氨基酸的氯化消毒副产物生成势及途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水安全性问题一直受到人们的广泛关注,是国际国内的研究热点。饮用水的生物安全性主要依靠消毒工艺来保证,而氯化消毒技术是目前应用最为广泛的消毒技术。但是氯化消毒过程中可能会产生对人体有危害的消毒副产物(DBPs),为提高饮用水的安全性,对饮用水中DBPs形成和控制的研究显得尤为重要。本文通过实验和理论推导对典型含氮有机物氨基酸(AA)在氯化过程中形成DBPs的生成势、影响因素和生成途径进行了研究。
     为了考察氨基酸氯化反应过程中DBPs的生成势大小,本文选取20种基本氨基酸进行氯化消毒实验,并以气相色谱对各DBPs的产量进行分析。实验结果表明,以色氨酸(Trp)、天冬氨酸(Asp)和天冬酰胺(Asn)分别具有最强的三卤甲烷(THMs)、卤乙酸(HAAs)和卤乙腈(HANs)的生成能力。酪氨酸(Tyr)、组氨酸(His)、天冬酰胺(Asn)、苯丙氨酸(Phe)、苏氨酸(Thr)和Asp依次具有较大的THMs生成势;组氨酸(His)、Trp、Asn、Tyr、脯氨酸(Pro)、Phe和Thr依次具有较大的HAAs生成势;Tyr、谷氨酰胺(Gln)、谷氨酸(Glu)、His、Trp、Phe和Pro也依次具有相对较大的HANs生成势。实验结果还表明,各氨基酸的耗氯能力大小也是不同的,通过N,N-二乙基对苯二胺-硫酸亚铁铵分光光度法对各氨基酸氯化实验的余氯进行检测,与初始投氯量进行差值计算得知,侧链上具有芳香性环状结构的AA的耗氯量较大,含有羟基,巯基和氨基官能团结构的AA也有较大的耗氯量,这些官能团基本都是具有给电子特性的官能团。
     鉴于各氨基酸生成DBPs的不同生成势,为进一步明确各氨基酸不同结构在DBPs形成过程中的作用,分类选取六个典型具代表性的氨基酸进行氯化过程的研究。它们分别是侧链具有烷基结构的丙氨酸(Ala)、侧链具有羟基官能团结构的Tyr、侧链具有酰胺结构的Asn、侧链具有羧基结构的Asp、侧链具有吲哚杂环结构的Trp和具有咪唑杂环结构的His。对它们在氯化反应过程中的反应时间、有效氯浓度、pH值、温度、溴离子等影响因素对形成DBPs的影响作用进行了考察。结果显示,THMs和HAAs的产量都是随着时间的增加而增加的,HANs的产量随着反应时间的增加呈现先增加后减少的趋势,温度、pH值和有效氯浓度对DBPs的形成也有较大的影响,由于各氨基酸生成DBPs的机理不同,它们的产量随着温度、pH值和有效氯浓度的不同也表现出不同的变化规律。在溴离子存在情况下,生成溴代和溴氯混合取代产物,DBPs的总产量也会有所提高。
     经过实验及化学推导分析得知,Ala氯化过程中生成的N-氯代Ala分解生成乙醛,乙醛再氯代生成二氯乙醛和三氯乙醛,再经过氧化即可生成二氯乙酸(DCAA)和三氯乙酸(TCAA);Tyr氯化过程中会生成三氯苯酚,而三氯苯酚氯化则生成TCM,Ala也是Tyr氯化过程中的中间产物,所以经由Ala而生成TCM也是Tyr氯化生成TCM的途径之一;Asn氯化过程中生成三氯乙醛经过亲核加成反应可以形成TCM,而且Asn氯化过程中生成的二氯乙腈(DCAN)水解也可以生成TCM;Asn氯化过程中氯代生成的N-二氯代Asn分解会生成亚胺中间体,可以进一步形成氰基氯胺,再经过取代加成能够得到DCAN,而且由于Asn氯化过程中可以生成二氯乙醛,其侧链的酰胺基团结构氯化又可以生成氯胺,氯胺和二氯乙醛反应即可生成DCAN;Asn氯化过程生成的DCAN的水解可以产生DCAA,而且Asn氯化过程中还可以形成β-二羰基酸的结构,它可以进一步反应生成DCAA;Asp氯化过程中生成三氯乙醛经过亲核加成反应也可以生成TCM, DCAN的水解可以形成TCM;Trp氯化过程中五元吡咯环氧化开环然后再氯代消去可以生成TCM。Trp氯化过程中吲哚基团中的吡咯环上进行α位亲电取代,之后再开环生成亚胺中间体,再经过氯取代反应最终可以生成DCAN;His氯化过程中氯代生成的氯代咪唑进一步发生α位亲电取代,在HOCl的作用下进行开环加成反应,再经过氯取代反应之后形成TCM。
Drinking water risk issue was always widely concerned by people and has become international research hotspot over the recent years. Biologic safety of drinking water has been always ensured by disinfection. Chlorination disinfection, as the most common disinfection technology in the water treatment, has been applied in most water plants.But in the process of chlorination disinfection, there will be disinfection by-products(DBPs) produced, which are harmful to person body. Hence, it is very importment to control the formation of DBPs. Amino acids are the representative nitrogenous organic compounds and important precursors of DBPs, the influencing factors and formation mechanisms of DBPs formation via amino acids have been studied.
