半球谐振陀螺误差建模补偿与力平衡控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半球谐振陀螺具有精度高,寿命长,可靠性高,抗冲击强,本征抗辐射等突出优点,特别适用于航天器的空间定姿,地质钻井系统的定位定向等领域。但是,国内半球谐振陀螺的研究水平与国外还存在较大差距,特别是在陀螺零偏稳定性,标度因数线性度以及温度漂移补偿方面。并且,美国政府要求世界上唯一高精度的半球谐振陀螺生产商诺斯罗普·格鲁曼(Northrop Grumman)公司对大陆地区施行严格的产品禁运政策。因此,自主研制高性能的半球谐振陀螺对我国的深空探测,地质钻探等国防、国民经济建设等领域具有重要的战略意义。
     本论文从半球谐振陀螺数学建模,误差分析,控制方法以及温度漂移补偿等几个方面进行了深入细致的研究,为半球谐振陀螺的发展提供了一些有用的借鉴。论文的主要工作有:
     1.为研究半球谐振陀螺的振动特性,依据薄壳理论,建立了半球谐振陀螺的动力学模型。采用变分法以及虚功原理,通过等效系统的方法,将复杂的固体波二阶振动模态简化为一质点在二维空间中的简谐振动,建立了二维空间中质点的振动微分方程,通过等效系统的分析方法揭示了复杂的固体波进动现象。
     2.基于二维质点振动模型,对半球谐振陀螺的误差进行了分析。详细分析了半球谐振陀螺的主要误差来源,并依据分析结果建立了半球谐振陀螺的误差传播方程。依据各误差项对半球谐振陀螺振动模态的不同影响,分别地对其在半球谐振陀螺振动模态参数中的影响进行了仿真,并得出抑制与减小误差的一些有用结论。
     3.首次全面详细地阐述了力平衡模式下半球谐振陀螺的控制方法。半球谐振陀螺可以工作于全角模式与力平衡模式。相比较而言,力平衡模式下的半球谐振陀螺具有更高的精度。论文详细介绍了力平衡模式下半球谐振陀螺正常工作所需要的四个控制回路:相位跟踪回路,幅度控制回路,正交控制回路以及速率控制回路的作用和具体实现。并对控制回路抑制误差的原理进行了理论分析和试验验证。通过转台试验标定的方法测试了半球谐振陀螺的主要性能参数,诸如零偏稳定性,标度因素等等。
     4.依据半球谐振陀螺动力学模型和力平衡模式下半球谐振陀螺的控制方法,设计了基于FPGA的半球谐振陀螺全数字检测与驱动控制系统。研究了半球谐振陀螺电容驱动与检测的原理和方案,设计了ADC和DAC模块与FPGA的接口。依据控制方案,完成了FPGA中控制模块的功能划分与结构布局,详细介绍了信号解调单元,嵌入式控制单元和信号合成单元的设计与实现。设计并实现了半球谐振陀螺数字控制系统与上位机之间的通信接口模块,为监测陀螺的工作状态,系统参数的调试分析提供了简便易行的手段。
     5.基于谐振频率对半球谐振陀螺温度漂移进行了补偿。推导了温度与半球谐振陀螺谐振频率之间的相关性及其数学表达式。依据此推导结论,提出采用谐振频率变化来敏感谐振子的温度变化的温度测量新方法,基于此温度测量方法实现半球谐振陀螺的温度漂移实时补偿方案。此方案不仅可以提高陀螺在全温区工作的精度,而且成本低廉,不用增加任何硬件部分,且补偿效果较好。
Hemispherical Resonator Gyro (HRG) is a solid state gyroscope with features ofhigh accuracy, long life span, inherent high reliability, anti-impact and natural radiationhardness. With its excellent performance, the HRG can be used for spacecraft andsatellite stabilization, precision pointing, as well as oil borehole exploration. However,there is still much room to improve the quality of dometic HRG, especially in the aspectof gyroscope bias stability, scale factor nonlinearity and so on. In addition, Americangovernment bans Northrop Grumman which is the world’s only high-performance HRGproducer from exporting HRG to China. Therefore, in the areas of aircraft navigation,strategic accuracy systems and oil borehole, it is of great necessity to make researcheson improving the performance of HRG.
