基于新型梳状栅电容结构的微机械惯性传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在对传统栅电容结构的惯性传感器进行研究的基础上,提出了一种新型的梳状栅电容结构,并对基于此结构的加速度计和陀螺进行了研究。具体工作包括:加速度计和陀螺器件的结构设计、制作、接口电路设计、性能测试及性能优化等。
     (1)与传统栅电容结构相比,本论文所提的梳状栅电容结构的栅电极不完全刻穿,而仅需刻蚀数十微米,有效的提高了加速度计和陀螺的可动质量块质量,从而使器件的机械灵敏度提高,机械热噪声下降。典型设计下,可动质量块质量可提高54%,使得加速度计和陀螺的机械灵敏度在同样的尺寸下分别提高54%和92%,机械热噪声分别下降35%和48%。另外,新的栅电容结构也使得栅电极的形成和结构的释放分开,极大的降低了深反应离子刻蚀过程中的凹缺效应和滞后效应对微结构的损伤,提高了器件的加工质量以及成品率。
     (2)建立了静电驱动的框架式栅电容陀螺的机械灵敏度分析模型,分析发现,在芯片面积和驱动电压一定的条件下,当驱动外框与检测质量块的面积相等时,可以使得器件的机械灵敏度达到最大,从而实现了对陀螺性能的优化。针对深反应离子刻蚀过程中的滞后效应、凹缺效应和厚胶的边缘效应造成的弹性梁尺寸误差,提出了陀螺的驱动和检测弹性梁、驱动和检测栅电极的等宽和低深宽比设计原则,从而使尺寸误差和工艺离散性造成的陀螺频率匹配偏差降到最低。对陀螺原型器件的实际测试表明:同批次陀螺谐振频率的标准差相较改进前降低了79%以上;工艺离散性导致同批次陀螺的谐振频率最大相差132Hz,但陀螺驱动模态和检测模态的频率差的均值为7.5Hz,与设计值6Hz接近,标准差为16.5Hz,保持了频率匹配。
     (3)对加速度计和陀螺的实际测试表明,采用单端输入-双端差分输出结构的电容检测电路,可抵消双端输出中相关性较高的共模噪声,电容检测信号经过差分放大后实测的信噪比提高了约13dB。对加速度计和陀螺的噪声进行了建模分析,分析结果均与加速度计和陀螺实测的噪声基底在同一数量级上。在根据噪声模型分析结果对微机械陀螺的性能进行了优化,实测的陀螺在1Hz处的噪声基底从0.023°/s/(?)降低到0.0079°/s/(?)。
     由于加速度计和陀螺均采用变面积电容检测法线性敏感位移变化,两者都获得了很高的线性度:实测加速度计在±1g内的线性度为99.997%,±30g内的线性拟合曲线的二次项和一次项系数比159ppm;陀螺在±43°/s内的线性度为99.995%,±200°/s内的线性拟合曲线的二次项和一次项系数比为203ppm。加速度计和陀螺的工作阻尼主要是滑膜阻尼,这使得器件在大气压下也获得了较小的阻尼系数和较高的品质因子,新型的梳状栅电容结构又使得器件获得了更大的可动质量块质量,因此加速度计和陀螺在大气下均实现了高性能:加速度计的偏置稳定性为0.3mg,白噪声基底为0.348mg/(?),动态范围为±30g;陀螺的偏置稳定性为21.6°/h,1Hz处的噪声等效角速度优于0.01°/s/(?)。陀螺的线性度、偏置稳定性以及噪声基底等指标,比近年来文献中报道的大气压下工作的微机械陀螺要好。
A novel comb-bar capacitor is proposed on the basis of the study of traditional bar capacitor based inertial sensors, and the study of comb-bar capacitor based MEMS accelerometers and gyroscopes is presented in this paper, specific work including: the structural design for an accelerometer and gyroscope, the process flow design for the fabrication, the design of the interface circuits, performance tests of the prototypes, and the analysis and optimization of the accelerometer and gyroscope.
     (1) Compared to the traditional bar capacitor structure, the bar electrodes of the comb-bar structure is only etched for a few tens of micrometers instead of being cut though, which increases the proof masses of the accelerometer and gyroscope efficiently, resulting in higher mechanical sensitivities and lower mechanical-thermal noises. For this typical design, the proof masses are increased by 54% both for the accelerometer and gyroscope. As a result, the mechanical sensitivities have been increased by 54% and 92%, and the mechanical-thermal noises have been reduced by 35% and 48% respectively within the same geometry. Furthermore, the bar electrodes and the structure are released separately, which lowers the damages caused by the lag effect and notching effect during DRIE greatly, resulting in higher fabrication quality and yield rates.
     (2) An analysis model for the mechanical sensitivity of the electrostatically driven bar capacitor based frame gyroscope is built, which reveals that, given fixed chip area and driving voltages, the mechanical sensitivity is maxed when the areas of the outer frame and the inner proof mass are equal, thus the performance of the gyroscope is optimized. An equal width, low aspect-ratio design principle for both spring beams and bar electrodes of the driving motion and sensing motion is proposed to deal with the large dimension errors caused by the lag effect, notching effect and edge effect of the thick photoresist during DRIE, thus the deviation of the difference between the driving and sensing resonant frequencies, which is caused by the the relatively large dimension error and fabrication ununiformity, is minimized. Test results show that: the standard deviation for resonant frequencies of gyroscopes from the same batch has been reduced by more than 79%; With the maximal frequency difference 132Hz of the tested gyroscope resonant frequencies from the same batch caused by process tolerances, the average value for the difference between the driving and sensing resonant frequencies is 7.5Hz, which is close to the designed value 6Hz, and the standart deviation for the difference is 16.5Hz, which implies that the driving and sensing resonant frequencies keep matched after fabrication.
     (3) Test results of the accelerometer and gyroscope show that the SNR of the capacitor sensing carrier has been increased by around 13dB after passing by a single input—double differential output CV circuit, which is because the correlated common noises are canceled after the differtial amplifier. Noise analysises for the accelerometer and gyroscope are presented and analysis results are of the same order of magnitude as the tested values. An optimization for the gyroscope is carried out according to the noise analysis results, and the noise floor of the gyroscope at 1Hz hasbeen decreased from 0.023 o/s/Hz~(1/2) to 0.0079 o/s/Hz~(1/2) .
     The accelerometer and gyroscope both achieve high linearity as a result of sensing displacement by the varying overlapped area: the linearity for the accelerometer is 99.997% within±lg input acceleration, and the ratio of the quadratic term coefficient and the linear term coefficient of the quadratic fit line is 159ppm for±30g input accelerotion; the linearity for the gyroscope is 99.995% within±43°/s input angular rate, and the ratio of the quadratic term coefficient and the linearterm coefficient of the quadratic fit line is 203ppm for±200°/s input angular rate. Themain system damping of the accelerometer and gyroscope is slide-film damping, thus low damping coefficients and high quality factors are achieved at atmospheric pressure, and the novel comb-bar capacitor have ensured larger proof masses for the inertial sensors, as a result, the accelerometer and gyroscope have achieved high performances at atmospheric pressure: The bias instability is 0.3mg, the white noise floor is 0.348 mg/Hz~(1/2) and the dynamic range is±30g for the accelerometer; Thebias instability is 21.6°/h, and the noise floor at 1Hz is better than 0.01°/s/Hz~(1/2) forthe gyroscope. The linearity, bias instability and noise floor of the comb-bar structure gyroscope are better than the MEMS gyroscopes working at atmospheric pressure reported in recent years.
引文
1. Weston, J.L. and D.H. Titterton, Modern inertial navigation technology and its application. Electronics & Communication Engineering Journal, 2000. 12(2): p.49-64.
    
