水中亚硝胺类消毒副产物生成规律及其前质去除方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来的研究结果显示,亚硝胺类物质以消毒副产物的形式被检出于水处理构筑物之中。鉴于该物质的强致癌风险性,有必要研究其在水处理过程中的生成机理,并采取相应的措施控制其生成。本论文即从上述两方面的问题入手,研究了几种模拟前质在氯消毒和臭氧氧化过程中亚硝胺的生成规律,并考察了复合氧化工艺和吸附工艺对水中的亚硝胺生成的控制效能。
     本文首先探讨了几种我国北方水体中常见的仲胺(二甲胺,二乙胺,甲基乙胺)在氯和氯胺消毒过程中生成相应亚硝胺的规律并考察了几种重要的影响因素。在次氯酸消毒过程中,三种亚硝胺的生成量较低且无明显规律,但在氨氮加入后其产量明显增加,且生成量随氨氮浓度的增加呈先增加后减少的趋势。氯胺的种类对亚硝胺的生成量有重要影响,水体的pH值和氯氮比均会影响氯胺的存在形式,二氯胺相比一氯胺能更高效地将前质转化为相应的亚硝胺。另外,水体的pH值也会通过影响前质的质子化状态影响亚硝胺的形成。实验结果显示,在氯胺消毒过程中,这三种亚硝胺可能是通过相同的反应途径生成的,即三种脂肪胺均先与氯胺反应生成不对称仲肼或氯化不对称仲肼,然后该中间产物进一步被氧化生成相应的亚硝胺。氯胺消毒过程中,水中共存的硝酸根、亚硝酸根和天然有机物均对亚硝胺的生成有不同程度的抑制作用,而溴离子可通过生成卤胺促进亚硝胺的生成。
     两种叔胺(三甲胺,3-二甲氨甲基吲哚)在氯胺消毒过程中生成N-亚硝基二甲胺(NDMA)的规律截然不同,但二者均可在与氯胺的反应中分解为直接的NDMA前质——二甲胺(DMA)。在相同条件下,同物质量的3-二甲氨甲基吲哚(DMAI)在氯胺消毒过程中会分解为更多的DMA,消毒结束后生成的NDMA量也最大。值得注意的是,在二氯胺消毒过程中,3-二甲氨甲基吲哚生成的NDMA量甚至高于等物质量的DMA生成的NDMA量,这说明一些叔胺可能通过其他未知高效途径生成相应的亚硝胺。硝酸根离子、亚硝酸根离子、溴离子及天然有机物对叔胺向亚硝胺的转化过程均有一定抑制作用。
     经实验研究发现,臭氧氧化含DMA水时也会导致亚硝胺的生成。国外学者提出的甲醛催化理论,并不能完全解释在中性及碱性条件下臭氧氧化生成亚硝胺的规律。羟胺是脂肪胺氧化后的常见产物,其可与DMA生成不对称二甲肼,该中间产物经进一步氧化后可以生成NDMA。另外,亚硝酸根可与羟基自由基经多步反应生成四氧化二氮,该产物是一种高效的亚硝化试剂也可与前质反应生成亚硝胺。经实验证明,甲基乙胺和二乙胺也可与羟胺反应生成相应的亚硝胺。
     在总结臭氧氧化生成亚硝胺机理的过程中,发现若在水中加入其他氧化剂,可在去除有机前质的同时去除活性的中间产物,从而达到控制亚硝胺生成的目的。本实验采用的两种复合氧化工艺(O3/H2O2和O3/KMnO4)均可在20min内有效地去除DMA([DMA]0=0.01mmol/L,去除率约80%)。两种复合工艺对DMA的去除率均在碱性条件下达到最高值,中性时次之,酸性条件下效果最差。其中,O3/H2O2工艺是通过生成强氧化性的羟基自由基促进DMA的降解,而O3/KMnO4则主要通过协同氧化作用达到强化去除DMA的目的。通过对复合氧化后的产物分析可知,复合工艺可以有效地减少活性中间产物(羟胺,甲醛等),从而使得NDMA的生成量显著降低。但是为达到理想的DMA去除效果并有效控制NDMA的生成,加入的氧化剂的剂量很高,在实际水处理中难以应用。同时,水中残留的H2O2和超标的锰离子可能带来新的水质问题。因此,亟待研发一种安全高效的除去水中DMA的方法。
     在复合氧化的实验中,发现反应过程中生成的二氧化锰对DMA有一定的吸附去除效果。因此,首先考察了市售二氧化锰对DMA的去除效果,但结果并不理想。通过多种不同方法在实验室制备了不同形态的二氧化锰,考察其去除DMA的效果。其中,通过高锰酸钾和硫代硫酸钠预制备的二氧化锰不但对DMA的去除率高且沉降效果好。但该材料强度不高,连续震荡反应24h后水体中会出现棕黄色的悬浊物。于是,在制备过程中加入活化步骤(48h)并加入硅酸钠以提高所制备二氧化锰的强度和稳定性。改进后的二氧化锰材料(MnO2,ksSi)对DMA仍有较好的去除效果,且沉降效果好、不易碎裂。MnO2,ksSi主要通过静电吸附和离子交换机理吸附DMA,其吸附等温线符合Freundlich模型。吸附后的DMA中的N被吸附基团保护,所以只有接近吸附剂表面的甲基被氧化为羧基离子(-COO-)。DMA一旦吸附之后,就不会再度出现在水体当中,所以这种吸附工艺是一种安全高效的去除水中DMA的方法。另外,该吸附剂对甲基乙胺也有一定的去除效果,但对二乙胺并没有明显吸附。同时也考察了几种共存物质对吸附效果的影响,其中金属阳离子可明显抑制吸附的进行,而腐殖酸对吸附没有明显影响。
As reported in the recent studies, N-nitrosamines have been detected as new types of disinfection by products in the water treatment process. According to their high cancinogen risk, it is necessary to study the formation mechanisms of N- nitrosamines, and to develop some effective technologies for N-nitrosamines formation control. The two aspects mentioned above were both discussed in this study. Several direct precursors were used as the model precursors during chorination disinfection and ozonation treatment process to discuss some important influencing factors for N-nitrosamines formation. Furthermore, combined oxidation and adsorption process were both used for N-nitrosamines precursors removal and N-nitrosamines formation control.