     In order to find out the DBPs formation potentials of amino acids, experiments of chlorination disinfection used 20 amino acids as precursors have been carried out. The yields of DBPs are analyzed by Gas Chromatogram. As shown in the experiments results,tryptophan(Trp), has the highest THMs formation potential, and tyrosine(Tyr) takes the second place, histidine(His), asparagines(Asn), phenylalanine (Phe), threonine (Thr) and aspartic acid(Asp) also have higher THMs formation potential than other amino acids. Asp has the highest HAAs formation potential, and His takes the second place, Trp, Asn, Tyr, proline (Pro), Phe and Thr also have higher HAAs formation potential than others. Asn has the highest HANs formation potential, and Tyr takes the second place, glutamine (Gln), glutamic acid (Glu), His, Trp, Phe and Pro also have higher HANs formation potential than others. The results of chlorination disinfection also showed that chlorine demands of amino acids are different. Amino acids with activated aroma rings have higher chlorine demands,and amino acids with hydroxide group, sulfydryl group and amido group also have high chlorine demands.These function groups can lose electron.
     In view of the differences of structure among the 20 amino acids,in order to confirm the effects of different structure in the course of DBPs formation,the chlorination of six representative amino acids have been studied,which are alanine containing alkyl group,Tyr containing hydroxide group,Asn containing acyl group,Asp containing carboxyl group, Trp containing indole function group and His containing imidazole function group. The effects of influence factors of DBPs, such as reaction time, chlorine concentration, pH, temperature and bromine, have been reviewd. Results shown that the yields of THMs and HAAs both increase with the increase of reaction time, and with the increase of reaction time, the yield of HANs increase at first and then decreased. Chlorine concentration, pH and temperature also influence the formation of DBPs greatly, and the yields of DBPs take on different results as the different structure of amino acids.When there was bromine ion in water, bromine-substituted productions appeared, and the total yields of DBPs increased with the increase of bromine concentration.
     Some results have been gained by chlorination disinfection experiments and analysis in chemistry theory as follows: Ala react with chlorine to bring N-chloroalanine, which decomposed to acetaldehyde, and then acetaldehyde react with chlorine to produce dichloroacetaldehyde and chloral, via oxidation to form DCAA and TCAA. Tyr react with chlorine can bring trichlorophenol, while trichlorophenol can produce TCM, so via this way, TCM formed from Tyr. While, Tyr also can produce Ala, so TCM formation from Tyr also can via Ala. Asn react with chlorine can bring to chloral, which via nucleophilic reaction can make TCM. Otherwise, DCAN hydrolysis also can induce the formation of TCM.Asn chlorination can produce imine intermediate products, which further react with chlorine to bring cyanogen chloramines, then further to form DCAN. Otherwise, Asn can also produce dichloroacetaldehyde and chloramines, which can react with each other to DCAN.DCAA formation from Asn can via the hydrolysis of DCAN, and also can via the intermediate productsβ-carboxyl. Asp can bring to chloral by reaction with chlorine, chloral via nucleophilic reaction can make TCM. The reaction between Trp with chlorine can open the ring of pyrrole, then further chlorination to form TCM. On indole group of Trp the reaction ofαsubstitute carried at first, then ring opening to bring imine intermediate products, which can further chlorination to DCAN. His react with chlorine to form chloroimidazole, viaαsubstitute, chlorination, ring opening to produce TCM.
