晶圆预对准系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路(IC)制造是电子信息产业的核心,是推动国民经济和社会信息化发展最主要的高新技术之一。IC产业的加速发展为IC装备带来了广阔的发展空间。IC制造涉及很多工艺,每种工艺前都需要进行晶圆传输、定位和姿态调整。用来完成晶圆加工前这些操作的IC制造装备被称为晶圆处理系统。晶圆预对准系统是晶圆处理系统重要组成部分之一,其重复定位精度要求高,预对准时间对IC的生产效率有影响,因此研制具有小型化、集成化、高精度、高效率的晶圆预对准系统具有重要的实际和应用价值。
     本课题来源于国家高技术研究发展计划(863计划)课题:掩膜管理和晶圆处理系统的研究。主要研究内容是研制用于12英寸晶圆的小型化预对准系统。
     通过预对准方案的精度分析与比较,确定系统的总体方案。根据系统的功能与组成,分别对精密定位系统、检测系统、真空吸附系统、机械结构进行设计,建立了晶圆预对准系统的硬件结构。
     根据预对准系统控制任务确定了预对准控制器总体结构,分别对各控制功能模块进行硬件和软件设计,完成了预对准系统控制器的研制。
     对晶圆预对准算法从晶圆圆心定位算法和晶圆缺口定位算法两方面进行了研究。对基于线性化最小二乘圆拟合算法的圆心定位算法进行了精度分析和效率改进。针对线性化最小二乘圆拟合算法用于缺口拟合的不足,提出一种基于Levenberg-Marquardt算法的缺口拟合算法。另外,对缺口定位部分的其他关键参数计算进行了叙述,完成了预对准控制程序的编制。
     通过系统误差分析,验证了系统在设计上满足晶圆预对准的重复定位精度要求。利用光学显微镜测定了系统重复定位精度,实验结果表明系统重复定位精度和预对准时间均达到了技术指标要求。
As the hard-core of electronic information industry, integrated circuit (IC) manufacturing is one of the most important technologies which promote national economy and social informatization developing. With the accelerating development of integrated circuit industry, it's an urgent need for more IC equipments. The IC manufacturing involves many processes, and wafer is needed to be transferred, located and orientated before each of processes. Wafer processing system is one of IC equipments, which completes above three operations. Wafer pre-alignment system is an important subsystem of wafer processing system. The repetitive positioning accuracy of wafer pre-alignment system is required critically and the consuming time affects the efficiency of the entire manufacturing. Therefore, it is meaningful to design a wafer pre-alignment system with the characteristic such as miniaturization, integration, high precision and high efficiency.
     This work is supported by the High Technology Research and Development Program of China. The main content of the research is to design a small-scaled wafer pre-aligner for 12-inch wafer.
     System scheme is selected after the analyzing and comparison of the pre-alignment scheme accuracy. Positioning system, detecting system, vacuum suction system and mechanical structure are designed according to the function of the system and complete the establishment of the small-scaled wafer pre-aligner.
     The structure frame of the controller is constructed after selecting center processing unit. The hardware and software of each sub-function module are designed respectively, and complete the design of the wafer pre-alignment controller.
     Wafer centering algorithm and notch orientating algorithm are studied. The efficiency of wafer centering algorithm is improved and a new notch orientating algorithm is proposed to fit the notch, which is based on Levenberg-Marquardt algorithm and validated to improve the accuracy effectively by experiment. Additionally, the computations of some key parameters of notch orientating are presented, and accomplish the compiling of the control program.
     The precision analysis of the wafer pre-alignment system is done, which confirmed that the request precision of the system is satisfied by the design. The repetitive positioning accuracy is measured by optical microscope. The experiment results show that the repeatability of the orientation and the average time of the pre-alignment satisfy the technical specifications.