     At the beginning of this study, the influencing factors and formation mechanisms of three different secondary N-nitrosamines from their relevant precursors (dimethylamine, methylethylamine, dimethylamine) during chlorination and chloramination was discussed. Low yields of N-nitrosamines were detected when chlorine was used as the disinfectant, and no significant relationship was found between the N-nitrosamines yields and chlorine dosage. After the addition of NH4+, the yield of N-nitrosamines was much higher than that without the presence of NH4+. And the N-nitrosamines increased first then decreased with the increasing dosage of NH4+. The species of chloramine might be one of the most important influencing fators for N-nitrosamines formation. The results showed that dichloramine could transfer presursors into N-nitrosamines more effectively than monochloramine. The species of chloramine can be influenced by the solution pH value and the Cl/N raitio of disinfection reagent, while the pH value can also change the protonation state of precursors which is also an important factor for N-nitrosamines formation. The results indicated that these three N-nitrosamines could be formed via similar pathways,i.e., the secondary aliphatic amines first react with chloramines into reactive intermediates (secondary unsymmetrical hydrazine or chlorinated secondary unsymmetrical hydrazine), which could be further oxidized into relevant N-nitrosamines. With the coexistence of nitrate ion, nitrite ion and natrual organic matter, the formation of N-nitrosamines during chloramination would be limited. However, the bromide ion co-existed in the water would increase the yield of N-nitrosamines by leading the formation of halamines.
     Different phenomenon appeared when two tertiary amines, i.e. trimethylamine (TMA) and 3-(dimethylaminomethyl) indole (DMAI), were used as the model precursors of N-nitrosodimethylamine (NDMA) during chloramination. But dimethylamine (DMA) , the most direct precursor of NDMA, was both detected when these two tertiary amines were treated by chloramines. With the same expriment condition, more DMA and NDMA can be formed from DMAI than that form TMA of the same mole concentration. It should be noticed that DMAI can transfer into NDMA even more effectively than DMA during disinfection by dichloramine. It indicates that some tertiary amines can form N-nitrosamines via some effectively pathways which haven’t been reported before, rather than that including the DMA formed from its degradation during chlorination/chloramination. The co-existed nitrate ion, nitrite ion,bromide ion and natural organic matter all restrain the formation of NDMA from tertiary amines during chloramination.
     As shown in the results of this study, N-nitrosamines can also be formed during ozonation. The formaldehyde-catalyzed nitrosation pathway proposed by some abroad researches can not explain the formation of N-nitrosamines at netural and alkaline pH completely. Hydroxylamine is a common intermediate during oxidation of aliphatic amines, and it can react with DMA into unsymmetrical dimethylhydrazine which could be oxidized further into NDMA. Furthermore, dinitrogen tetroxide (N2O4), a reactive nitrosating reagent, can be formed by a multi-step reaction between nitrite ions and hydroxyl radicals. N2O4 can act as the inorganic precursors of N-nitrosamines during ozonation. Relevant N-nitrosamines can also be formed from methylethylamine (MEA) and diethylamine (DEA) during ozonation.
