental Science & Technology, 1996, Vol. 20, No. 7
    [226] Shawn Kellie, Kunlei Liu, Ying Gao, Wei-Ping Pan, John T Riley, Mercury Performance in FBC Systems Firing High Chlorine Coals, 2001.
    [227] J. I. Shuckerow et al.; Control Of Air Toxin Particulate And Vapor Emissions After Coal Combustion Utilizing Calcium Magnesium Acetate; Resources, Conservation And Recycling16(1996)15~69
    [228] Thomas D. Brown, Dennis N. Smith,., and Winiam J. O' Dowd, Richard A. Hargis Jr, Control of mercury emission from coal-fired power plant: a preliminary cost assessment and the next steps for accurately assessing control costs, Fuel Processing Technology 65-66(2000) 311—341
    [229] E. D. Stein, Y. Cohen, A. M. Winer, Environmental distribution and transformation of mercury compounds, Crit. Rev. Environ. Sci. Technol. 26 1996 1 - 43.
    [230] I. G. Nodelman, S. V. Pisupati, Sharon Falcone Miller, A. W. Scaroni, Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal water slurry fuel, Journal of Hazardous Materials, 2000, 74, 47 - 59.
    [231] R. Meij, Trace element behavior in coal-fired power plants, Fuel Processing Technology, 1994, 39, 199 - 217.
    [232] Brian K. Gullett, K. Ragnunathan; Reduction Of Coal-Based Metal Emission By Furnace Sorbent Injection; Energy & Fuels 1994, 8, 1068-1076.
    
    [233] R. L. Davidson, D. F. C. Natusch, J. R. Wallace, C. A. Evans, Trace elements in fly ash dependence of concentration on particle size, Environmental Science Technology, 1994, 8(13), 1107-1113.
    [234] 王起超,环境科学,1996,17(4),15-18。
    [235] Durham, M. D, C. J. Bustard, R. Schlager, C. Martin, S. Johnson, S. Renninger, Field Test Program to Develop Comprehensive Design, Operating and Cost Data for Mercury Control Systems on N-on Scrubbed Coal-Fired Boilers, Presented at the Air & Waste Management Association 2001 Annual Conference and Exhibition, June 24-28, 2001, Orlando, FL.
    [236] C. Jean Bustard, Michael Durham, Charles Lindsey, Full-Scale Evaluation of Mercury Control with Sorbent Injection and COHPAC at Alabama Power E. C. Gaston J. Air & Waste Manage. Assoc. 52:918-926
    [237] Shannon D. Serre and Brian K. Gullett, Entrained-Flow Adsorption of Mercury Using Activated Carbon, The Journal of the Air & Waste Management Association, the May 2001 issue
    [238] Sjostrom, S. M., J. Bustard, M. Durham Ph. D, R. Chang Ph. D. "Mercury Removal Trends in Full-Scale ESPs and Fabric Filters". Presented at the "A&WMA Specialty Conference on Mercury Emissions: Fate, Effects and Control," Chicago, IL, August 21 - 23, 2001.
    [239] Meserole, F. B., R. Chang, T. R. Carey, J. Machac, and C. F. Richardson, "Modeling Mercury Removal by Sorbent Injection," J. Air & Waste Mange. Assoc., 49, 694-704, 1999.
    [240] 金峰 曾汉才 钟毅 张鹏宇 许绿丝,颗粒活性炭对汞的吸附实验研究,电力科学与工程,2003 NO.1 P.1-4
    [241] 黄玲清,氯化锌法颗粗活性炭试验研究[J],林产化学与工业,1995,15(3):78-79
    [242] Shannon D. Serre and Brian K. Gullett, Entrained-Flow Adsorption of Mercury Using Activated Carbon, The Journal of the Air & Waste Management Association, the May 2001 issue
    [243] Shannon D. Serre, Brian K. Gullett, Elemental Mercury Capture by Activated Carbon in a Flow Reactor, U. S. Environmental Protection AgencyNational Risk Management Research Laboratory Air Pollution Prevention and Control DivisionResearch Triangle Park, North Carolina, 2003 ACERC Conference
    [244] Gullett, B. K.; Jozewizy W., Bench-Scale Investigation of Mechanisms of Elemental Mercury Capture by Activated Carbon[A], Proceedings of the 1993 International Conference on Managing Hazardous Air Pollutions[C], Washington, DC, July 13-15, 1993, pp. Ⅶ-85 - Ⅶ-99.