     In this dissertation, the math model of HRG, error analysis, control technology andtemperature drift compensation are studied, which provide valuable suggestions for thefurther improvement of HRG. The main content of this dissertation is as follows:
     1. On the basis of thin shell theory, a theoretical modeling is established in order tostudy the vibration feature of HRG. By applying methods of virtual work principle andcalsulus of variations, the complicated solid wave virabtion phenomenon is simplifiedinto a two dimensional mass vibration model through equivalent method. As a result,the differential equation of the point virabtion is established from which the peocessionphenomenon of the solid wave can be revealed.
     2. The error analysis of HRG is carried out basing on two dimensional massvibration model. With a detailed analysis of the main error sources, the errorpropergation equations are established. Then, different influences on the vibrationmodel parametres of HRG by each error term are simulated, from which some usefulconclusions are drawn.
     3. It is the first time that the control method of HRG under the force to rebalancemode is thoroughly described. HRG can work not only under whole angle mode butalso under force to rebalance mode, and the latter one has a higher accuration. Besides,four control loops, namely, reference-phase loop, amplitude-control loop,quadrature-control loop and rebalance control loop, which are employed for HRGworking under force to rebalance mode are introduced in details. Furthermore, the errorsuppress principle of control loop is theoretically analysed and validated throughexperiments. Finally, the main performance parameters such as bias stability and scalefactor of HRG are obtained through calibration on the turntable.
     4. The digital detection and drive systems of HRG based on FPGA are designedaccording to the math mode and the control method metioned before. Capacitivereadout and exciation circuit principle are studied and the interfaces of DAC and ADC seperatedly with FPGA are designed in this chapter. The design framework and overallarrangement are introduced according to the control method. The modulation anddemodulation unit, the embedded control unit and signal synthesize unit are thoroughlydescribed. The communication interface module which is used to transfer data betweenFPGA board and upper computer is implemented, through which the working status ofthe HRG can be easily obtained and can also facilitate the realization of debuggingmode.
     5. A temperature compensation model for HRG based on the natural frequency ofthe resonator is established. A math model of the relationship between the temperatureand the natural frequency of HRG is deduced. On the basis of these deductions, a newmethod decting the temperature changes through analysing frequcncy change of theresonater is proposed in this chapter. As a result, this new method can be used tocompensate the temperature drift of HRG. The compensation results show thattemperature-frequency method is valid and suitable for the gyroscope driftcompensation, which would ensure HRG’s application in a larger temperature range inthe future without any more hardware cost.
引文
[1] D.D.Lynch. HRG Development at Delco, Litton, and Northrop Grumman[C]//.The Anniversary Workshop at Yalta. Ukraine,2008.19-21.
    [2] David M. Rozelle. The Hemispherical Resonator Gyro: From Wineglass to thePlanets[J]. Spaceflight Mechanics,2009. Volume134:1-26.
    [3] Wang Xu, Wu Wenqi, Luo Bing, et al. Force to Rebalance Control of HRG andSuppression of Its Errors on the Basis of FPGA. Sensors[J],2011.2011(11):11761-11773.
    [4] Edward J.Loper, David D.Lynch, Vibratory Rotation Sensor[P].1990, GeneralMotors Corporation: United States.
    [5] Michael Y.Shatalov, Charlotta Coetzee. Dynamics of Rotating and VibratingThin Hemispherical Shell with Mass and Damping Imperfections andParametrically Driven by Discrete Electrodes[J]. Gyroscopy and Navigation,2011.2(1):27-33.
    [6] Wang Xu, Wu Wenqi, Luo Bing, et al. The modeling of hemispherical resonatorgyro and its space applications[C]//. Seventh International Symposium onPrecision Engineering Measurements and Instrumentation. Lijiang, China,2011.1-10.
    [7] Anthony Matthews, David A.Bauer. Hemispherical Resonator Gyro NoiseReduction for Precision Spacecraft Pointing[C]//.19th Annual AAS GuidanceAnd Control Conference. Breckenridge,1996.83-99.