     By studying the formation mechanisms of N-nitrosamines during ozonation, it was found that both organic precursors and reactive intermediate can be removed at the same time by adding another oxidant. The method will be also helpful to control N-nitrosamines formation during oxidation treatment process. In this study, two combined ozonation technologies, i.e. O3/H2O2 and O3/KMnO4, were introduced to eliminate DMA from water. Both these two technologies can remove nearly 80% of DMA within 20min ([DMA]0=0.01mmol/L). The removal ratio of DMA at alkaline pH was the highest, followed by that of netural pH and acidic pH. The hydroxyl radicals formed during O3/H2O2 can promote the degradation of DMA, while collaborative oxidation might be the mechanism of DMA removal during O3/KMnO4 process. By analysing the products after these two combined ozonation process, the decreasing of NDMA formation should be explained by the lower yield of reactive intermediates (hydroxylamine, formaldehyde, etc.). Unfortunately, the dosage of oxidants in these two technologies were both much higher than pratical water treatment process in order to get higer removal ratios. The residual H2O2 and manganese exceeding the standard of drinking water might do harm to human health. Therefore, it is necessary to develop a new technology which is more safe and effective for DMA removal.
     In the experiments of combined ozonation, it was found that MnO2 can remove certain amount of DMA from the water. The commercial MnO2 showed poor removal capacity on DMA, therefore several MnO2 adsorbents were synthesized in this study. The MnO2 formed via the reaction of KMnO4 and Na2S2O3 (MnO2,ksP) has the best settleability and removal effect on DMA, but has poor strength. MnO2,ksP could break into small MnO2 suspensions after adsorption for 24h, leading the water appears brown-yellow colour. Herein preparation methods were improved by adding Na2SiO3 after the formation of MnO2, then aging for 48h. The improved MnO2, i.e. MnO2,ksSi, still showed good removal efficiency on DMA and good settleability, but better strength. The adsorption mechanisms of DMA on MnO2,ksSi can be contributed by both electrostatic interaction and ion exchange, and the adsorption isotherms can be fitted well using Freundlich isotherm model. After adsorbed on the surface of MnO2,ksSi, the N-H in DMA was protected by the adsorption sites while the methyl groups closed to the surface of MnO2,ksSi were oxidized into -COO-. Since DMA is consumed by the oxidization, DMA can not dissolve back into water during the desorption process, and no NDMA can be formed in the following disinfection. Therefore, this asdorption method seems to be a safety and effective solution for DMA removal. In addition, MnO2,ksSi can also remove certain amount of MEA from the water, but it has no effect on DEA removal. Some influencing factors on DMA adsorption by MnO2,ksSi were also discussed. The coexisted metal cations can restrain the adsorption significantly while no effect was caused by humic acid in the water.
引文
1 S. Arimoto-Kobayashi, K. Kaji, G. M. A. Sweermen, et al. NDMA to induce mutagenicity by the methylation of DNA. Advances in Mass Spectrometry. 1998, 14:964301
    2许后效.环境中的N-亚硝基化合物.科学出版社, 1988
    3 R. M. Clark, B. K. Boutin. Controlling Disinfection By-products and Microbial Contaminants in Drinking Water.U.S. EPA, 2001
    4杨文献.林州食管癌高发现场的防治战略与对策研究.中国肿瘤.1999,8(9):390-391
    5徐文升,刘宗河,黎远东.广西某肝癌高发区食物及饮用水中二甲基亚硝胺的调查.广西医学. 1995, 17(2):174-175
    6 W. A. Mitch,G. L. Oelker, E. L. Hawley, et al. Minimization of NDMA Formation during Chlorine Disinfection of Municipal Wastewater by Application of Pre-Formed Chloramines.Environmental Engineering Science. 2005, 22(6):882-890
    7 P. Andrzejewski, B. Kasprzyk-Hordern, J. Nawrocki. The Hazard of N-nitrosodimethylamine (NDMA) Formation during Water Disinfection with Strong Oxidants. Desalination.2005, 176(1-3):37-45
    8 W. A. Mitch, J. O. Sharp, R. R. Trussell, et al. N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environmental Engineering Science.2003, 20(5):389-404
    9 W. A. Mitch, D. L. Sedlak. Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination. Environmental Science and Technology.2002, 36(4):588-595
    10 A. Wilczak, A. Assadi-Rad, H. H. Lai, et al. Formation of NDMA in Chloraminated Water Coagulated with DADMAC Cationic Polymer. Journal American Water Works Association.2003, 95(9):94-106
    11 A. C. Gerecke, D. L. Sedlak. Precursors of N-Nitrosodimethylamine in Natural Waters. Environmental Science and Technology. 2003, 37(7):1331-1336
    12 W. A. Mitch, D. L. Sedlak.Factors Controlling Nitrosamine Formationduring Wastewater Chlorination. Water Science and Technology. 2002, 2(3):191-198
    13 E. Pehlivanoglu-Mantas, E. L. Hawley, R. A. Deeb, et al. Formation of Nitrosodimethylamine (NDMA) during Chlorine Disinfection of Wastewater Effluents Prior to Use in Irrigation Systems. Water Research. 2006, 40(2):341-347
    14 S. S. Walse, W. A. Mitch. Nitrosamine carcinogens also swim in chlorinated pools. Environmental Science and Technology.2008, 42(4):1032-1037
    15贲岳.生物法对水中两种硝基化合物的去除效能及机理研究.哈尔滨工业大学博士论文.2009, 45-52
    16胡荣梅,马立珊.N-亚硝基化合物分析方法.科学出版社, 1980:59
    17中华人民共和国国家标准.“食品中N-亚硝胺类的测定方法”GB/T5009.26-1996
    18 R.C. Cheng, C. Andrews-Tate, C.J. Hwang, et al. Comparison of Alternative Nitrosoamine Analyses for Water Reuse Samples. .Water Recycling: Realizing California's Potential, San Diego, California., 2005
    19 B. A. Tomkins, W. H. Griest, C. E. Higgins. Determination of N-Nitrosodimethylamine at Part-per-Trillion Levels in Drinking Waters and Con taminated Groundwaters. Analytical Chemistry. 1995, 67:4387-4395.