引文
1田路屏.集成电路关键设备市场分析及发展战略.电子工业专用设备. 2006, 35(1):1~7
    2汪劲松,朱煜.我国“十五”期间IC制造装备的发展战略研究.机器人技术与应用. 2002, 2(2):5~9
    3丛明,杜宇,沈宝宏,金立刚.面向IC制造的硅片机器人传输系统综述.机器人. 2007, 29(3):261~266
    4 P. Sagues, S. A. Gaudio. Wafer Aligner System. U.S. Patent,6275742, 2001-8-14
    5李艳秋.光刻机的演变及今后发展趋势.微细加工技术. 2003, 6(2):1~5
    6 C. Wagner. Advance technology for extending optical lithography. Proc SPIE. 2000, (40):344~345
    7翁寿松. 90nm与65nm光刻工艺各有千秋.半导体行业. 2006, (2):38~40
    8佟军民,胡松.下一代光刻技术.电子工业专用设备. 2005, 11(130):27~33
    9刘晓莉,李霄燕,邵敏权.光刻技术及其新进展.光机电信息. 2009, (9):12~15
    10周崇喜,胡松.光学光刻的现状及未来.电子工业专用设备. 1999, (2):2~4
    11 H. Nakazato, T. Matsumura, T. Akamatsu, etc. Device for Positioning a Semi-Conductor Wafer. U.S. Patent, 4887904, 1989-12-19
    12 G. Baker, E. F. Boylev. Wafer Centration Device. U.S. Patent, 4880384, 1989-11-14
    13 H. S. Lee, J. W. Jeon, J. W. Kim. A 12-inch wafer pre-aligner. Microprocessors and Microsystems. 2003, 27(4):151~158
    14段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述.光学技术, 2005, 3(31):415~419
    15李彩花,王昕,王学影.边缘检测技术在工件中心位置识别的应用.传感器技术. 2005, 4(24):73~76
    16 F. R. Koenig. Edge Finding in Wafers. U.S. Patent, 4752898, 1988-6-21
    17 M. Aoyama, N. Shiraishi, K. Hattori, etc. Device for Positioning Circular Semiconductor Wafers. U.S. Patent, 5194743, 1991-3-16
    18 S. Yamamoto, K. Kamei. Apparatus for Detecting Position of a Notch in a Semiconductor Wafer. U.S. Patent, 5438209, 1995-8-1
    19 C. G. Brickell, K. A. Langland. Apparatus for Detecting Proper Positioning of Objects in a Holder. U.S.Patent, 5466945, 1995-11-14
    20 Y. Oka, Y. Fukutomi, M. Itaba, etc. Apparatus and Method for Detecting and Conveying Substrates in Cassette. U.S. Patent, 5906469, 1999-5-25
    21 I. Holcman, A. Shulman, J. Danowitz. Method for determining the internal orientation of a wafer. U.S. Patent, 006544808B2, 2003-7-3
    22 K. C. Fana, A 6-degree-of-freedom measurement system for the accuracy of X-Y stages. Precision Engineering. 2000, (24):15~16
    23 http://www.rorze.com
    24 http://www.berkeleyprocess.com
    25 http://www.cypeq.com
    26 http://www.asyst.com
    27李春江.晶圆处理预对准系统研究.哈尔滨工业大学硕士学位论文. 2006:13
    28乔隧龙.嵌入式晶圆预对准控制系统的研究.哈尔滨工业大学硕士学位论文. 2007:12
    29杜宇.硅片预对准系统的研制.大连理工大学硕士学位论文. 2006:20~21
    30 D. S. Qu, S. L. Qiao, W. B. Rong, L. N. Sun. Design and Experiment of the Wafer Pre-alignment System. International Conference of Mechatronics and Automation, 2007:1483~1488
    31毕绍新.步进电机驱动控制的应用研究.天津大学硕士学位论文. 2003:25
    32荣伟彬,宋亦旭,乔遂龙等.硅片处理预对准系统的研究.机器人. 2007, 29(4):331~336
    33 S. C. Li. Study in Wafer Pre-align Approaches.高技术通讯. 2006, (9):45~47
    34黄春霞,曹其新,刘仁强.晶圆预对准精确算法.高技术通讯. 2007, 17(7):709~713
    35宋亦旭,李世昌,赵雁南等.硅晶圆预对准控制方法.中华人民共和国国家知识产权局. 10116695.0. 2005
    36杨建忠.硅片传输中的预对准方法.电子工业专用设备. 1993, (4):33~37
    37孔兵,王昭,谭玉山.基于圆拟合的激光光斑中心检测算法.红外与激光工程. 2002, 6(3):275~279
    38刘元朋,张定华,桂元坤,李永奇.用带约束的最小二乘法拟合平面圆曲线.计算机辅助设计与图形学学报, 2004, (10):1382~1385
    39 R. J. Lisle. Least Squares Best-Fit Circles. Mathematical Geology. 1992,24(5):135~136
    40胡进平,唐素萍,俞怀仁.关于最小二乘圆参数计算问题的再探讨.设计与研究. 1994(4):21~24
    41安建成,程明琦.基于回溯的二级圆弧拟合算法.太原工业大学学报. 1996, 3(1):18~23
    42张红民,何健鹰.图象中一种不规则边界圆的参数求取方法.计算机工程与应用. 2002(16):75~76
    43张成悌.圆度最小二乘评定法公式的正确选用.实用测试技术. 1997, (11):23~26
    44 S. J. Ahn, W. G. Rauh. Least-squares orthogonal distances fitting of circle, sphere, ellipse and parabola. Pattern Recognition. 2001, (34):2283~2303
    45 Y. T. Chan, Y. Z. Eihalwagy, S. M. Thomas. The Estimation of Circle Parameters by Centroiding. Journal of Optimization theory and applications. 2002, 114(2):363~371
    46 Y. T. Chan, Y. Z. Eihalwagy, S. M. Thomas. Approximate Maximum Likelihood Estimation of Circle Parameters. Journal of Optimization theory and applications, 2005, 125(3):723~734
    47 N. Chernov, C. Lesort. Least Squares Fitting of Circles. Journal of Mathematical Imaging and Vision. 2005, (23):239~252
    48 K. Madsen, H. B. Nielsen and O. Tingleff. Methods of Non-Linear Least Squares Problems. Lecture Notes of T. U. D. 2004, (3):24-29
    49 H. B. Nielsen. Damping Parameter in Marquardt’s Method. Mathematical Geology. 2000, 31(4):115~118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700