    [245] J. R. Flora, R. D. Vidic, W. Liu, Modeling powdered activated carbon injection for the uptake elemental mercury vapors, Journal of air & waste management association. 1998(48). 1051-1059.
    
    [246] C. D. Livengood, H. S. Huang, J. M. Liu, The 87th annual meeting and exhibition of the air & waste management association, Cincinnati, OH, June 1994.
    [247] McLaughlin, J. B., "Activated Carbon Adsorption for the Removal of Mercury. from Flue Gas Emissions," (unpublished M. S. Thesis, Department of Civil and Environmental Engineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, 1995).
    [248] Liu, W., "Development of Novel Adsorbents for the Control of Vapor-Phase Mercury Emissions," (unpublished PhD Thesis, Department of Civil and Environmental Engineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, 1998).
    [249] R. D. Vidic, J. B. Mclaughlin, Uptake of Elemental Mercury Vapors by Activated Carbons. Jounal of air & waste management association, 1996(46), 241-250.
    [250] 郝吉明 王书肖,陆永琪 编著,燃煤二氧化硫污染控制技术手册,北京:化学工业出版社,2001。
    [251] S. J. Miller, G. E. Dunham, E. S. Olson, Controlling Mechanisms That Determine Mercury Sorbent Effectiveness, The Air & Waste Management Association' s 92nd Annual Meeting & Exhibition, St. Louis, Missouri. June 20-24, 1999, 99-898.
    [252] R. Vidic, D. Siler, Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents [J], Carbon, 2001, (39), 3-14.
    [253] Teng, H., Suuberg, E. M., Calo, J. M., Studies of the Reduction of Nitric Oxide by Carbon: The NO-Carbon Gasification Reaction, Energy and Fuels, Vol. 6, (1992), pp. 398-406.
    [254] Proceedings of the 1993 International Municipal Waste Combustion Conference, Williamsburgh, Virginia, March 1993, "Mercury Control Technologies for MWC's; The Unanswered Questions, by C. S. Krivanek, Ⅲ," pp. 824-840.
    [255] Miller, S. J., Dunham, Grant E., Olson, Edwin S., Brown, Thomas D.; "Mercury Sorbent Development for Coal-Fired Boilers," (Grand Forks, ND: Energy & Environmental Research Center, University of North Dakota, undated), unpublished.
    [256] Proceedings of the Air & Waste Management Association's 90th Annual Meeting and Exhibition, Toronto, Ontario, Canada, "A Fundamental Study of Mercury Partitioning in Coal Fired Power Plant Flue Gas, by C. L. Senior, L. E. Bool Ⅲ, G. P. Huffman, F. E. Huggins, N. Shah, A. Sarofim, I. Olmez, and T. Zeng," 97-WP72B. 08.
    [257] NAG 2000 ODeration Manual
    [258] 唐强 张智刚,活性炭选择性吸附烟气中SO_2和NO的实验研究,热力发电,2003,32(12).-53-56
    [259] L. Liberti, M. Notarnicola, V. Amicarelli, V. Campanoro, F.roethel, L. Swanson, Waste management research, 1998, (16), 183-189
    [2
    
    [260] B. Gullett, W. Jozewizy, International Conference on Municipal Waste Combustion. Williamsburg, VA: 1993
    [261] 日本炭素材料学会.活性炭基础与应用。北京:中国林业出版社,1984。
    [262] E. Olson, S. Miller, R. Sharma, Catalytic effects of carbon sorbents for mercury capture. Journal of hazardous materials, 2000, (74), 61-79.
    [263] Proceedings of the 87~th Annual Meeting and Exhibition of the Air and Waste Management Assiciation, Cincinnati, OH, June 19-24, 1994, "Experimental Evalution of Sorbents for the Capture of Mercury in Flue Gases, by C. D. Livengood, H. S. Huang, and J. M. Wu," preprinted, 14 p.
    [264] Proceedings of the 1993 International Conference on Management Hazardous Air Pollutions, Washington, DC, July 13-15, 1993, "Bench-Scale Investigation of Mechanism of Elemental Mercury Capture by Activated Carbon, by W. Jozewicz and B. K. Gullett," (Electric Power Research Institute, 1993), pp. Ⅶ-85 — Ⅶ-99.