    20 B. A. Tomkins, W. H. Griest. Determinations of N-Nitrosodimethyl- amine at Part-per-Trillion Concentrations in Contaminated Groundwaters and Drinking Waters Featuring Carbon-Based Membrane Extraction Disks.Analytical Chemistry.1996, 68(15):2533-2540.
    21 H. F. Prest, R. E. Herrmann. An Approach to the Determination of N-Nitrosodimethylamine at Part-per-Quadrillion Levels Using Positive Chemical Ionization and Large-Volume Injection. Agilent Technologies (HP). 1999
    22 J. W. A. Charrois, M. W. Arend, K. L. Froese, et al. Detecting N-Nitrosamines in Drinking Water at Nanogram-per-Liter Levels Using Ammonia Positive Chemical Ionization. Environmental Science and Technology. 2004, 38(18):4835-4841.
    23 G. Bellec, J. M. Cauvin, M. C. Salaun, et al. Analysis of N-nitroamines by High-performance Liquid Chromatography with Post-column Photohydrolysis and Colorimetric Detection.Journal of Chromatography A. 1996, 727(1):83-92
    24 L. Cardenses, J. H. Ayala, V. Gonzalez, et al. Fast Microwave-assisted Dansylation of N-nitrosamine: Analysis by High-performance Liquid Chromatography with Fluorescence Detection. Journal of Chromatography A. 2002, 946(1-2):133-140
    25 W. Cha, P. Fox, B. Nalinakumari. High-performance Liquid Chromatography with Fluorescence Detection for Aqueous Analysis of Nanogram-level N-Nitrosodimethylamine. Analytica Chimica Acta. 2006, 566(1):109-116
    26 Y. Y. Zhao, J. Boyd, S. W. Hrudey, et al. Characterization of New Nitrosamines in Drinking Water using Liquid Chromatograpy Tandem Mass Spectrometry. Environmental Science and Technology. 2006, 40(24):7636-7641
    27 J. H. Choi, R. L. Valentine. N-nitrosodimethylamine Formation hy Free-chlorine-enhanced Nitrosation of Dimethylamine. Environmental Science and Technology. 2003, 37(21):4871-4876
    28 C. L. Lv, Y. D. Liu, R. G. Zhong, et al. Theoretical Studies on the Formation of N-nitrosodimethylamine. Journal of Molecular Structure-Theochem. 2007, 802(1-3):1-6
    29 C. Lee, J. Yoon. UV-A Induced Photochemical Formation of N-nitrosodimethylamine (NDMA) in the Presence of Nitrite and Dimethylamine. Journal of Photochemistry and Photobiology a-Chemistry. 2007, 189(1):128-134
    30 L. K. Keefer, P. P. Roller. N-nitrosation by Nitrite Ion in Neutral and Basic Medium. Science. 1973, 181(106):1245-1247
    31 P. Andrzejewski, B. Kasprzyk-Hordern, J. Nawrocki. N-nitrosodimethylamine (NDMA) Formation during Ozonation of Dimethylamine-containing waters. Water Research.2008, 42(4-5):863-870
    32 P. Andrzejewski, J. Nawrocki. N-nitrosodimethylamine (NDMA) as a Product of Potassium Permanganate Reaction with Aqueous Solutions of Dimethylamine (DMA). Water Research.2009, 43(5):1219-1228
    33 Z. Sun, Y. D. Liu, R. G. Zhong. Theoretical Investigation of N-Nitrosodimethylamine Formation from Nitrosation of Trimethylamine. Journal of Physical Chemistry A.2010, 114(1):455-465
    34 J. Choi, S. E. Duirk, R. L. Valentine. Mechanistic studies of N-nitrosodimethylamine (NDMA) Formation in Chlorinated Drinking water.Journal of Environmental Monitoring. 2002, 4(2):249-252
    35 J. Choi, R. L. Valentine. A Kinetic Model of N-nitrosodimethylamine (NDMA) Formation during Water Chlorination/Chloramination. Water Sci Technol.2002, 46(3):65-71
    36 J. H. Choi, R. L. Valentine. Formation of N-Nitrosodimethylamine (NDMA) from Reaction of Monochloramine: A New Disinfection by-product. Water Research.2002, 36(4):817-824