    [8]杨培根,龚智炳.光电惯性技术[M].北京:兵器工业出版社,1999.
    [9] Dan O'Shaughnessy, Mark E.Pittelkau. Attitude Sensor and Gyro Calibration forMessenger[C]//.20th International Symposium on Space Flight Dynamics.2007.1-15.
    [10]杨亚非,赵辉.固体波动陀螺[M].北京:国防工业出版社,2009.
    [11] Jack Dickinson, Carl R. Strandt. HRG strapdown navigator[J]. IEEE PLANS,1990.20(7):110-117.
    [12] D.H.Titterton, J.L.Weston. Strapdown Inertial Navigation Technology[M].Reston: American Institute of Aeronautics and Astronautics,2004.
    [13]高胜利.半球谐振陀螺的分析与研究[D].博士论文.哈尔滨:哈尔滨工程大学,2008.
    [14] L.Rosellini, O Girard, JM Caron. REGYS20a HRG IMU for SpaceApplications[C]//. Symposium Gyro Technology. Karisruhe Germany,2007.7.1-7.13.
    [15] D.D.Lynch, A.Matthews, T.Varty. Innovative Mechanization to Optimize InertialSensors For High or Low Rate Operations[C]//. Symposium Gyro Technology.Stuttgart Germany,1997.9.0-9.21.
    [16] D.D.Lynch. Coriolis Vibratory Gyros[C]//. Symposium Gyro Technology.Stuttgart Germany,1998.1.0-1.14.
    [17]高胜利,吴简彤.全角模式半球谐振陀螺的信号检测法研究[J].传感器技术学报,2006.19(1):153-156.
    [18] A. Matthews, F.J.Rybak. Comparison of Hemispherical Resonator Gyro andOptical Gyros[J]. Aerospace and Electronic Systems Magazine,1992:40-46.
    [19]高胜利,吴简彤,张福勇.力平衡半球谐振陀螺的信号检测[J].船舶工程,2006.28(2):17-19.
    [20]吕志清.半球谐振陀螺(HRG)研究现状及发展趋势[C]//.惯性技术发展方向研讨会论文集.2003.103-105.
    [21]吕志清.半球谐振陀螺在宇宙飞船上的应用[J].压电与声光,1999.21(5):349-353.
    [22] R.W. Farquhar, D.W. Dunham, J.V. McAdams. NEAR Mission Overview andTrajectory Design[J]. Journal of Astronautical Sciences,1995.43(4):353-372.
    [23] Emily L. Burrough, Allan Y. Lee. In-flight Characterization of Cassini InertialReference Units[C]//. AIAA Guidance, Navigation and Control Conference andExhibit. Hilton Head, South Carolina,2007.
    [24] Edward C.Litty, Lennor L.Greshanm, Patrick A.Toole, et al. HemisphericalResonator Gyro-an IRU for Cassini[C]//. Proc.SPIE,1997.2803:299-310.
    [25] Sergei A.Jerebets. Gyro Evaluation for the Mission to Jupiter[C]//. IEEEAC.2007.
    [26] Edward H.Konefat, Edward C.Lity, Scott K.Voigt, et al. Enabling Technologyfor NASA's Europa Orbiter Mission[C]//.24th Annual AAS Guidance andControl Conference. Breckenridge, Colorado,2001.1-23.
    [27] Edward C.Litty, Lennor L.Gresham. Hemispherical Resonator Gyro: an IRU forCassini[C]//.1996.299-310.
    [28] G.Londerville, R.Ciolino, D.Haley, In-Flight Experience of the Space InertialReference Unit Utilizing the Solid State HRG[C]//, in Third InternationalConference on Spacecraft Guidance, Navigation and Control Systems.1997: TheNetherlands. p.507-521.
    [29] L.Rosellini, JM Caron. REGYS20: A promising HRG-based IMU for spaceapplication[C]//.7th International ESA Conference on Guidance, Navigation&Control Systems. Tralee, County Kerry, Ireland,2008.1-10.
