多孔介质中氯代溶剂的迁移转化及修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究氯代溶剂在含水层中的迁移转化规律,对评价其对环境的影响、预测其行为规律及确定相应的修复策略有着重要意义。
     通过对比三氯乙烯(TCE)在石英砂和细砂中的批量吸附试验结果,建立了描述表面吸附与分配作用的Linear-Langmuir-Freundlich(LLF)等温非线性吸附模型。该模型能最佳地描述TCE单溶质在细砂中的非线性等温吸附规律。但砂柱试验结果表明,最佳的吸附模式为Langmuir模型,即由批试验与柱实验得到的吸附模式不同,这表明在运移模型中应用非平衡吸附理论需慎重。根据实验结果和模型反演参数确定TCE在多孔介质中运移的一维非线性吸附-对流-扩散模型。应用BP神经网络研究四氯乙烯(PCE)和TCE的竞争吸附关系,建立了在BP神经网络基础上的多溶质系统下多组分竞争性吸附-对流-扩散模型。金属降解PCE和TCE的实验表明,零价锌(Zn(0))降解有机物最有效。假设各化学反应符合准一级动力学,建立多级链式平行反应数学模型,用混合函数遗传算法进行动力学参数的反演。确定主要反应路径为PCE→TCE→t-DCE→C2H2→C2H4和PCE→C2Cl2→t-DCE→C2H2→C2H4。最终有94.77%的PCE转化为C2H4,5.23%转化成氯乙烯(VC)。Zn(0)降解TCE时,各物质主要反应类型和路径与前述有所差别,表明PCE,TCE及各产物之间相互影响。
     根据反应柱试验结果,建立了多组分反应性溶质的一维非线性吸附-对流-扩散-降解模型,应用遗传算法进行模型参数反演,确认TCE,c-DCE, t-DCE的不同吸附模式及其时空分布规律,进一步用于渗透反应墙厚度的最优化设计。
It is significant to investigate the transport of chlorinated solvent in porous media for analysis of natural attenuation and remediation of groundwater pollution. Based on the batch test of trichloroethylene (TCE) adsorbed to fine sand and to quartz, the Linear-Langmuir-Freundlich (LLF) model, which can reveal the mechanisms of adsorption and partition, was established through fitted curves with calculated and tested values. In the sandy column experiments, Langmuir isotherm model could describe best the adsorption mechanisms of TCE. The nonlinear adsorption-advection- diffusion model, which reveals the transport mechanisms of TCE in porous media, was established based on the experiments and the inversed parameters with genetic algorithm. The competition adsorption between perchlorethylene(PCE) and TCE was studied by BP Neural Network, the multicomponent competitive adsorption-advection-diffusion model was established on the base of BP Neural Network.
     In many kinds of metals which was used to degrading PCE and TCE, the Zn(0) was most effective. Through the batch experiment of reductive degradation of PCE using Zn(0), the mathematical model of multi-chain and parallel reaction was established assuming each reaction fitting pseudo first order kinetic reaction. The kinetic parameters were inversed with hybrid function generic algorithm. The primary reaction pathway was PCE→TCE→t-DCE(trans-dichloroethylene)→C2H2→C2H4 and PCE→C2Cl2→t-DCE→C2H2→C2H4. At the end of tests 94.77% of PCE was degraded to C2H4, 5.23% to vinyl chloride (VC). Comparison the degradation of TCE by Zn(0), the primary pathways and reaction model were different from the degradation PCE by Zn(0), so there may be interactions among PCE, TCE and intermediates.
     In the reaction column, the 1-D nonlinear adsorption-advection-diffusion-reaction model of multi-component reaction solute was established. According to the experiment result, the model parameters were inversed by using generic algorithm. The different adsorption models and the spatio-temporal distribution of TCE,c-DCE and t-DCE were confirmed. At last the thickness of PRB can be designed by using the nonlinear adsorption-advection-diffusion-reaction model.
