零价锌还原降解水中N-亚硝基二甲胺的效能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚硝基二甲胺(NDMA)具有潜在强致癌性,美国环保署确定其单位致癌风险对应的浓度为0.7ng·L~(-1)。加拿大的许多水井中都被发现存在有不同浓度的NDMA,经氯或氯胺消毒后的水体中也可检测到NDMA,其作为一种新型的消毒副产物逐渐引起国内外水处理行业的广泛重视。传统的去除方法不能有效地去除NDMA,紫外光解对NDMA的去除效果好,但此种方法能耗高、处理费用高,难以进行实际应用。零价金属还原技术,原料来源广泛且操作简便,是水处理中去除污染物研究的新方向,研究零价金属还原对NDMA的去除与控制技术,具有重要的理论意义和实际应用价值。
     本文采用零价锌还原降解水中NDMA,考察各种因素对于零价锌还原降解NDMA的影响,分析确定其降解产物,并由此推测出零价锌还原降解NDMA的机理,从而为进一步的研究和工程应用,提供数据支持。
     首先考察了零价锌还原降解NDMA的影响因素。结果表明,零价锌可以有效地还原降解水中痕量NDMA。在锌粉投量10g·L~(-1),反应温度20℃,溶液初始pH=7.0,反应搅拌转速为200r·min-1时,反应进行14h,NDMA的去除率可达99%以上;水中溶解氧和NDMA初始浓度对于去除率的影响不大;pH值和反应温度对于零价锌还原降解NDMA的影响显著,pH值越小,温度越高,反应进行得越快;水体中常见阴阳离子和腐殖酸对零价锌还原降解NDMA有一定的抑制作用。
     中性条件下,零价锌还原降解NDMA的过程分为慢速启动期和快速上升期。各种反应条件下,当NDMA降解率高时,锌离子溶出量一般大于1mg·L~(-1)。在对溶液不同初始溶解氧浓度、pH值、反应温度和常见阴阳离子对于NDMA去除影响的考察中发现,反应过程中pH值的变化、锌离子的溶出量、NDMA的降解率三者之间具有一定的相关性。
     对于零价锌还原降解NDMA的产物进行了测定和分析,产物主要为偏二甲肼(UDMH)、二甲胺(DMA)和氨氮(NH_4~+)。不同溶液初始pH条件下,UDMH、DMA和NH_4~+的生成规律有所不同。锌离子对于NDMA的检测和降解影响不明显。零价锌还原NDMA的历程为:由NDMA还原为UDMH之后再还原为DMA和NH_4~+,推测其还原途径为催化加氢和氢原子直接还原。
N-nitrosodimethylamine(NDMA) is potent carcinogen. The U.S.EPA drinking water Standard for NDMA is set at 0.7 parts per trillion. NDMA has been detected at elevated levels at many wells throughout Canada. NDMA can be detected in water after chlorination or chloramination. It has caused significant concern among drinking water and wastewater recycling utilities. NDMA is difficult to remove using conventional treatment methods. Currently, the most prevalent NDMA treatment method is direct UV photolysis, but it needs the high energy consumption and is expensive and difficult to be applied. The zero-valent metal technology , with wide raw sources and simple operation, has recently received much attention. There is strong practical significance by applying it to the control of NDMA.
     Zero-valent zinc was used to degrade NDMA in water. The objectives were not only to investigate the affecting factors, but also to identify the products and deduce the degradation pathways especially. The data can be used to support further research and engineering applications.
     The affecting factors of reduction of NDMA by zero-valent zinc were investigated. Results show that,the trace NDMA can be degraded effectively by zero-valent zinc. The degradation rate of above 99% can be achieved after 14h under the condition of 10g·L~(-1) zinc, 20℃, initial solution pH of 7.0, rotating rates of 200r·min-1. The effect of dissolved oxygen and initial NDMA concentration on the reduction of NDMA are not remarkable while the pH and temperature of solution could effect the reduction of NDMA by zinc greatly. With pH decreasing or temperature ascending, the removal rate of NDMA increased. The removal of NDMA could be inhibited by the anions, cations and humic acid in the water.
     On neutral conditions, the reduction process of NDMA by zero-valent zinc is divided into two periods of slow start-up and rapid increasing. The leaching of zinc ions are generally larger than 1mg·L~(-1) when NDMA reach to a high degrading efficiency. On the conditions of different initial dissolved oxygen concerntration, pH, reaction temperature and the common ions ,the pH value variation and the dissolution of zinc ions are relevant with the degradation of NDMA.