    37 I. M. Schreiber, W. A. Mitch. Nitrosamine Formation Pathway Revisited: The Importance of Chloramine Speciation and Dissolved Oxygen. Environmental Science & Technology. 2006, 40(19):6007-6014
    38 I. M. Schreiber, W. A. Mitch. Influence of the Order of Reagent Addition on NDMA Formation during Chloramination. Environmental Science and Technology. 2005, 39(10):3811-3818
    39 Z. Chen, R. L. Valentine. Modeling the Formation of N- nitrosodimethylamine (NDMA) from the Reaction of Natural Organic Matter (NOM) with Monochloramine. Environmental Science and Technology. 2006, 40(23):7290-7297
    40 E. C. Fleming, J. C. Pennington, B. G. Wachob, et al. Removal of N-Nitrosodimethylamine from Waters using Physical-Chemical Techniques. Journal of Hazardous Materials.1996, 51(1-3):151-164
    41 J. H. Zhu, D. Yan, J. R. Xai, et al. Attempt to Adsorb N-Nitrosamines in Solution by Use of Zeolites. Chemosphere.2001, 44(5):949-956
    42马丽丽,严冬,朱建华.沸石对于亚硝胺的吸附和裂解.催化学报.2001, 22(2):208-210
    43 J. O. Sharp, T. K. Wood, L. Alvarez-Cohen. Aerobic Biodegradation of N-Nitrosodimethylamine (NDMA) by Axenic Bacterial Strains. Biotechnology and Bioengineer.2005, 89(5):608-618
    44 D. Gunnison, M. E. Zappi, C. Teeter, et al. Attenuation Mechanisms of N-Nitrosodimethylamine at an Operating Intercept and Treat Groundwater Remediation System. Journal of Hazardous Materials. 2000, 73(2):179-197
    45 M. I. Stefan, J. R. Bolton. UV Direct Photolysis of N-nitrosodimethylamine (NDMA): Kinetic and Product Study. Helvetica Chimica Acta. 2002, 85(5):1416-1426
    46 C. Lee, W. Choi, Y. G. Kim, et al. UV Photolytic Mechanism of N-Nitrosodimethylamine in Water: Dual Pathways to Methylamine Versus Dimethylamine. Environmental Science and Technology. 2005, 39(7):2101-2106
    47 C. Lee, W. Choi, J. Yoon. UV Photolytic Mechanism of N-Nitrosodimethylamine in Water: Roles of Dissolved Oxygen and Solution pH. Environmental Science and Technology.2005, 39(24):9702-9709
    48 C. M. Sharpless, K. G. Linden. Experimental and Model Comparisons of Low- and Medium-pressure Hg Lamps for the Direct and H2O2 Assisted UV Photodegradation of N-Nitrosodimethylamine in Simulated Drinking water. Environmental Science and Technology.2003, 37(9):1933-1940
    49徐冰冰. UV/UV-O3降解水中亚硝胺的效能与机理研究.哈尔滨工业大学博士论文.2008.
    50 S. Liang, J. H. Min, M. K. Davis, et al. Use of Pulsed-UV Processes to Destroy NDMA. Journal American Water Works Association.2003, 95(9):121-131
    51 J. Lee, W. Choi, J. Yoon. Photocatalytic Degradation of N-nitrosodimethylamine: Mechanism, Product Distribution, and TiO2 Surface modification. Environmental Science and Technology. 2005, 39(17):6800-6807
    52 S. P. Mezyk, W. J. Cooper, K. P. Madden, et al. Free Radical Destruction of N-Nitrosodimethylamine in Water. Environmental Science and Technology. 2004, 38(11):3161-3167
    53 L. Gui, R. W. Gillham, M. S. Odziemkowski. Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel Enhanced Iron. 1. Pathways and Kinetics. Environmental Science and Technology. 2000, 34(16):3489-3494
    54 M. S. Odziemkowski, L. Gui, R. W. Gillham. Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel-enhanced Iron. 2. Mechanistic Studies. Environmental Science and Technology. 2000, 34(16):3495-3500
    55 M. G. Davie, M. Reinhard, J. R. Shapley. Metal-catalyzed Reduction of N-Nitrosodimethylamine with Hydrogen in Water. Environmental Science and Technology. 2006, 40(23):7329-7335
    56韩莹.零价锌还原降解水中N-亚硝基二甲胺的效能与机理研究.哈尔滨工业大学硕士论文.2009.