    [30] Olivier GIRARD, Jean Michel CARON, Philippe BERTHIER. HRG Technology:A Promising Gyrometer Space Equipment[C]//. Proceedings of the6thInternational ESA Conference on Guidance, Navigation and Control Systems.Loutraki, Greece,2005.1-5.
    [31] G. I. Dzhandzhgava, K. A. Bakhonin, G. M. Vinogradov, et al. StrapdownInertial Navigation System Based on a Hemispherical Resonance Gyro[J].Gyroscopy and Navigation,2010.1(2):91-97.
    [32] V.E.Dzhashitov, V.M.Pankratov. Mathematical Models of the ThermoelasticStress–Strain State, Temperature, and Technological Errors of a Wave SolidState Sensor of Inertial Information[J]. Journal of Machinery Manufacture andReliability,2010.39(3):248-255.
    [33] Michael Y.Shatalov, Stephan V.Joubert, Charlotta E.Coetzee, et al. Freevibration of rotating hollow spheres containing acoustic media[J]. Journal ofSound and Vibration,2009.332(2009):1038-1047.
    [34] N. V. Kalenova. Influence of the Resonator Angular Displacements in aHemispherical Resonator Gyro on the Coupling between the Working andBeam-Type Vibrations[J]. Mechanics of Solids,2009.44(5):686-690.
    [35] Yu.K.Zhbanov. Amplitude Control Contour in a Hemispherical Resonator Gyrowith Automatic Compensation for Difference in Q-Factors[J]. Mechanics ofSolids,2008.43(3):328-332.
    [36] Yu.A.Yatsenko, V.V.Chikovani, L.V.Borisyuk. Development of Stemless QuartzHemispherical Resonator for Vibratory Gyroscope[C]//. Symposium GyroTechnology. Stuttgart,Germany,2000.7.0-7.10.
    [37] B.P.Bodunov, V.M.Lopatin, S.B.Bodunov, et al. Gyroinclinometer for SurveyingDuring the Drilling Process[C]//. Symposium Gyro Technology1999. StuttgartGermany,1999.11.1-11.9.
    [38]李巍,任顺清,赵洪波.比力对半球谐振陀螺仪解算精度的影响[J].中国惯性技术学报,2011.19(5):603-606.
    [39] Li Yun, Luo Bing, Wang Xu, et al. Quadrature Control Of HemisphericalResonator Gyro based on FPGA[C]//. The Tenth International Conference onElectronic Measurement&Instruments. ChengDu,China,2011.369-372.
    [40] Shengli Gao, Jiantong Wu. Theory and Finite Element Analysis of HRG[C]//.Proceedings of the2007IEEE International Conference on Mechatronics andAutomation Harbin China,2007.2768-2772.
    [41]嵇海平,吴洪涛,倪受东, et al.微型半球谐振陀螺仪谐振体振动特性研究[J].传感器与微系统,2006.25(3):44-47.
    [42]张挺,徐思宇,冒继明, et al.半球陀螺谐振子的金属化镀膜工艺技术研究[J].压电与声光,2006.28(5):538-540.
    [43]雷霆,彭慧,芩华, et al.半球陀螺微振动电容检测模型与分析[J].压电与声光,2010.33(1):34-37.
    [44]李先梅,蒋春桥,余波, et al.半球谐振陀螺Q值测试技术研究[C]//.中国惯性技术学会第五届学术年会论文集.2003.238-241.
    [45]胡晓东,罗康俊,余波, et al.采用离子束对半球谐振子进行质量调平[J].中国惯性技术学会第五届学术年会论文集.2003.247-252.
    [46]吕志清,陈朝春,袁锡斌.振动陀螺仪闭环控制系统设计[J].2009.31(1):15-17.
    [47]方针,雷霆,李先梅, et al. CPLD技术在半球陀螺中的应用[C]//.光电惯性技术论文集.深圳,2002.43-49.
    [48]周强.球谐振陀螺模型分析与控制电路技术研[D].硕士.成都:电子科技大学,2009.
    [49] Peng Hui, Fang Zhen, Zhou Qiang, et al. Error Analysis of HemisphericalResonator Gyro Drift Data[C]//.2nd International Symposium on Systems andControl in Aerospace and Astronautics. Shen Zhen,2008.1-4.