引文
[1]中华人民共和国卫生部.生活饮用水卫生标准. 2006:1-10
    [2] USEPA,Office of water. The History of Water Treatment. 2000:1-4
    [3]路凯,井海宁,李士英等.美国大、中型水厂饮水消毒调查报告[J].环境与健康. 2001, 5(18):179-182
    [4] G. M. Fair, J.C.Morris, S. L.Chang et al.The Behavior of Chlorine as a Water Disinfectant[J]. J. Am. Water Works Assoc., 1948, 40(7): 1051-1061
    [5] O.C.Liu. Relative Resistance of 20 Human Enteric Viruses to Free Chlorine. Virus and Water Quality: Occurrence and Control. Conference Proceedings, 13th water quality conference, University of Illinois, Urbana-Champaign. 1971
    [6] C. N. Haas, S. B. Karra. Kinetics of Microbial Inactivation by ChlorineII. Kinetics in the Presence of Chlorine Demand[J]. Water Res. 1984, 18(11):1451-1454
    [7]王云,鲁巍,张晓健.氯及氯胺灭活大肠杆菌的消毒动力学模型[J].环境科学.2005, 26(5): 100-104
    [8] J.J. Rook, Formation of haloforms during chlorination of natural waters[J]. Water Treat. Exam. 1974, 23: 234-243
    [9] T.A. Bellar, J.J. Lichtenbert, R.C. Kroner. The occurrence of organohalides in chlorinated drinking waters [J], J. Am. Water Works Assoc. 66 (1974) 703-706
    [10] B.D. Quimby, M. F. Delaney, P. C. Uden, R. M. Barnes. Determination of the aqueous chlorination products of humic substances by gas chromatography with microwave emission detection[J]. Anal.Chem.,1980, 52(2):259-264
    [11] D. T. William, G. L. LeBel, F. M. Benoit. Disinfection by-products in Canadian drinking water[J]. Chemosphere, 1997, 34(2): 299-316
    [12] S.W.Krasner, M.C.Guire. Occurrence of disinfection by products in US drinking water[J]. J. Am. Water Wks. Ass., 1989, 81(8):41-53
    [13]岳舜琳.我国给水氯化消毒的现状及存在问题[J].给水排水, 1993, 19(11):15-17
    [14]黄君礼,范启祥,寇广中.国内主要水厂氯仿的调查[J].环境化学,1987, 6(4):80-86
    [15]刘文君.饮用水中可生物降解有机物和消毒副产物特性研究[M].北京:高等教育出版社, 2003,55
    [16] S.D. Richardson, M,J,Plewa, D.Elizabeth,et al., Occurrence, genotoxicity, and carcinogenicity of emerging disinfection by-products in drinking water: Areview and roadmap for research[J]. Mutat. Res.: Rev. Mutat. Res. 2007, 636:178-242.
    [17] M. L. Trehy, and T. I. Bieber. Effects of Commonly Used Water Treatment Processes on the Formation of THMs and DHANs. In Proc. 1980 AWWA Annual Conference. Denvor, Colo.: American Water Works Association. 1980.