引文
[1] Patricia L. T, Barbara.L.R, and Julia E. N, Volatile organic compounds in the nation's ground water and drinking-water supply wells: what findings may mean to human health 2006, http://pubs.usgs.gov/fs/2006/3043/pdf/fs2006-3043.pdf
    [2] Partrick R, Ford E, Quarles J, ed. Groundwater Contamination in the USA. 1987, University of Pennsylvania Press, Philadephia
    [3] 中国化工网, 美军一营地水井污染 30 年. http://www.zhongchem.com/Info/20070706103414.htm, 2007-7-6
    [4] Zoftman B.C.J, Persistence of organic contaminants in groundwater.In:Duivenboodne W V(ed).Quality of Groundwater. 1981, Elsevier Scientific Publishing Company: Netherland. 464~480
    [5] 刘明柱, 氯代烃在浅层地下水中运移转化的数值模拟研究[博士学位论文]. 北京:中国地质大学, 2002
    [6] Hirata T, Nakasugi O, Yoshioka M, et al.Groundwater pollution by volatile organochlorines in Japan and related phenomena in the subsurface environment. Water Science and Technology, 1992. 26(12): 9~16
    [7] 鄭雅文, 工作與健康,「奇蹟背後」紀錄片欣賞:RCA 事件的省思. www.bamboo.hc.edu.tw/workshop/session10/visit/wastewater/zheng-yawen01.html, 2003/12/05
    [8] 陈鸿汉,何江涛,刘菲等. 太湖流域某地区浅层地下水有机污染特征. 地质通报(Regional Geology of China), 2005,24(8): 735~739
    [9] 中国地质调查局, http://www.cgs.gov.cn/NEWS/Geology%20News/2007/20070430/01.pdf, 2007
    [10] 张达政, 陈., 李海明等, 浅层地下水卤代烃污染初步研究. 中国地质, 2002. 3: 326~329
    [11] 韩宝平, 王小英, 朱雪强 等. 某市岩溶地下水四氯化碳污染特征研究. 环境科学学报. 2004, 24(6): 982~988
    [12] 刘兆昌,聂永锋. 地下水系统的污染与控制. 中国环境科学出版社: 北京. 1991
    [13] National Research Council. Alternatives for Ground water Clean Up. National AcademyPress: Washington DC. 1994
    [14] Gavaskar A R,Gupta N, Saaa B M et al , ed. Permeable barriers for groundwater Remediation: Design, construction, and Monitoring., Battelle: Columbus. 1998,30
    [15] 汪民, 吴永锋. 地下水微量有机污染. 地学前缘. 1996, 3(1-2): 169~175
    [16] Schirmer M., Butler B.J.. Transport behaviors and natural attenuation of organic contaminants at spill sites. Toxicology. 2004, 205(3): 173~179
    [17] 仵彦卿. 多孔介质污染物迁移动力学. 上海: 上海交通大学出版社. 2007: 81~123
    [18] Xing, B. and Pignatello, J.J. Time-dependent isotherm shape of organic compounds in soil organic matter: implications for sortion mechanism. Environ Toxicol Chem. 1996,15:1282~1288
    [19] Pignatello I J, Xing B. Mechanisms of slow sorption of organic chemical to natural particles. Environ Sci Technol, 1996,30: 1~11
    [20] 戴树桂. 环境化学. 北京: 高等教育出版社, 1997
    [21] 瑞恩.P.施瓦茨巴赫,菲利普.M.施格文,迪特尔.M.英博登,王连生 译. 环境有机化学.北京:化学工业出版社环境科学与工程出版中心. 2004 年
    [22] Onken B M, Traina S J. The sorption of pyrene and anthracene to humic acid-mineral complexes: effect of fractional organic carbon content [J]. Journal of Environmental Quality,1997,26:126~132
    [23] Hwang S,Cutright T J. The impact of contact time on pyrene sorptive behavior by a sandy-loam soil. Environmental Pollution, 2002 ,117:371~378
    [24] 章卫华, 李广贺, 邵辉煌等. 包气带土层中石油污染物的微生物降解研究. 环境科学研究, 2002 , 15 (2) : 60~62
    [25] Michael Prince.Bioremediation of petrleum waste from the fefining of Lubricant oils. Environmental Progress , 1993 ,12 (1) :5 ~ 11
    [26] Jonge H D. Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils . Environ Sci Technol, 1996 , 30(5) :215~ 224
    [27] Edward J C. Principles and practices for petroleum contaminated soils. New York :Lewis Publishers ,1993
    [28] Coats J C,Smith B D.Dead-end pore volume and dispersion in porous and unsaturated sandstone.Soil Sci.Soc.Am .Proc.,1964,27:258~262
    [29] van Genuchten, M.T.; Wagenet, R.J. Two site/two region models for pesticide. transport and degradation, Soil Sci. Soc. Am. J. 1989, 53:1303~1310
    [30] Gamerdinger A P, Wagenet R J, van Genuchten M Th. Application of two-site/two-region models for studying simultaneous nonequilibrium transport and degradation. Soil Sci. Soc. Am. J.1990. 54:957~963
    [31] Gerke H H, van Genuchten M T.A dual—porosity model for simulating the preferential movement of water and solutes in structured porous media.Water Resour.Res.,1993,29(2):305~319
    [32] Ahuja L R,Ma Q L,Rojas KW,et al.A field test of RZWQM simulation model for predicting pesticide and bromi de behavior.J.Pesticide Sci.,1996,48:101~108
    [33] Cameira M R.Simulation of water and nitrate movement in level basin fertigated corn (M.S.Thesis).Univ.of Portugal Lisbon,1995
    [34] Mackay, D. M., D. L. Freyberg, P. V. Roberts, and J. A. Cherry, Anatural gradient experiment on solute transport in a sand aquifer, 1,Approach and overview of plume movement, Water Resour. Res. 1986,22(13): 2017~2029