    [50]王旭,方针,吴文启, et al.基于二维质点振动模型的半球谐振陀螺谐振子进动分析[J].中国惯性技术学报,2011.19(5):621-626.
    [51] Yangguang Xie, Guoxing Yi, Yansheng Jia, et al. Realization on Identificationand Compensation Methods for The Temperature Model of HemisphericalResonator Gyro (HRG)Realization on Identification and Compensation Methodsfor The Temperature[C]//.2011International Conference on Electronic&Mechanical Engineering and Information Technology.2011.1050-1053.
    [52]周小刚,汪立新,佘嫱, et al.半球谐振陀螺温度补偿与实验研究[J].宇航学报,2010.31(4):1083-1087.
    [53]李广胜,蒋英杰,孙志强, et al.温度效应造成的半球谐振陀螺振幅和测角误差因素分析[J].计算机技术与自动化,2009.28(4):1-4.
    [54]李广胜,蒋英杰,孙志强, et al.基于AR多变量模型的半球谐振陀螺温度漂移建模[J].传感技术学报,2009.22(10):1142-1145.
    [55] Boran Li, Yiran Wu, Changhong Wang. The Identification and Compensation ofTemperature Model for Hemispherical Resonator Gyro Signal[C]//.3rdInternational Symposium on Systems and Control in Aeronautics andAstronautics.2010.398-401.
    [56] W.W.Stripling, D.D.Lynch, J.R.Baskett. Hemispherical ResonatorGyro:Principle,Design,and Performance[C]//. Symposium Gyro Technology.Stuttgart Germany,1992.9.0-9.6.
    [57] E.J.Loper, D.D.Lynch, K.M.Stevenson. Projected performance of smallerhemispherical resonator gyros[C]//. Positon Location and NavigationSymposium Plans86. Las Vegas,1986.4-7.
    [58] Philip Wayne Loveday. Analysis and Compensation of Imperfection Effects inPiezoelectric Vibratory Gyroscopes[D]. Doctor Philosophy in MechanicalEngineering. Blacksburg, Virginia: Virginia Polytechnic Institute and StateUniversity,1999.
    [59] Anthony Matthews, Vibratory rotation sensor with scaning-tunneling-transducerreadout[P].1998, Litton Systems Inc,Woodland Hills,Calif: United States.
    [60] D.D.Lynch. Vibratory gyro analysis by the method of averaging[C]//. The2ndSaint Petersburg International Conference on Gyroscopeic Technology andNavigation. St.Petersburg,Russia,1995.26-34.
    [61] Anthony Matthews, David A.Bauer. The Hemispherical Resonator Gyro forprecision pointing applications[C]//. Space Guidence,Control and Tracking.Orlando,1995.
    [62] Yu.K.Zhbanov, V.Ph.Zhuravlev. Effect of Movability of the Resonator Center onthe Operation of a Hemispherical Resonator Gyro[J]. Mechanics of Solids,2007.42(6):851–859.
    [63] Philip Wayne Loveday, C.A.Rogers. The Influence of Control System Design onThe Performance of Vibratory Gyroscopes[J]. Journal of Sound and Vibration,2002.255(3):417-432.
    [64] Philip Wayne Loveday, Craig A. Rogers. Modication of Piezoelectric VibratoryGyroscope Resonator Parameters by Feedback Control[J]. IEEE transactions onultrasonics, ferroelectrics, and frequency control,1998.45(5):1211-1215.
    [65]高胜利,吴简彤.半球谐振陀螺的漂移机理及其控制[J].弹箭与制导学报,2008.28(3):61-64.
    [66]于伟,杨亚非,凌明祥.结构误差造成的半球谐振陀螺闭环检测误差分析[J].中国惯性技术学报,2003.11(4):40-44.
    [67]高胜利,吴简彤,张福勇.半球谐振陀螺的振幅控制及误差分析[J].测试技术学报,2006.20(4):359-363.
    [68]樊尚春,刘广玉,王振均.有缺陷半球壳振型进动的研究[J].仪器仪表学报,1992.13(1):55-61.