    [18] K. Christen, NDMA: One of the latest emerging contaminants[J].Water Environment & Technology, 2003,15:3
    [19] M.G. Muellner, E.D.Wagner.“Haloacetonitriles vs. regulated haloaceticacids: Are nitrogen containing DBPs more toxic?”[J]. Environ Sci Technol,2007,41 (2): 645-651
    [20] M. J. Plewa, E. D. Wagner, P. Jazwierska, et al . Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity [J] . Environ Sci Technol, 2004, 38:62-68
    [21] California Department of Health Services. NDMA in California Drinking Water(2002-3-15).http://www.dhs.ca.gov/ps/ddwem/chemicals/NDMA/history.htm
    [22] D. L. Sedlak, R. A. Deeb, E. L Hawley, et al., Sources and Fate of Nitrosodimethylamine and its precursors in Municipal Wastewater Treatment Plants[J]. Water Environment Research, 2005, 77: 336-341
    [23] J. N. Pitts, D.Grosjean, K.Van Cauwenberghe, et al. NDMA and dimethylnitramine formation from gaseous mixtures of DMA, nitrous acid (HONO), and nitrous (NO) and nitric (NO2) oxides[J]. Environmental Science and Technology, 1978, 12: 946-953
    [24] W. A. Mitch, D. L. Sedlak.Factors Controlling Nitrosamine Formation during Wastewater Chlorination. Water Science and Technology. 2002,2(3):191-198
    [25] S. Krasner, P, Baiyangchen,B.Rittmann.Occurrence of Disinfection Byproducts in United States Wastewater Treatment Plant Effluents[J]. Environ. Sci. Technol. 2009, 43, 8320-8325
    [26] Y. Y. Zhao, J. Boyd , S. E. Hrudey , et al . Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry[J ] . Environ Sci. Technol ,2006 ,40 :7636-7641
    [27] J. Romero, F. Ventura, J. Caixach. Identification and quantification of the mutagenic compound 3-chloro-4-(dichloromehtyl)-5-hy-droxy-2-(5H)- furanone (MX) in chlorine treated water[J]. Bull. Environ. Contam. Toxicol., 1997,59(5):715-722
    [28] J. Hemming. Determinaion of the Strong Mutagen 3-chloro-4- (dichloromethyl) -5-hydroxy-2(5H)-furanone in Chlorinated Drinking Water[J]. Chemosphere. 1986, 15:549-556
    [29] F. J. Bove, M. C. Fulcomer, J. B. Klotz, et al.Public drinking water contamination and birth outcome[J]. Am. J. Epidemiol, 1995, 141(9):850-862
    [30]张晓健,李爽.消毒副产物总致癌风险的首要指标参数-卤乙酸[J].给水排水, 2000,26(18):96-100
    [31] W. Lee , P. Westerhoff, J. P. Croue. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, n-nitrosodimethylamine, and trichloronitromethane[J]. Environ. Sci. Technol. 2007, 41 (15), 5485-5490
    [32] W. D. King, L. D. Marrett. Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada)[J]. Cancer Cause Control, 1996,7(6):596-604
    [33] M. Koivusalo, E. Pukkala, T. Vartiainen,et al.Drinking water chlorination and cancer historical cohort study in Finland [J]. Cancer Causes Control, 1997,8(2):192-200
    [34] C. D. Leaf, J. S. Wishnok, S. R.Tannenbaum. Mechanisms of Endogenous Nitrosation[J].Cancer Surveys,1989, 8(2):323-334
    [35] USEPA.Disinfectants and Disinfection Byproducts.Final Rule.Fed.Reg., 1998.63:241:69-78
    [36]世界卫生组织.饮用水水质准则.2005
    [37]任月明,赵洪宾,张德明,等.饮用水中5种卤乙酸的检测方法研究[J].哈尔滨工业大学学报.2003,35(12),1510-1513
    [38]汪昆平,邓荣森.卤乙酸分析方法(U. S. EPA)的改进[J].中国给水排水. 2005, 21(9): 29
    [39] A.Eaton. Analytical Methods Options for a new disinfection byproduct. AWWA Water Quality Technology Conference. 2000. Salt Lake City, Utah
    [40] K. Kawata, T. Ibaraki, A. Tanabe,et al.Gas chromatographic-mass spectrometric determination of hydrophilic compounds in environmental water by solid-phase extraction with activated carbon fibre felt. [J] Journal of Chromatography A, 2001, 9(11):75-83.