    [35] LeBlanc, D. R., Garabedian S. P., Hess K. M., et al, Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 1, Experimental design and observed tracer movement, Water Resour.Res. 1991, 27(5):895~910
    [36] Garabedian S P, LeBlance D R ,Gelhar L W, et al. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts,2,Analysis of spatial moments for a reactive tracer. Water Resour.Res,1991,27(5):911~924
    [37] McLaughlin, D., Reid L.B., Li S.G., et al , A stochastic method for characterizing groundwater contamination, Ground Water, 1993,31(2):237~249
    [38] Graham, W. and McLaughlin D., A stochastic model of solute transport in groundwater: Application to the Borden, Ontario tracer test, Water Resour.Res,1991,27(6):1345-1359
    [39] Marseguerra M., Zio E. Contaminant transport in bidimensional porous media via biased Monte Carlo simulation, Ann. Nucl. Ener. 25 (16): 1301~1316
    [40] Marseguerra M., Patelli E., Zio E. Groundwater contaminant transport in presence of colloids. I. A stochastic nonlinear model and parameter identification, Ann. Nucl. Ener. 2001 ,28:777~803
    [41] Marseguerra M., Zio E. Modeling the transport of contaminants in groundwater as a branching stochastic process, Ann. Nucl. Ener. 1997,24 (8):625~644
    [42] Salamon P, Daniel F G, J Jaime GOMEZ-HERNANDEZ,A review and numerical assessment of the random walk particle tracking method. Journal of Contaminant Hydrology 2006,87:277~305
    [43] 朱学愚,钱孝星. 地下水水文学.北京:中国环境科学出版社,2005,206~323
    [44] Zheng C, Bennett G D. Applied Contaminant Transport Modeling, 2nd Edition[M].New York, USA: Van Nostrand-Reinhold,2002,184~189
    [45] 陈崇希,唐仲华. 地下水流动问题的数值解法.武汉:中国地质大学出版社,1990,220~222.
    [46] 陈崇希. 地下水溶质运移理论及模型. 北京:中国地质大学出版社,1996,74~129
    [47] Van Genuchten, M.Th and Alves, W J, Analytical solutions of the one-dimensional convective-dispersive solute equation,Agricultural Research Service,Department of Agriculture,U.S.A. 1982
    [48] Toride N, Leij F J, Van Genuchten M T.. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments-version 2.0[M]. Washington:U S Sal Lab,1995,1~57
    [49] Beljin M S. Review of three-dimensional analytical models for solute transport in groundwater system, International Ground Water Modeling Center, Holcomb Research Insititute, Butler University, Indianapolis,Indiana,U.S.A.1991
    [50] Sun Y, Petersen J N, Clement T P, et al. Development of Analytical Solutions for Multi-Species Transport with Serial and Parallel Reactions. Water resources Research.1999 35(1):185~190
    [51] Cho C.M. Convective transport of ammonium with nitrification in soil,Can.J.Soil Sci.,1970,51:339~350
    [52] Lunn, M., Lunn, R.J., Mackay, R.: Determining analytic solutions of multiple species contaminant. transport, with sorption and decay. Journal of Hydrology .1996,180,195~210
    [53] Van Genutchen, M. Th.. Convective-dispersive transport of solutes involved in sequential first-order decay reactions.Computers & Geosciences, 1985,11(2):129~147
    [54] Clement, T. P. Generalized solution to multi-species transport equations coupled with a first-order reaction network. Water Resources Research. 2001,37(1):157~163
    [55] Lu X. Sun Y. Petersen J.N. Analytical Solutions of TCE Transport with Convergent Reactions, Transport in Porous Media, 2003,51: 211~225
    [56] Sun, Y., Lu X., Petersen J.N. et al. An analytical solution of tetrachloroethylene transport and biodegradation. Transport in Porous Media,2004,55:301~308
    [57] Bauer, P., Attinger, S., and Kinzelbach, W. Transport of a decay chain in homogeneous porous media: Analytical solutions. Journal of Contaminant Hydrology, 2001 49:217~239
    [58] 沈德中. 污染环境的生物修复. 北京: 化学工业出版社, 2003 年: 1~9
    [59] 宋汉周, Woodbury A.D. 抽出处理措施的有效性评价-某碳酸盐岩含水层中地下水有机污染及其去除研究之三. 河海大学学报. 2000, 28(4): 67~71
    [60] Simon F G, Meggyes T, Mcdonald C. Advanced groundwater remediation: active and passive technologies, London :Thomas Telford,2002,4
    [61] Gillham R W, O Hannesin S F. Enhanced degradation of halogenated aliphaties by zero-valent iron.Ground Water.1994,32:958~967
    [62] Roberts A L, Totten L A, Arnold W A, et al. Reductive elimination of chlorinated ethylenes by zero-valent metals . Environ. Sci. Technol..1996, 30:2654~2659.