    [69]杨建业,汪立新,张胜修, et al.半球谐振陀螺旋转惯导系统误差抑制机理研究[J].宇航学报,2010.31(10):2321-2327.
    [70]雷霆.半球谐振陀螺控制技术研究[D].硕士.重庆:重庆大学,2006.
    [71]李广胜.半球谐振陀螺温度漂移分析与模型研究[D].硕士.长沙:国防科学技术大学,2009.
    [72]祁家毅.半球谐振陀螺仪误差分析与测试技术[D].博士.哈尔滨:哈尔滨工业大学,2009.
    [73]陈雪.半球谐振陀螺仪的误差机理分析和实验方法的研究[D].硕士.哈尔滨:哈尔滨工业大学,2009.
    [74] Qian Yang, Guoxing Yi, Bochang Shen, et al. Kinetic Model Analysis andTesting of HRG[C]//. First International Symposium on Systems and Control inAerospace and Astronautics. Harbin,2006.
    [75]樊尚春,刘广玉.半球谐振陀螺振子耦合振动的有限元分析[J].仪器仪表学报,1995.16(3):281-287.
    [76] D.D.Lynch. Vibration-induced drift in the hemispherical resonator gyro[C]//.National Technical Meeting of The Institute of Navigation. Dayton,Ohio,1987.1-4.
    [77] Jaehwan Pi, Hyunsam Myung, Hyochoong Bang. A Control Strategy forHemispherical Resonator Gyros Using Feedback Linearization[C]//.11thInternational Conference on Control, Automation and Systems. KINTEX,Gyeonggi-do, Korea,2011.1880-1883.
    [78] Chan-Shin Chou, Chia-Ou Chang, Jeng-Jye Hwang. Vibration of a hemisphericalshell gyro excited by an electrostatic field[J]. Journal of AppliedElectromagnetics and Mechanics1999.10((1999):425-449.
    [79]周小刚,汪立新,佘嫱, et al.半球谐振陀螺加速度影响分析与试验研究[J].仪器仪表学报,2008.29(4):237-241.
    [80] Michael Y.Shatalov, StephanV.Joubert, CharlottaE.Coetzee. The influence ofmass imperfections on the evolution of standing waves in slowly rotatingspherical bodies[J]. Journal of Sound and Vibration,2011. VOL.330:127-135.
    [81] C.O.Chang, J.J.Hwang, C.S.Chou. Modal Precession of A RotatingHemispherical Shell[J]. International Journal of Solids and Structures,1996.Vol.33,No.19:2739-2757.
    [82]樊尚春,刘广玉,王振均.轴对称壳谐振子振型的进动研究[J].仪器仪表学报,1990.11(2):153-159.
    [83]樊尚春,刘广玉,王振均.变厚度轴对称壳谐振子振型的进动研究[J].仪器仪表学报,1991.12(4):421-426.
    [84] Jiayi Qi, Xue Chen, Shunqing Ren, et al. Dynamic Error Mechanism Analysis ofHRG[C]//.2nd International Symposium on Systems and Control in Aerospaceand Astronautics. Shen Zhen,2008.20-26.
    [85]赵洪波,任顺清,李巍.半球谐振子动力学方程的建立及固有频率的计算[J].哈尔滨工业大学学报,2010.42(11):1702-1706.
    [86] C.O.Chang, J.J.Hwang, C.S.Chou. Modal Precession of A RotatingHemispherical Shell[J]. International Journal of Solids and Structures,1996.33(19):2739-2757.
    [87] Leissa. Vibration of Shells[M]. Columbus,Ohio: American Institute of Physics,1993.
    [88]翁智远,王远功.弹性薄壳理论[M].北京:高等教育出版社,1987.
    [89] Michael Y.Shatalov, StephanV.Joubert, CharlottaE.Coetzee. The influence ofmass imperfections on the evolution of standing waves in slowly rotatingspherical bodies[J]. Journal of Sound and Vibration,2011.330(2011):127-135.
    [90]王铎,程靳.理论力学[M].北京:高等教育出版社,2006.
    [91] D.D.Lynch. Coriolis Vibratory Gyros[C]//. Germany:Symposium GyroTechnology Stuttgart,1998:1.0-1.14,1998.