    [41] P. Andrzejewski, M. Czerwifiska, B. Kasprzyk-Hordern,et al. Proc. 18th National, 6th International Scientific and Technical Conference, Water supply and water quality, Poznafi, 2004
    [42] J. E.Grebel, C.C.Young, I. H. Suffect.Solid-phase microextraction of N-nitroamine [J]. Journal of Chromatography A, 2006, 1117(1): 11-18
    [43] A.Raksti, S.Johri. Determination of N-nitrosodimethylamine in environmental aqueous sample by isotope-delution GC/MS-SIM [J]. 2001, 84(5): 1413-1419
    [44] J. W. A.Charrois, M. W. Arend, K. L.Froses,et al. Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization [J]. Environmental Science and Technology, 2004, 38(18): 4835-4841
    [45] C. Bellec, J.M. Cauvin, M.C. Salaun. Analysis of N-nitrosoamines by high-performance liquid chromatography with post-column photohydrolysis and colorimetric detection[J]. Journal of Chromatography A,1996,727,83-92
    [46] W. Cha, P.Fox, B.Nalinakumari.High-performance liquid chromatography with fluorescence detection for aqueous analysis of nanogram-level N-nitrosodimethylamine [J]. Analytica Chimica Acta, 2006, 566(1): 109-116
    [47] L. Cardenes, J.H. Ayala, V. Gonzalez,et al. Fast microwave- assisted dansylation of N-nitrosamines. Analysis by high-performance liquid chromatography with fluorescence detection [J].Chromatog. 2002, 946(1-2): 133-140
    [48]黄君礼.水中腐殖酸等前驱物质对卤仿形成的影响[J].环境化学, 1987, (5):14-19
    [49] R. F. Christman, D. L.Norwood, D.S.Millington. Identity and yields of major halogenated products of aquatic fulvic acid chlorination[J]. Envion. Sci. Technol., 1983,17(10):625-628
    [50] M.M.Huber, S.Canonica.Products of aqueous chlorination of 17β-estradiol and their estrogenic activities [J]. Environ. Sci. Technol. 2003, 37(24):5665-5670
    [51] H. Gallard, U. V.Gunten. Chlorination of phenols: kinetics and formation of chloroform [J]. Environ. Sci.Technol., 2002,36(5),884-890
    [52] J. Li, E. R. Batchley. Volatile Disinfection Byproduct Formation Resulting from Chlorination of Organic-Nitrogen Precursors in Swimming Pools[J]. Environ. Sci. Technol. 2007, 41(19): 6732-6739
    [53] X. Yang, C. Shang. Chlorination Byproduct Formation in the Presence of Humic Acid, Model Nitrogenous Organic Compounds, Ammonia, and Bromide[J]. Environ. Sci. Technol. 2004, 38(19): 4995-5001
    [54] H. L. Jun, Z. N. Chong, R.Ramirez, et al. Cyanogen Chloride Precursor Analysis in Chlorinated River Water[J]. Environ. Sci. Technol. 2006, 40(5): 1478-1484
    [55] A. Zheng, A.D. David, G. L. Richard. Formatio of Free Cyanide and Cyanogen Chloride from Chloramination of Publicly Owned Treatment Wprks Secondary Effluent: Laboratory Study with Model Compounds[J]. Water Environment Research, 2004, 76(2):113-120
    [56] H. J. Sung, W. A. Mitch, Nitrile, Aldehyde, and Halonitroalkane Formation during Chlorination/Chloramination of Primary Amines[J]. Environ. Sci. Technol. 2007, 41(4): 1288-1294
    [57] S.D.Boyce, J. F.Hornig. Reaction pathways of trihalomethan formation from the halogenation of dihydroxyaromatic model compounds for humic acid[J]. Environ Sci Technol., 1983, 17(4):202-211
    [58] E. R. Blatchley, Margetasb D, Duggirala R. Copper catalysis in chloroform formation during water chlorination [J]. Water Res.,2003, 37:4385-4394
    [59] K. L. Simpson, K. D. Hayes Drinking water disinfection byproducts: an Australian perspective [J]. Water Res., 1998, 32 (5):1522-1528
    [60] J. L. Armenter, J. Cristia, L. I. Matia. Pretreatment options for water with high disinfection byproducts formation potential [J]. Water Supply, 1998, 16(12): 543-550
    [61] J. P. Croue, E. Lefebvre, B. Martin,et al. Removal of dissolved hydrophobic and hydrophilic organic substances during coagulation/flocculation of surface water[J]. Water Sci. Tech., 1993, 27(11):143-152