    57 J. W. A. Charrois, S. E. Hrudey. Breakpoint Chlorination and Free-chlorine Contact Time: Implications for Drinking Water N-Nitrosodimethylamine Concentrations. Water Research. 2007, 41(3):674-682
    58 Z. Chen, R. L. Valentine. The Influence of the Pre-oxidation of Natural Organic Matter on the Formation of N-Nitrosodimethylamine (NDMA). Environmental Science and Technology. 2008, 42(14):5062-5067
    59 C. Lee, C. Schmidt, J. Yoon, et al. Oxidation of N-Nitrosodimethylamine (NDMA) Precursors with Ozone and Chlorine Dioxide: Kinetics and Effect on NDMA Formation Potential. Environmental Science and Technology. 2007, 41(6):2056-2063
    60 C. Lee, Y. Lee, C. Schmidt, et al. Oxidation of Suspected N-Nitrosodimethylamine (NDMA) Precursors by Ferrate (VI): Kinetics and Effect on the NDMA Formation Potential of Natural Waters. Water Research. 2008, 42(1-2):433-441
    61 P. Andrzejewski, J. Nawrocki. N-Nitrosodimethylamine Formation during Treatment with Strong Oxidants of Dimethylamine Containing water. Water Science and Technology. 2007, 56(12):125-131
    62李浩宇. Al2O3催化臭氧氧化水中脂肪胺的实验研究.哈尔滨工业大学硕士论文.2008.
    63 H. Badera, J. Hoignéa. Determination of Ozone in Water by the Indigo Method. Water Research. 1981, 15(4):449-456
    64中华人民共和国国家标准.“水质游离氯和总氯的测定N,N-二甲基-1,4-苯二胺分光光度法”GB11898-89
    65 F. Sacher, S. Lenz, H. J. Brauch. Analysis of Primary and Secondary Aliphatic Amines in Waste Water and Surface Water by Gas Chromatography Mass Spectrometry after Derivatization with 2,4-Dinitrofluorobenzene or Benzenesulfonyl Chloride. Journal of Chromatography A. 1997, 764(1):85-93
    66 W. D. Korte. Determination of Hydroxylamine in Aqueous Solutions of Pyridinium Aldoximes by High-performance Liquid Chromatography with UV and Fluorometric Detection. Journal of Chromatography A. 1992, 603(1-2):145-150
    67 A. A. Denisov, A. D. Smolenkov, O. A. Shpigun. Determination of1,1-Dimethylhydrazine by Reversed-phase High-performance Liquid Chromatography with Spectrophotometric Detection as a Derivative with 4-Nitrobenzaldehyde. Journal of Analytical Chemistry. 2004, 59(5):452-456
    68 J. W. Munch, D. J. M. Winslow, S. D. Wendelken, et al. EPA Method 556: Determination of Carbonyl Compounds in Drinking Water by Pentafluorobenzyblydroxylamine Derivatisation and Capillary Gas Chromatography with Electron Capture Detection. 1998:1-37
    69 H. Tamura, A. Tanaka, K. Mita, et al. Surface Hydroxyl Site Densities on Metal Oxides as a Measure for the Ion-exchange Capacity. Journal of Colloid and Interfernce Science. 1999, 209(1):225-231
    70刘建广,张晓健,王占生等. UBAF处理高氨氮微污染水的特性.水处理技术.2005, 31(11):30-33
    71严煦世,范谨初,许保玖.给水工程.中国建设工业出版社, 1999:360-367
    72 L. Garcia-Rio, P. Herves, J. R. Leis, et al. Reactive Micelles: Nitroso Group Transfer from N-Methyl-N-notroso-p-toluenesulfonamide to Amphiphilic amines. J Physical and Organic Chemistry. 2004, 17(11):1067-1072
    73 M. Wada, S. Miyake, S. Hayashi, et al. Reactions of tris(2,6-Dimethoxyphenyl) Arsine, tris(2,6-Dimethoxyphenyl) Stibine and tris(2,6-Dimethoxyphenyl) Bismuthine and Their Derivatives. Journal of Organanic Chemistry. 1996, 507(1-2):53-63
    74 G. Yagil, M. Anbar. The kinetics of Hydrazine Formation from Chloramine and Ammonia. Journal of American Chemical Society. 1962, 84:1797-1803