    [63] Arnold W A, Roberts A L, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe0 particles . Environ. Sci. Technol., 2000,34(9): 1794~1850.
    [64] 刘菲,汤鸣皋,何小娟.零价铁降解水中氯代烃的实验研究.地球科学-中国地质大学学报 2002,27(2):186~188
    [65] 刘菲,黄园英,何小娟.与铁相关的几种渗透反应格栅材料性能的比较.地学前缘,2005,12(特刊):170~175.
    [66] Wang C B, Zhang W X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environ Sci &Technol. 1997,31:2154~2156
    [67] 雷英杰,张善文,李续武,周创明. Matlab 遗传算法及工具箱。西安:西安电子科技大学出版社,2005
    [68] 李竞生,姚磊华. 遗传算法在反演三维地下水流模型中的应用. 水文地质工程,2002,(5): 9~11
    [69] 王锦国,周志芳,黄勇等. 基于实码遗传算法的地下水污染物运移参数反演. 水文,2002, 22(5):9~12.
    [70] Xing B S, Pignatello J J,Gigliotti B. Competitive Sorption between Atrazine and OtherOrganic Compounds in Soils and Model Sorbents. Environ.Sci.Technol., 1996,30(8): 2432~2440
    [71] Li J, Werth C J. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites. Environ. Sci. Technol. 2001,35(3): 568~574
    [72] 李韵珠, 李保国. 土壤溶质运移. 北京:科学出版社. 1998 年,145~156
    [73] David G K.General Purpose Adsorption Isotherms. Environ.Sci.Technol.1986. 20:895 ~904
    [74] Kilduff J E,Wigton A. Sorption of TCE by Humic-Preloaded Activated Carbon:Incorporating Size-Exclusion and pore Blockage Phenomena in a competitive adsorption Model.Environ. Sci. Technol.1999,33:250~256
    [75] Selroos J O, Cvetkovic V. Modeling solute advection coupled with sorption kinetics in heterogeneous formations. Water Resources Research.1992, 28 (5):1271~1278
    [76] Brusseau M L. Nonequilibrium transport of organic chemicals: The impact of pore-water velocity. Journal of Contaminant Hydrology .1992,9 (4):353~368
    [77] Brusseau M L, Larsen T, Christensen T H. Rate-limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials. Water Resources Research.1991, 27 (6):1137~1145
    [78] Baskaran S.Non-equilibrium sorption during the movement of pesticides in soils.Pesticide Science.1996,46 (4):333~343
    [79] Communar G, Keren R. Rate-limited boron transport in soils: The effect of soil texture and solution pH.Soil Science Society of America Journal.2006,70 (3): 882~892
    [80] Communar, G., Keren, R. Equilibrium and nonequilibrium transport of boron in soil.Soil Science Society of America Journal. 2005,69 (2):311~317
    [81] Crittenden, J.C., Luft P., Hand D.W., et al, Prediction of Multicomponent Adsorption Equilibria Using Ideal Adsorbed Solution Theory, Environm. Sci. Technol. 1985 19:1037~1043
    [82] Kilduff J.E. and Wigton A., Sorption of TCE by humic-preloaded activated carbon: incorporating size-exclusion and pore blockage phenomena in a competitive adsorption model. Environ Sci Technol. 1999, 33:250~256
    [83] Alkhamis, Khouloud A, and Matheson, Lloyd E. Prediction of Adsorption fromMulticomponent Solutions by Activated Carbon Using Single-Solute Parameters. AAPS PharmSciTech, 2000, 1(3), Article 25
    [84] Alkhamis, K A, and Wurster D E. Prediction of Adsorption from Multicomponent Solutions by Activated Carbon Using Single- Solute Parameters. Part II- Proposed Equation, AAPS PharmSciTech, 2002, 3(3), Article 23
    [85] Anabela L and Rosalina S, Adsorption of Phenolic Compounds from Water on Activated Carbon: Prediction of Multicomponent Equilibrium Isotherms using Single-Component Data. 2005, 11(2): 167-179
    [86] J.S. Jain and V.L. Snoeyink, Adsorption from bisolute systems on active carbon. J—Water Pollut Control Fed. 1973 ,45 (12):2463~2479
    [87] Arnold W A and Roberts A L. Pathways of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0) . Environ. Sci. Technol,1998, 32: 3017~3025

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700