    [62] W. A .Mitch, D. L. Sedlak. Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination [J]. Environ. Sci. Technol. 2002, 36(4): 588-595
    [63] W. A. Mitch, A. C. Gerecke, L. S. David. A N-Nitrosodimethylamine (NDMA) Precursor Analysis for Chlorination of Water and Wastewater [J]. Water Research. 2003, 37 (1): 3733-3741
    [64] . W.A. Mitch, D. L. Sedlak. Characterization and Fate of N-itrosodimethylamine Precursors in Municipal Wastewater Treatment Plants[J].Environ. Sci. Technol. 2004, 38(5): 1445-1454
    [65] J. Choi, and R. L. Valentine, A kinetic model of N-nitrosodimethylamine (NDMA) formation during water chlorination/chloramination[J]. Water Sci. Technol., 2002. 46: 65-71
    [66] E. C. Fleming, J. C. Pennington, B. G. Wachob, et al. Removal of N-nitrosodimethylamine from waters using physical-chemical techniques[J]. Journal of Hazardous Materials, 1996. 51: 151-164
    [67] J. Choi, and R. L. Valentine, Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product[J]. Water Research, 2002. 36: 817-824
    [68] J. Choi, and R. L. Valentine, N-Nitrosodimethylamine Formation by Free-Chlorine-Enhanced Nitrosation of Dimethylamine [J]. Environ. Sci. Technol., 2003. 37: 4871-4876
    [69] J. Choi, S. E. Duirk, R. L. Valentine, Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water. [J]. Environmental Monitor, 2002. 4: 249-252
    [70] W. A. Mitch, A. C. Gerecke, and D. L. Sedlak, A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater[J]. Water Research, 2003, 37: 3733-3741
    [71]杨磊.水中亚硝胺类消毒副产物生成规律及其前质去除方法研究[D].哈尔滨工业大学市政工程学科博士学位论文.2010,75-76
    [72] J. De Laat, N. Merlet, M.Dore. Chlorination of organic compounds: Chlorine demand and reactivity in relationship to the trihalomethane formation, incidence of ammoniacal nitrogen [J]. Water Res., 1982,16(10),1437-1450
    [73] L. M.Rebenne, A.C.Gonzalez, T.M.Olson. Aquaeous chlorination kinetics and mechanism of substituted dihydroxybenzenes[J]. Environ.Sci.Technol., 1996, 30(7), 2235-2242
    [74]王丽花,周鸿,张晓健,等.水源水中有机物分布特性及其氯化活性研究[J].环境科学学报, 2001,21(5):573-576
    [75] L. Liang, P. C.Singer. Factors Influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water[J]. Environ. Sci. Technol., 2003,37(13),2920-2928
    [76]赵振业,肖贤明,李丽等,水体中不同相对分子质量有机质对饮用水消毒的影响环境科学,2002,23(6):45-50
    [77] S. D.Boyce, J. F. Hornig. Reaction pathways of trihalomethan formation from the halogenation of dihydroxyaromatic model compounds for humic acid[J]. Environ Sci Technol., 1983,17(4): 202-211
    [78] E. D. Philip Singer. Formation and Control of Disinfection Byproduct in Drinking Water[J]. American Water Works Association, Denver, 1999. 37-46
    [79] Y. F. Xie . Disinfection Byproducts in Drinking Water: Formation, Analysis and Control[M]. New York:Lewis Publishers, 2003: 7-19
    [80] Hozalski R M, Zhang L, Arnold W A. Reduction of haloacetic acid by Fe0: implications for treatment and fate[J]. Environ. Sci. Technol., 2001,35(11):2258~2263
    [81] X. Zhang, S.Echigo, R.A.Minear, et al.Characterization and comparison of disinfection by-products of four major disinfectants. [J]. American Chemical Society. 2000:299-314.
    [82] S. W. Krasner, M. J. McGuire, J. G. Jacangelo, N.L. Patania, K.W. Reagan, E.M. Aieta. The occurrence of disinfection by-products in US drinking water[J]. J. Am. Water Works Assoc. 1989, 81 (8), 41-53.
    [83] L. Heller-Grossman, A. Idin, B. Limoni-Relis,et al. Formation of cyanogen bromide and other volatile DBPs in the disinfection of bromide-rich lake water[J]. Environ. Sci. Technol. 1999, 33 (6), 932-937.
    [84] C.Z.Na, T.M. Olson. Stability of cyanogen chloride in the presence of free chlorine and monochloramine[J]. Environ. Sci. Technol. 2004,38 (22): 6037-6043.
    [85] Y.N.Qi, C.Shang, M.C.Lo. Formation of haloacetic acids during mono- chloramination[J]. Water Res. 2004,38 (9): 2375-2383.