    [265] Chang, M., "Kinetics of Vapor-Phase Mercury Uptake by Virgin and sulfur Impregnated Activated Carbons," (unpublished M. S. Thesis, Department of Civil and Environmental Engineering, School of Engineering, University of Pittsburgh, PA, 1993).
    [266] T. R. Carey, O. W. Hargrove, C. F. Richardson, R. Chang, F. B. Meserole, Presented at the 90th Annual Meeting & Exhibition of the Air & Waste Management Association, Toronto, Canada, June 8-13, 1997, Paper 97-WA72A. 05.
    [267] M. W. Chase, C. A. Davies, D. J. Downey, Syverd AN. JANAF thermodynamics tables. Journal of physical and chemical reference data. 1985, (14), 1-1856.
    [268] C. S. Turchi, J. Albiston, T. E. Broderick, R. M. Stewart, Removal of mercury from coal-combustion flue gas using regenerable sorbents, The air & waste management assiciation' s 92nd annual meeting & exhibition, St. Louis, Missouri, June 20-24, 1999, 99-121-1.
    [269] B. A. Buchholz, S. Landsberger, Trace metal analysis of size-fractioned municipal solid waste incinerator fly ash and its lezchates, Journal of Environmental science health, 1993, (A28), 2, 423-431.
    [270] S. Iretskaya, A. Nzihou, C. Zahraoui, Metal leaching from MSW fly ash, before and after chemical and thermal treatments, Environment progress, 1999, (18), 2.
    [271] 庄伟强,固体废物处理与利用,化学工业出版社,2001
    [272] United States Environmental Protection Agency. Code of Federal Regulations, Protection of the environment. 1999. Title 4. CFR 261.24.
    [273] United States Environmental Protection Agency, Test methods for evaluating solid waste, Physical/chemical methods, 2000. http: //www. epa. gov/epaoswer /hazwaste /test /main. htm (02 Oct 2000).
    [274] T. R. Carey, C. F. Richardson, Stability of mercury captured on sorbent surfaces, The air& waste management assiciation' s 92nd annual meeting & exhibition, St. Louis, Missouri, June 20-24, 1999, 99-82-1.
    
    [275] Stepan, D. J., Fraley, R. H., Henke, K. R., Gust, H. M., Hassett, D. J.,Charlton, D. S., Schmit, C. R., 1993, A Review of Remediation Technologies Applicable to Mercury Contamination at Natural Gas Industry Sites, Gas Research Institute Topical Report, September 1993.
    [276] Dean, J. A. ,1985, Lange' s handbook of chemistry, 13th ed., New York,McGraw Hill Book Company, Inc.
    [277] Stepan, D. J., Fraley, R.H., and Charlton, D. S., 1995, Remediation of mercury-contaminated soils: development and testing of technologies, Gas Research Institute Topical Report, GRI-94/0402, May 1995.
    [278] Foust, D. F., 1993, Extraction of mercury and mercury compounds from contaminated material and solutions, US Patents 5,226, 545.
    [279] Cox, CD., Shoesmith, M. A., and Ghosh, M. M., 1996, Electro-kinetic remediation of mercury contaminated soils using iodine/iodide lixiviant, Environ.Sci. Technol., 30, 1933-1938
    [280] Mattigod, S.V., Feng, X. D, Fryxell, G. E., Liu, J., and Gong, M. L , 1999,Separation of complexed mercury from aqueous wastes using self-assembled mercaptan on mesoporous silica, Separation Sci. Technology, 34, 2329-2345.
    [281] Joseph R. V. Flora, Richard A. Hargis, William J. 0' Dowd and Henry W.Pennline, Modeling Sorbent Injection for Mercury Control in Baghouse Filters:II-Pilot-Scale Studies and Model Evaluation, J. Air & Waste Manage. Assoc.53:489-496
    [282] T. C. Ho, P. Yang, T. H. Kuo, J. R. Hopper, Characteristics of mercury desorption from sorbent at elevated temperature, Waste Management 18(1998)445~452
    [283] T. C. Ho, N. kobayashi, Y. K. Lee, et. al. Modeling of mercury sorption by activated carbon in a confined a semi-fluidized, and a fluidized bed. Waste management, 2002(22), 391-398.