    75 Richard Louis Valentine, AWWA Research Foundation., Water Environment Research Foundation..Factors Affecting the Formation of NDMA in water and Occurrence. AWWA Research Foundation and American Water Works Association, 2005
    76 D. W. Margerum, K. E. H. Hartz. Role of Halogen(I) Cation-transfer Mechanisms in Water Chlorination in the Presence of Bromide ion. Journal of Environmental Monitoring. 2002, 4(1):20-26
    77 Zhi Sun, Yong Dong Liu, Ru Gang Zhong. Theoretical Investigation of N-Nitrosodimethylamine Formation from Nitrosation of Trimethylamine.The Journal of Physical Chemistry A. 2010, 114(1):455-465
    78 W. A. Mitch, I. M. Schreiber. Degradation of Tertiary Alkylamines during Chlorination/Chloramination: Implications for Formation of Aldehydes, Nitriles, Halonitroalkanes, and Nitrosamines. Environmental Science and Technology. 2008, 42(13):4811-4817
    79 Mario M. Mangino, Richard A. Scanlan. Nitrosation of the Alkaloids Hordenine and Gramine, Potential Precursors of N-Nitrosodimethylamine in Barley Malt. Journal of Agricultural and Food Chemistry. 1985, 33(4):699-705
    80 Boonthong Poocharoen, James F. Barbour, Leonard M. Libbey, et al. Precursors of N-nitrosodimethylamine in Malted Barley. 1. Determination of Hordenine and Gramine. Journal of Agricultural and Food Chemistry.1992, 40(11):2216-2221
    81 F. Munoz, C. von Sonntag. The Reactions of Ozone with Tertiary Amines Including the Complexing Agents Nitrilotriacetic Acid (NTA) and Ethylenediaminetetraacetic Acid (EDTA) in Aqueous Solution. Journal of the Chemical Society-Perkin Transactions 2. 2000(10):2029-2033
    82 U. von Gunten.Ozonation of drinking water: Part II. Disinfection and By-product Formation in Presence of Bromide, Iodide or Chlorine. Water Research. 2003, 37(7):1469-1487
    83 A. Streitwieser, Jr., C. H. Heathcock. Introduction to Organic Chemistry. Secondary. Macmillan Publishing Co., Inc. 1981:758
    84 U. von Gunten. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Research.2003, 37(7):1443-1467
    85 S. Kim, W. Choi. Kinetics and Mechanisms of Photocatalytic Degradation of (CH3)nNH4-n+ (0≤n≤4) in TiO2 Suspension: The Role of OH Radicals. Environmental Science and Technology. 2002, 36(9):2019-2025
    86 Sidney S. Mirvish. Formation of N-nitroso Compounds: Chemistry, Kinetics, and in vivo Occurrence. Toxicology and Applied Pharmacology. 1975, 31(3):325-351
    87 Johannes Staehelin, Juerg Hoigne. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environmental Science and Technology.1982, 16(10):676-681
    88 Avner Treinin, Elie Hayon.Absorption S pectra and Reaction Kinetics of NO2, N2O3, and N2O4 in Aqueous Solution. Journal of the American ChemicalSociety. 1970, 92(20):5821-5828
    89 C. L. Lv, Y. D. Liu, R. G. Zhong. Theoretical Investigation of Nitration and Nitrosation of Dimethylamine by N2O4. Journal of Physical Chemistry A. 2008, 112(30):7098-7105
    90 N. K. V. Leitner, P. Berger, G. Dutois, et al. Removal of Hydroxylamine by Processes Generating OH Center Dot Radicals in Aqueous Solution. Journal of Photochemistry and Photobiology A-Chemistry. 1999, 129(3):105-110
    91 B. N. Pramanik, A. K. Ganguly, M. L. Gross. Applied Electrospray Mass Spectrometry. Marcel Dekker, Inc., 2002:29-31
    92 J. C. Jr. Bailar, H. J. Emeleus, R. Nyholm, et al. Comprehensive Inorganic Chemistry. Volume 2. Pergamon Press, Oxiford. 1973: 147–388.