    [92]王文绢,郦吉臣.半球谐振陀螺(HRG)正交振动的理论分析.第二届光电惯性技术学术交流会.1996.59-62.
    [93]谢红卫,邹逢兴,张明.现代控制系统[M].北京:高等教育出版社,2001.
    [94] Bernard Friedland, Maurice F.Hutton. Theory and Error Analysis ofVibrating-Member Gyroscope[J]. IEEE Transaction on Automatic Control,1978.23(4):545-556.
    [95] M.Y.Shatalov, B.S.Lunin. Influence of prestress on dynamics of hemisphericalresonator gyroscope[C]//. The RTO SCI international conference on ItegratedNavigation Systems. St.Petersburg,Russia,1999.5.1-5.10.
    [96]倪受东,吴洪涛,楼海平, et al.微型半球陀螺仪的误差源研究[J].传感器与微系统,2007.26(1):30-32.
    [97]陈雪,任顺清,赵洪波, et al.半球谐振子薄壁厚度不均匀性对陀螺精度的影响[J].空间控制技术与应用,2009.35(3):29-33.
    [98] C.H.J.Fox. Vibrating Cylinder Rate Gyro:Theory of operation and ErrorAnalysis[C]//. Symposium Gyro Technology. Stuttgart Germany,1988.5.0-5.23.
    [99] Seong-Yoel Choi, Ji-Hwan Kim. Natural frequency split estimation forinextensional vibration of imperfect hemispherical shell[J]. Journal of Sound andVibration,2011. VOL.330:2094-2106.
    [100] M.Y.Shatalov, Philip Wayne Loveday. A Theory of Errors in VibratoryGyroscopes[C]//. Symposium Gyro Technology Germany:Stuttgart,1995.15.0-15.16.
    [101] E.A.Izmailov, M.M.Kolesnik, A.M.Osipov, et al. Hemispherical Resonator GyroTechnology:Problems and Possible Ways of their Solutions[C]//.6th SaintPetersburg International Conference on Integrated Navigation Systems.St.Petersburg,Russia,1999.6.1-6.9.
    [102]任顺清,赵洪波.半球谐振子密度分布不均匀对输出精度的影响[J].中国惯性技术学报,2011.19(3):364-368.
    [103] Andrei M. Shkel. Type I and Type II Micromachined Vibratory Gyroscopes[C]//.Position,Location, And Navigation Symposium,2006IEEE/ION. San Diego.CA,2006.586-593.
    [104] Michael Y.Shatalov, StephanV.Joubert, CharlottaE.Coetzee. The influence ofmass imperfections on the evolution of standing waves in slowly rotatingspherical bodies[J]. Journal of Sound and Vibration,2011.330(2011):127-135.
    [105] E.J.Loper, D.D.Lynch. Projected system performance based on recent HRG testresults[C]//. IEEE/AIAA5th Digital Avionics System Conference. Seattle,1983.18.1.1-18.1.6.
    [106] P.W.Loveday, C.A.Rogers. The Influence of Control System Design on ThePerformance of Vibratory Gyroscopes[J]. Journal of Sound and Vibration,2002.255(3):417-432.
    [107]吕志清.半球谐振陀螺HRG信号处理技术[J].中国惯性技术学报,2000.8(3):58-61.
    [108] C.H.J.Fox, Analysis and Control of Imperfection Effects in Vibratory Gyros[C]//,in Symposium Gyro Technology1994: Germany:Stuttgart. p.5.0-5.21.
    [109] V. Ragot, G. Remillieux. A New Control Mode Greatly Improving Performanceof Axisymmetrical Vibrating Gyroscopes[J]. Gyroscopy and Navigation,2011.2(4):229-238.
    [110] David D. Lynch, Anthony Matthews, Vibratory Rotation Sensor UtilizingLinearized Flexure Measures[P].1998, Litton Systems, Inc., WoodlandHills,Calif: United States. p.1-10.
    [111] Sungsu Park. Adaptive Control of a Vibratory Angle Measuring Gyroscope[J].Sensors,2010.2010(10):8478-8490.