     The products of the reduction of NDMA by zero-valent zinc were detected and analyzed.The main products are 1,1-dimethylhydrazine(UDMH), dimethylamine(DMA) and ammonium(NH_4~+).Under Different initial solution pH conditions, the generation trends of UDMH, DMA and NH_4~+ were different.
     The effects of Zinc ions on NDMA detection and the degradation of NDMA were not obvious. The degradation pathway of the reduction of NDMA by Zero-valent zinc is from NDMA to UDMH first and then to DMA and NH_4~+.The reduction mechanism has been deduced as catalytic hydrogenation and direct reduction by hydrogen atom.
引文
1中国环境保护部. 2007年环境状况报告.http://www.zhb.gov.cn/plan/zkgb/,2009-5-31
    2程晨,陈振楼,毕春娟,等.中国地表饮用水水源地有机类内分泌干扰物污染现状分析.环境污染与防治. 2007,29(6):446~454
    3于玲红,甄树聪,蔡兆亮.藻类污染对包头市饮用水安全影响的监测.现代预防医学. 2008,35(5):849~854
    4崔玉川,傅涛.我国水污染及饮用水源中有机污染物的危害.城市环境与城市生态. 1998,11(3):23~25
    5 J. J. Rook. Formation of Haloforms During the Chlorination of Natural Water. Water Treatment and Examination. 1974, 23: 259~271
    6 T. A. Bellar, J. J. Lichtenberg. Determining Volatile Organics at Microgram-per- Litre Levels by Gas Chromatography. J. AWWA. 1974, 66(12): 739~744
    7 C. S. Philip. Control of Disinfection By-product in Drinking Water. Water Environment Research , 1998 , 70( 4) :727~734
    8邓瑛,魏建荣,鄂学礼,等.中国六城市饮用水中氯化消毒副产物分布的研究.卫生研究. 2008,37(2):207~210
    9赵建莉,王龙.饮用水消毒副产物的危害及去除途径.水科学与工程技术. 2008,(1)
    10焦中志,陈忠林,卢伟强,等.氯胺消毒对三卤甲烷类消毒副产物的控制研究.环境污染治理技术与设备. 2006, 7( 6) : 43~45
    11 C. D.Norton, W. M. LeChevallier. Chloramination: Its Effect on Distribution System Water Quality, J. AWWA. 1989,(7)
    12 W. L. Chen, J.N. Jensen. Effect of Chlorine Demand on Ammonia Break Point Curve: Model Development, Validation with Nitrite and Application to Municipal Wastewater. Water Environ Res, 2001, 73 (6) : 727~ 730
    13张永吉,周玲玲,李伟英.氯胺消毒给水管网中的硝化作用及其控制.中国给水排水. 2008,24(2):6~9
    14许后效.环境中的N-亚硝基化合物.科学出版社, 1988: 206~211, 30~35, 351,44~46,59~60
    15 A. W. Mitch, O. J. Sharp, R. R. Trussell, L. R. Valentine, L. A.Cohen, L. D.Sedlak.N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environmental Engineering Science. 2003, 20(5): 389~404
    16徐文升,刘宗河,黎远东等.广西某肝癌高发区食物及饮用水中二甲基亚硝胺的调查.广西医学. 1995, 17 (2): 174~175
    17信维平.亚硝胺化合物的致癌性及其防治.肉品卫生. 1997,(2): 21~23
    18 R. M. Clark, B. K. Boutin. Controlling Disinfection By-products and Microbial Contaminants in Drinking Water. EPA/600/R-01/110, 2001 , Integrated Risk Information System, United States Environmental Protection Agency (EPA), Office of Research and Development (ORD), National Center for Environmental Assessment. http://www.epa.gov/ngispgm3/iris/search.htm
    19 California Department of Health Services. NDMA in California Drinking Water; March 15. http:// www. dhs. ca. gov /ps /ddwem /chemicals/NDMA/history.htm
    20 L. M. Schreiber, A. W. Mitch. Occurrence and Fate of Nitrosamines and Nitrosamine Precursors in Wastewater-Impacted Surface Waters Using Boron As a Conservative Tracer. Environ. Sci. Technol. 2006, 40(10): 3203~2310
    21 A. C. Gerecke, D. L. Sedlak. Precursors of N-Nitrosodimethylamine in Natural Waters. Environ. Sci. Technol. 2003, 37(7): 1331~1336
    22 A. W. Mitch, L. G. Oelker, L. E. Hawley, et al. Minimization of NDMA Formation during Chlorine Disinfection of Municipal Wastewater by Application of Pre-Formed Chloramines. Environmental Engineering Science. 2005, 22(6): 882~890