    93 Robert E. McCoy. Evidence for the Presence of Hydroxylamine as an Intermediate in the Decomposition of Chloramine by Hydroxide.Journal of the American Chemical Society. 1954, 76(5):1447-1448
    94马新红.过氧化氢催化臭氧氧化水中2-MIB的效能及机理初探.哈尔滨工业大学硕士论文. 2006:79
    95刘晓飞.高锰酸钾/臭氧复合预氧化强化给水处理工艺除污染效能.哈尔滨工业大学博士论文. 2005:147
    96秦庆东,马军,查人光等. PPC替代高锰酸钾和臭氧处理微污染原水研究.中国给水排水.2007, 23(7):32-35
    97 S. M Chen, C. H. Kuo.Kinetic Studies of the Oxidation of Toluene by Ozone and Hydrogen Peroxide Mixtures. Univ, MS Thesis. Miss State, US.1995:341-348
    98 L. Chen, F. Qi, B. Xu, et al. The Efficiency and Mechanism of Gamma-alumina Catalytic Ozonation of 2-Methylisoborneol in Drinking Water. 5th World Water Congress: Drinking Water Treatment Processes. 2006, 6(3):43-51
    99 Y. Hwang, T. Matsuo, K. Hanaki, et al. Removal of Odorous Compounds in Waste-Water by Using Activated Carbon, Ozonation and Aerated Biofilter. Water Research.1994, 28(11):2309-2319
    100 X. H. Feng, L. M. Zhai, W. F. Tan, et al. Adsorption and Redox Reactions of Heavy Metals on Synthesized Mn Oxide Minerals. Environmental Pollution.2007, 147(2):366-373
    101 J. Zhang, G.B. Li, M. Yu, et al. Adsorption and Oxidation of Phenol and Chlorophenols by Nascent Hydrated Manganese Dioxide. Technology of Water Treatment. 2002, 28(5):263-265
    102 R. Liu, Y. Yang, G. Li, et al. Adsorptive Behavior of Humic Acid on Hydrous Manganese Dioxide. Acta Scientiat Circumstantiae. 2005, 25(3):351-355
    103 L.Z. Zhang, J. Ma, X. Li, et al. Enhanced Removal of Organics by Permanganate Preoxidation using TannicAcid as a Model Compound - Role of in situ Formed Manganese Dioxide. Journal of Environmental Science-China. 2009, 21(7):872-876
    104 Bo Zhang, Jianmin Xing, Yuqi Lang, et al. Synthesis of Amino-silane Modified Magnetic Silica Adsorbents and Application for Adsorption of Flavonoids from Glycyrrhiza uralensis Fisch. Science in China Series B: Chemistry. 2008, 51(2):145-151
    105中华人民共和国国家标准.“气体吸附BET法测定固体物质比表面积”GB/T 19587-2004
    106 K. S. W. Sing, D. H. Everett, R. A. Haul, et al. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry.1985, 57(4):609-619
    107 R. P. Liu, H. J. Liu, Z. M. Qiang, et al. Effects of Calcium Ions on Surface Characteristics and Adsorptive Properties of Hydrous Manganese Dioxide. Journal of Colloid and Interfence Science. 2009, 331(2):275-280
    108 L. Ho, G. Newcombe. Effect of NOM, Turbidity and Floc Size on the PAC Adsorption of MIB during Alum Coagulation. Water Research. 2005, 39(15):3668-3674
    109杨南如.无机非金属材料测试方法.武汉工业大学出版社, 1993:121-128
    110 C. D. Wanger, W. M. Riggs, L. E. Davis, et al. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979:190
    111 R. P. Schwarzenbach, P. M. Gschwend, Dieter M. Imboden. Environmental organic chemistry. 2nd. Wiley, 2003
    112 D. Yan, P. X. Yan, S. Cheng, et al. Fabrication, In-Depth Characterization, and Formation Mechanism of Crystalline Porous Birnessite MnO2 Film with Amorphous Bottom Layers by Hydrothermal Method. Crystal Growth and Design.2009, 9(1):218-222
    113 K. A. Andrianov, L. M. Volkova, N. A. Chumaevskii. Vibration Spectra of Organic Compounds Containing Elements from the IV Group (Si, Ge, Sn). Russian Chemical Bulletin. 1962, 11(11):1870-1875
    114 L. Z. Wang, J. L. Shi, J. Yu, et al. Synthesis of Nanostructured Mesoporous Silica Materials containing Manganese. Nanostructured Materials. 1998, 10(8):1289-1299
    115 F. Q. Dong, P. Wan, Q. N. Feng, et al. Investigation on the Surface Active Sites Variation of Mineral Dusts. Journal of Central South University of Technology. 2001, 8(3):169-174
    116 J. Petroski, M. A. El-Sayed. FTIR Study of the Adsorption of the Capping Material to Different Platinum Nanoparticle Shapes. Journal of Physical Chemistry A. 2003, 107(40):8371-8375
    117 L. S. Jia, H. Song, Q. B. Li, et al. New Cuprous Adsorbent Prepared by a Bioreduction Method for SO2 Removal at Low Temperature. Industrial and Engineering Chemisry Research. 2008, 47(22):8888-8893
    118中华人民共和国国家标准.“生活饮用水标准”GB5749-2006
    119 WHO. Principles and Methods for the Assessment of Risk from Essential Trace Elements; Environmental Health Criteria 228. Geneva, World Health Organization. 2002.
    120 U.S. EPA. Drinking Water Health Advisory for Manganese. Report 822R04003. Washington, DC. U.S. Environmental Protection Agency. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700