    [112] Sungsu Park, Chin-Woo Tan, Haedong Kim, et al. Oscillation ControlAlgorithms for Resonant Sensors with Applications to Vibratory Gyroscopes[J].Sensors,2009.2009(9):5952-5967.
    [113] Anthony Matthews, Peter K. Tseng, Guy T.Varty, Low Quantization Method andApparatus for Vibratory Rotation Sensors[P].1999, Litton Systems, Inc.,Woodlands Hills,Calif. p.1-9.
    [114] M.Shatalov, J.du Pre Le Roux, F.Koch. Estimation of Vibratory GyroscopeParameters with Data Derived from the Vibrating Element[C]//. SymposiumGyro Technology. Stuttgart Germany,1996.7.0-7.17.
    [115] Sangkyung Sung, Sukchang Yun, Woon-Tahk Sung, et al. A Novel Control LoopDesign and Its Application to the Force Balance of Vibratory Rate Sensor[J].International Journal of Control, Automation, and Systems,2009.7(4):545-552.
    [116]王旭,吴文启,方针, et al.力平衡模式下半球谐振陀螺正交误差控制[J].仪器仪表学报,2012.33(4):936-941.
    [117] Behrooz Kanani, B.K. Pulse Ltd, Newport Pagnell, et al. Operating principles ofthe Monolithic Cylinder Gyroscope[C]//.2004IEEE International Ultrasonics,Ferroelectrics,and Frequency Control Joint50th Anniversary Conference.England,2004.1195-1198.
    [118]嵇海平,吴洪涛,倪受东.微型半球陀螺非轴对称结构的电刚度补偿方法研究[J].传感器与微系统,2006.25(9):46-48.
    [119] Mikko Saukoski. System and Circuit Design for a Capacitive MEMSGyroscope[D]. Doctor Degree. Finland: Helsinki University2008.
    [120] David D. Lynch, Ryan R. Savava, James J. Campanile, Hemispherical ResonatorGyro Contro[C]//.2008, Northrop Grumman Corporation, Los Angeles, CA (US).p.1-11.
    [121] Anthony Matthews, Guy T. Varty, Method and Apparatus for Generating DrivingSignals for A Vibratory Rotation Sensor[P].2000, Litton Systems Inc.,Woodland Hills,Calif: United States.
    [122]高启.半球谐振陀螺的动特性分析与抗冲击研究[D].硕士学位论文.重庆:重庆大学,2009.
    [123]高胜利,吴简彤.基于多电极的半球谐振陀螺信号检测[J].哈尔滨工程大学学报,2008.29(5):474-478.
    [124]王安成.基于SOPC的硅微陀螺测控电路设计[D].工学硕士学位论文.长沙:国防科学技术大学,2010.
    [125] Wang Xu, Wu Wenqi, Fang Zhen, et al. Temperature Drift Compensation forHemispherical Resonator Gyro Based on Natural Frequency[J]. Sensors,2012.2012(12):6434-6446.
    [126] Yu.A.Yatsenko, V.V.Chikovani, A.N.Yanchuk. Study of Thermal Drift Modelfor Metallic Cylindrical Coriolis Vibratory Gyro[C].10th Saint Petersburginternational conference on integrated navigation systems2003:337-339.
    [127] E.J.Loper, D.D.Lynch. Hemispherical resonator gyro:status report and testresults[C]. National Technical Meeting of The Institute of Navigation. SanDiego,CA,1984.1-3.
    [128]徐军,尤波,李欣, et al.应用石英音叉谐振器的智能温度传感器[J].光学精密工程,2009.17(6):1453-1459.
    [129]樊尚春,刘广玉,王振均.半球谐振陀螺的理论与实验研究[J].测控技术,1994.13(1):29-33.
    [130]樊尚春,刘广玉,王振均.轴对称壳谐振子振型的进动研究[J].仪器仪表学报,1990.11(2):153-159.
    [131]于伟,刘伟,徐冉, et al.径向基函数网络辅助的半球谐振陀螺信号处理方案[J].战术导弹控制技术,2006.53(2):76-79.
    [132] www.northropgrumman.com. Search:NSD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700