    [284] F. B. Meserole, R.Chang, T.R.Carey, C. F. Richardson, et al. Modeling mercury removal by sorbent injection, Journal of air & waste management association,1999(49), 694-704.
    [285] H.C. Thomas, J. Am. Chem. Soc., 1944, (66), 1664.
    [286] Chen, S. ; Rostam-Abadi, M. ; Chang, R . Proceedings of the 211th ACS National Meeting, New Orleans, LA, Match 24-28, 1996; Vol 41, 442-446.
    [287] Rostam-Abadi, M. ; Chen, S. G. ; His, H-C. ; Rood, M. ; Chang, R. ; Carey,T. ; Hargrove, B. ; Richardson, C. ; Rosenhoover, W. ; Meserole, F. Proceedings of the first EPRI-DOE-EPA Combined Utility Air Pollution
    [288] FABRIZIO SCALA, Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. in duct removal, Environ. Sci. Technol. 2001,35, 4367-4372
    
    [289] FABRIZIO SCALA, Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. fabric filter removal, Environ. Sci. Technol. 2001, 35, 4373~4378
    [290] 中国化工学会教育工作委员会组织编写 史季芬 编著,多级分离过程—蒸馏、吸收、萃取、吸附,北京:化学工业出版社,1991。
    [291] 高尚愚,陈维译,日本炭素材料学会编,活性炭基础与应用,北京:中国林业出版社,1975。
    [292] Joseph R. V. Flora, Richard A. Hargis, William J. O' Dowd and Henry W. Pennline, Modeling Sorbent Injection for Mercury Control in Baghouse Filters: I—Model development and sensitivity analysis, J. Air & Waste Manage. Assoc.
    [293] 李汝辉 编著,传质学基础,北京:北京航空学院出版社,1987。
    [294] C.N.塞脱菲尔特 著,陈诵英 译,多相催化中的传质,北京:石油工业出版社,1980。
    [295] D. M. Ruthven, Principles of adsorption and adsorption processes, Weily, New York, U. S. A., 1984.
    [296] R. T. Yang, Gas separation by adsorption and adsorption processes, Butterworths, Boston, 1987.
    [297] W. Kauzmann, Kinetic theory of gases, New York: Benjamin, U. S. A., 1966.
    [298] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport phenomena, New York: Wiley, U. S. A., 1960.
    [299] C. N. Satterfield, Mass transfer in heterogeneous catalysis, New York: Huntington, U. S. A., 1981.
    [300] J. M. Smith, Chemical engineering kinetics, 3rd ed., New York: McGraw-Hill, 1976.
    [301] H. H. Lee, Heterogeneous reactor design, Boston: Butterworth, 1985.
    [302] R. T. Yang, R. T. Liu, Ind. Eng. Chem. Fundam, 1982, (21), 262.
    [303] Knudsen, J. G.; Hottel, H. C.; Sarofim, A. F.; Wankat, P, C.; Knaebel, K. S. Section 5—Heat and Mass Transfer. In Perry' s Chemical Engineer' s Handbook, 7~th ed.; Green, D. W.; Maloney, J. o., Eds.; McGraw-Hill: New York, 1997.
    [304] Yang, R. T. Gas separation by Adsorption Processes; Butterworth' s Inc.: Boston, 1987
    [305] R. Aaris, Mathematical theory of diffusion and reactor in permeable catalysis, Vol. 1, London: Oxford University Press, 1975.
    [306] J. J. Carberry, Chemical and catalytic reaction. engineering, New York: McGraw - Hill, U. S. A., 1976.
    [307] H. Sontheimer et al. Adsorptionsverfahren zur wassereinigung, Engler - Bunte - Institute at the University of Karisruhe, F. R. G.
    [308] U. K. Traegner, M. T. Suidan, Evaluation of surface and film diffusion coeffiencts for carbon adsorption, Water research, 1989, 23(3), 267-273.
    [309] IUPAC, Manual of symbols and terminology for physicochemical quantities and units, London: Butterworths, 1972.
    [3
    
    [310] M. Rostam-Abadi, S. Chen, H. C. Hsi, M. J. Rood, R. Chang, T. Carey, B. Hargrove, C. Richardson, W. A. Rosenhoover, F. Meserole, Novel Vapor Phase Mercury Sorbents, EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, Washington, DC, August 1997.
    [311] Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: New York, 1984.
    [312] 李有法 编.《数值计算方法》,高等教育出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700