    [86] W. W. Wu, P. A. Chadik, J. J. Delfino. The relationship between disinfection by-product formation and structural characteristics of humic substances in chloramination[J]. Environ.Toxicol. Chem. 2003, 22 (12), 2845-2852.
    [87] X. Yang, C. Shang. Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide[J]. Environ. Sci. Technol. 2004, 38 (19), 4995-5001.
    [88] X. Yang, C. Shang, P. Westerhoff. Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination[J]. Water Res. 2007 (41) 1193-1200
    [89] R. Karl. Challenges to Laboratories in Meeting the Resivised Primary Drinking Water Regulation:Interim Enhanced Surface Water Treatment. AWWA Water Quality Technology Conference. Worcester, 1987:9-17
    [90] C. J. Seidal, M. J. McGuire, R. S. Summers, et al. Have Utilities Switched to Chloramines [J]. Am. Wat. Wor. Assoc. 2005, 97(10): 87-97
    [91] L.Lifongo,D.J.Bowden.Photodegradation of haloacetic acid in water[J]. Chemosphere, 2004, 55(3):467-176
    [92]韩文亚,张彭义,祝万鹏.水中微量消毒副产物的光催化降解.环境科学,2005,26(3):92-95
    [93] H.J. Zhou, Y.F Xie.Using BAC for HAA removal-part 1:Batch studay. American Water Work Association,2002,94(4):194-200
    [94] K. Stuart. The effect of boiling water on disinfection by-product exposure[J].Water Research,2005,39(5):855-864
    [95] J. H. Zhu, D. Yan, J. R. Xai, et al. Attempt to Adsorb N-Nitrosamines in Solution by Use of Zeolites[J]. Chemosphere.2001, 44(5):949-956
    [96]马丽丽,严冬,朱建华.沸石对于亚硝胺的吸附和裂解[J].催化学报.2001, 22(2):208-210
    [97] J. O. Sharp, T. K. Wood, L. Alvarez-Cohen. Aerobic Biodegradation of N-Nitrosodimethylamine (NDMA) by Axenic Bacterial Strains[J]. Biotechnology and Bioengineer.2005, 89(5):608-618
    [98]徐冰冰.UV/UV-O3降解水中亚硝胺的效能与机理研究[D].哈尔滨工业大学市政工程学科博士学位论文.2008:16-17
    [99] L. Gui, R. W. Gillham, M. S. Odziemkowski. Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel Enhanced Iron. Pathways and Kinetics[J]. Environmental Science and Technology. 2000, 34(16):3489-3494
    [100]韩莹.零价锌还原降解水中N-亚硝基二甲胺的效能与机理研究[D].哈尔滨工业大学市政工程学科硕士学位论文.2009:
    [101] Z. Chen, R. L. Valentine. The Influence of the Pre-oxidation of Natural Organic Matter on the Formation of N-Nitrosodimethylamine (NDMA) [J]. Environmental Science and Technology. 2008, 42(14):5062-5067
    [102]汪志国,李国刚.水中氮类污染物的联系与区别[J].干旱环境监.2003,17(1):15-17
    [103]姜爱霞.水环境氮污染的机理和防治对策[J].中国人口·资源与环境. 2000, 10(1):75-76
    [104] L.G.韦德.有机化学[M].万有志,译.北京:化学工业出版社, 2006:1025-1026
    [105]胡雪峰,许世远,陈振楼等.上海市郊中小河流氮磷污染特征[J].环境科学. 2001, 22(6): 66-71
    [106]殷明,施敏芳,刘成付.丹江口水库水质总氮超标成因初步分析及控制对策[J].环境科学与技术. 2007, 30(7): 35-38
    [107]姚俊芹,易红星,魏震华等.乌鲁木齐河东污水厂的脱氮除磷运行效果分析[J].中国给水排水. 2007, 23(2): 92-95
    [108]张自杰,林荣忱,金儒霖.排水工程(M).北京:中国建筑工业出版社. 2006:4-5
    [109]张德刚,汤利,陈永川等.滇池流域典型城郊村镇排放污水氮、磷特征分析.第二届全国农业环境科学学术研讨会论文集.杭州,2007:454-459
    [110]刘忠翰,彭江燕.滇池流域农业区排水水质状况的初步调查[J].云南环境科学. 1997, 16(2):6-9
    [111]陶辉.有机氮化物在饮用水消毒过程中的行为研究[D].哈尔滨工业大学市政工程学科博士学位论文.2008,34-35
    [112]田世忠,张立尖.水中含氮物质氯化消毒后对饮用水水质的影响[J].污染防治技术.1994,7(3):19-25
    [113] R.Chinn, S.E.Barrett, Occurrence of amino acids in two drinking water sources[J]. ACS Symp. Ser. 2000,761:96-108.