    23 P Andrzejewski, B. K. Hordern, J Nawrocki. Formation of Nitrosodimethylamine (NDMA) during Chlorine Disinfection of Wastewater Effluents Prior to Use in Irrigation Systems. Water Research. 2006, 40(2): 341~347
    24 B. Halliwell, K. Zhao, M. Whiteman. The Gastrointestinaltract: a Major Site of Antioxidant Action. Free Radical Res. 2000, 33: 819~830
    25胡荣梅,马立珊. N-亚硝基化合物分析方法.北京:科学出版社,1980:59, 50~52,15~16
    26 A. W. Mitch, L. D. Sedlak. Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination. Environ. Sci. Technol. 2002, 36(4): 588~595
    27 C. Junghoon, L. R. Valentine. N-Nitrosodimethylamine Formation by Free-Chlorine-Enhanced Nitrosation of Dimethylamine. Environ. Sci. Technol. 2003, 37(21): 4871~4876
    28 C. Junghoon, L. R. Valentine. A Kinetic Model of N-nitrosodimethylamine (NDMA)Formation During Water Chlorination/Chloramination. Water Sci. Technol. 2002, 46(3): 65~71
    29 J. Choi, L. R. Valentine. Formation of N-nitrosodimethylamine (NDMA) from Reaction of Monochloramine: A New Disinfection By-product. Water Research. 2002, 36(4): 817~824
    30 J. Choi, E. S. Duirk, L. R. Valentine. Mechanistic Studies of N-nitrosodimethylamine (NDMA) Formation in Chlorinated Drinking Water. J. Environ. Monit. 2002, 4(2): 249~252,
    31 P. Andrzejewski, B. K. Hordern, J. Nawrocki. The Hazard of N-nitrosodimethylamine (NDMA) Formation During Water Disinfection with Strong Oxidants. Desalination. 2005, 176: 37~45
    32 I. M. Schreiber, W. A. Mitch. Nitrosamine Formation Pathway Reviseted: The Importance of Chloramine Speciation and Dissolved Oxygen. Environ. Sci. Technol. 2006, 40(19): 6007~6014,
    33 I. M. Schreiber, W. A. Mitch. Influence of the Order of Reagent Addition on NDMA Formation during Chloramination. Environ. Sci. Technol. 2005, 39(10): 3811~3818
    34王志强,陈昱,林育纯等.福建省11个县饮用水水质与胃癌死亡率的关系.中国公共卫生学报. 1997, 16(2): 79~80
    35顾平,张凤娥.应用高锰酸钾降低水中三氯甲烷的研究.环境科学学报. 1998, 18(1):104~110
    36 D. D. Yifru, V. A. Nzengung. Uptake of N-Nitrosodimethylamine(NDMA) from Water by Phreatophytes in the Absence and Presence of Perchlorate as a Co-Contaminant. Environ. Sci. Technol. 2006, 40(23):7374~7380
    37徐冰冰,陈忠林,齐飞等.紫外光降解水中痕量NDMA的效能研究.环境科学,2008,29(7):1908~1913
    38 M. I. Stefan, J. R. Bolton. UV Direct Photolysis of N-Nitrosodimethylamine (NDMA): Kinetic and Product Study. Helvetica. Chimica. Acta. 2002, 85: 1416~1426
    39 L. Gui, R. W. Gillham, M. Odziemkowski. Reduction of N-Nitrosodime-thylamine with Granular Iron and Nickel-Enhanced Iron.1.Pathways and Knetics. Environ. Sci. Technol. 2000, 34:3489~3494
    40 M. G.. Davie, J. R. Sharpley. Metal-Catalyzed Reduction of N-Nitrosodimethylamine with Hydrogen in Water. Environ. Sci. Technol. 2006, 40(23): 7329~7335
    41 M. G. Davie, K Shih , F. A. Pacheco , et al. Palladium-Indium Catalyzed Reductionof N-Nitrosodimethylamine: Indium as a Promoter Metal. Environ. Sci. Technol. 2008, 42:3040~3046
    42 A. J. Frierdich, J. R. Sharpley, T. J. Strathmann. Rapid Reduction of N-Nitrosamine Disinfection Byproducts in Water with Hydrogen and Porous Nickel Catalysts. Environ. Sci. Technol. 2008, 42(1):262~269
    43 A. J. Frierdich, C. E. Joseph, T. J. Strathmann. Catalytic Reduction of N-nitrosodimethylamine with Nanophase Nickel–boron. Appl. Catal. B: Environ. (2009), doi:10.1016/j.apcatb.2009.03.007)
    44 J. Chung, Chang-Hoon Ahn, Zhuo Chen, et al.Bio-reduction of N-nitrosodimethylamine (NDMA) using a Hydrogen-based Membrane Biofilm Reactor.Chemosphere.2008,70:516~520
    45 T. Boronina, K. J. Klabunde. Destruction of Organohalides in Water Using Metal Particles:Carbon Tetrachloride/Water Reactions with Magnesium,Tin,and Zinc. Environ. Sci. Technol. 1995, 29(6):1511~1517
    46 W. A. Arnold, A .L. Roberts. Pathways of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0) .Environ. Sci. Technol. 1998, 32(19):3017~3025
    47 T . N. Boronina, I. Lagadic, G. B. Sergeev, K. J. Klabunde. Activated and Nonactivated Forms of Zinc Powder: Reactivity toward Chlorocarbons in Water and AFM Studies of Surface Morphologies. Environ. Sci. Technol. 1998, 32(17):2614~2622
    48 J. P. Fennelly, A. L. Roberts.Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants. Environ. Sci. Technol. 1998, 32(13): 1980~1988
    49 W. A. Arnold, W. P. Ball, A. L. Roberts. Polychlorinated Ethane Reaction with Zero-valent Zinc: Pathways and Rate Control. Journal of Contaminant Hydrology . 1999,40,183~200
    50 S. F. Cheng, S. C. Wu. The Enhancement Methods for the Degradation of TCE by Zero-valent Metals. Chemosphere.2000,41, 1263~1270
    51 Y. H. Kim , E. R Carraway . Dechlorination of Chlorinated Phenols by Zero Valent Zinc. Environmental Technology. 2003,24(12): 1455-1463
    52 R. Hernandez, M. Zappi, C. H. Kuo. Chloride Effect on TNT Degradation by Zerovalent Iron or Zinc during Water Treatment. Environ. Sci. Technol. 2004, 38,5157~5163
    53 L. Li, T. V. Marolla, L. J. Nadeau, J. C. Spain. Probing the Role of Promoters in Zinc Reduction of Nitrobenzene: Continuous Production of Hydroxylaminobenzene.Ind. Eng. Chem. Res. 2007, 46(21):6840~6846
    54 H. Song, E. R. Carraway, Y. H. Kim,et al. Amendment of Hydroxyapatite in Reduction of Tetrachloroethylene by Zero-valent zinc: Its Rate Enhancing Effect and Removal of Zn(II). Chemosphere. 2008,73,1420~1427
    55谢凝子,邱罡,陈少瑾.锌粉对1, 2, 4-三氯苯的脱氯性能.化工环保. 2007,27(3): 227~229
    56刘娜,赵勇胜,张兰英,等.锌粉降解地下水中的农药阿特拉津.中国环境科学. 2006,26(1):116~119
    57 GB5749-2006.生活饮用水卫生标准
    58陈忠林,徐冰冰,齐虹,等.高效液相色谱分析水中痕量亚硝基二甲胺.中国给水排水, 2007 , 23(8):84~87
    59 F. Sacher, S. Lenz, H. J. Brauch.Analysis of Primary and Secondary Aliphatic Amines in Waste Water and Surface Water by Gas Chromatography-mass Spectrometry after Derivatization with 2,4-dinitrofluorobenzene or Benzenesulfonyl chloride.Journal of Chromatography A.1997,764,85~93
    60 A. A. Denisov, A. D. Smolenkov, O. A. Shpigun. Determination of 1,1-Dimethylhydrazine by Reversed-phase High-performance Liquid Chromatography with Spectrophotometric Detection as a Derivative with 4-Nitrobenzaldehyde. J. Anal. Chem. 2004, 59 (5), 452-456.
    61 M. S. Odziemkowski, L. Gui, R. W. Gillham. Reduction of N–Nitrosodimethylamine with Granular Iron and Nickel-Enhanced Iron.2.Mechanistic Studies. Environ. Sci. Technol. 2000, 34(16):3495~3500
    62夏立江.环境化学.北京:中国环境科学出版社.2003.
    63 B. N. Parmanik, A. K. Ganguly, M. L. Gross. Applied electrospray mass spectrometry . Marcel Dekker, Inc.2002,29-31
    64 J. Lee, L. Chen, A. H. West. Interactions of Organic Nitroso Compounds with Metals. Chem. Rev. 2002, 102, 1019-1065
    65王志远.零价金属铁、锌以及双金属铁/钯、铁/银脱氯降解林丹、1,2,3,4-四氯代二苯并对二噁英的研究.中国科学院研究生院博士学位论文. 2006年.36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700