    [114] S. Brosillon, M. Lemasle, E.Renault, et al. Analysis and occurrence of odorous disinfection by-products from chlorination of amino acids in three different drinking water treatment plants and corresponding distribution networks[J]. Chemosphere, 2009, 77, 1035-1042
    [115] S. W. Krasner, J. Croué, E. M. Perdue, Three approaches for characterizing natural organic matter. [J]. Am. Water Works Ass.1996, 88(6), 66-79
    [116]陆田生,纪明候.胶洲湾海水中溶解氨基酸的研究[J].海洋与湖沼. 1996, 27(2): 117-124
    [117]方跃强,马冰洁,韩关根.浙江省部分地区市政供水中凯氏氮的检测[J].浙江预防医学. 2001, 13(11): 31-32
    [118]邱光磊,程建光,向连城等.生物接触氧化工艺用于分散型污水处理的中试[J].中国给水排水. 2007, 23(5): 78-81
    [119]中华人民共和国国家标准.“水质游离氯和总氯的测定N,N-二甲基-1,4-苯二胺分光光度法”GB11898-89
    [120] P.Westerhoff, H.Mash. Dissolved organic nitrogen in drinking water supplies: a review [J]. Water Supply Res. Technol.-Aqua, 2002, 51 (8), 415-420
    [121] D. I. Pattison, M. J. Davies. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds[J]. Chem. Res. Toxicol. 2001, 14, 1453-1464
    [122]楚文海,高乃云,赵世嘏,李青松.溶解性有机氮乙酰胺氯化生成饮用水THMs的影响因素研究[J].环境科学.2009,30(5),1376-1380.
    [123] C. Z. Na, T. M. Olson. Relative reactivity of amino acids with chlorine in mixtures[J]. Environ. Sci. Technol. 2007, 41 (9), 3220-3225
    [124] G. A. Cowman, P. Singer. Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances[J]. Environ. Sci. Technol. 1996, 30, 16-24
    [125] J. P. Gould, L. E. Fitchorn, E. Urheim. 1983. Formation of brominated trihalomethane: extent and kinetics. In: Jolley, R.L. (Ed.), Water Chlorination: Environmental Impact and Health Effects[J]. Chemistry and Water Treatment, vol. 4. Ann Arbor Science, Ann Arbor, MI, pp. 297-310
    [126] J.M.Symons, S. W. Krasner, M. J. Sclimenti, L. A. Simms, H. W. Sorenson, G. E. Speitel, A .C. Diehl. In disinfection by products in water treatment: the chemistry of their formation and control[J]. Minear, R.A.; Amy, G.L., Eds. CRC Press Inc. 1996:91-96
    [127] D.S.William, and D. S.Wendy. Kinetics and mechanism of the decomposition of N-chloroalanine in aqueous solution[J], Environ Sci Technol, 1979, 13(4): 446-451
    [128] S. H. Ueno, T. Moto, Y. Sayato,et al. Disinfection by-products in the chlorination of organic nitrogen compounds by-products from kynurenine[J]. Chemosphere.1996, 33(8):1425-1433
    [129]鲁崇贤,杜洪光.有机化学[M].北京:科学出版社.2004:302.
    [130] F. Ge, L. Zhu, J. Wang. Distribution of chlorination products of phenols under various pHs in water disinfection[J]. Desalination, 2008, 225:156-166
    [131] V. Glezer, B. Harris, N. Tal,et al. Hydrolysis of haloacetonitriles: linear free energy relationship, kinetics and products[J]. Water Res. 1999, 33, 1938-1948
    [132]鲁崇贤,杜洪光.有机化学.北京:科学出版社.2004:525
    [133] M. L. Trehy, R. A. Yost, C. J. Miles. Chlorination byproducts of amino acids in natural waters[J]. Environ. Sci. Technol. 1986, 20:1117-1122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700