    2. Williams, J.E.D., From Sails to Satellites: The origin and development of navigational science. New York:Oxford University Press, 1994.
    
    3. Walter, P.L., Trends in accelerometer design for military and aerospace applications. sensors, 1999. 16(3): p. 44-51.
    
    4. Doscher, J. and C. Kitchin, Monitoring machine vibration with micromachined accelerometers. sensors, 1997. 14(5): p. 33-34.
    
    5. Man, P.F. and C.H. Mastrangelo, Surface micromachined shock sensor for impact detection. Tech. Digest of IEEE Solid-State Sensor and Actuator Workshop (Hilton Head '94), 1994: p. 156-159.
    
    6. Pottenger, M.D., Design of Micromachined Inertial Sensors. Doctoral dissertation,University of California, Los Angeles, 2001.
    
    7. Reilly, J.J., et al., Field Comparison of Accelerometry and Heart Rate Monitoring for Assessment of Activity in Young Children. Medicine & Science in Sports &Exercise, 1999. 31(5): p. 231.
    
    8. Welk, G.J., et al., The validity of thee different accelerometers for the assessment of lifestyle physical activity. Medicine & Science in Sports & Exercise, 1999.31(5): p. 142.
    
    9. Masson, C. and R. Rieu, Time-frequency analysis of the noise produced by the closing of artificial heart valves: an in vitro study. Medical Engineering & Physics,1998. 20(6): p. 418-431.
    
    10. Kuehnel, W. and S. Sherman, A surface micromachined silicon accelerometer with onchip detection circuitry. Sensor and actuators A, 1994. 45: p. 7-16.
    
    11. Foxlin, E., Inertial head-tracker sensor fusion by a complementary separate-bias kalman filter. Proc. of the IEEE 1996 Virtual Reality Annual International Sympsium, 1996: p. 185-194.
    12. Available from:http://www.analog.com/en/mems-and-sensors/products/index.html.
    13. Yazdi, N., F. Ayazi, and K. Najafi, Micromachined Inertial Sensors. Proc. IEEE, 1998. 86(8): p. 1640-1659.
    14. Boser, B.E. and R.T. Howe, Surface Micromachined Accelerometers. IEEE Journal of Solid-State Circuits, 1996. 31(3): p. 366-375.
    15. Gabrielson, T.B., Mechanical-Thermal Noise in Micromachined Acoustic and Vibration Sensors. Ieee Transactions on Electron Devices, 1993. 40(5): p.903-909.
    16.南京航空学院航空陀螺仪原理编写组,航空陀螺仪原理[M].国防工业出版社,1981.
    17. Bao, M., Micro mechanical tansducers-pressure sensors, accelerometers and gyroscopes. E1SEVIER, 2000.
    18. Kovacs, G.T.A., N.I. Maluf, and K.E. Petersen, Bulk micromachining of silicon. Proceedings of The IEEE, 1998. 86(8): p. 1536-1551.
    19. B.Boxenhorn and P.Greiff, A vibratory micromechanical gyroscope. AIAA Guidance and Control Conference, Minneapolis, MN, August 15-17, 1988: p.1033-1039.
    20. Burrer, C. and J. Esteve, A Novel Resonant Silicon Accelerometer in Bulk-Micromachining Technology. Sensors and Actuators a-Physical, 1995.46(1-3): p. 185-189.
    21. Yeh, C. and K. Najafi, A low-voltage bulk-silicon tunneling based microaccelerometer. Technical Digest- International Electron Devices Meeting, 1995: p. 593-596.
    22. Tang, T.K., et al., Silicon bulk micromachined vibratory gyroscope. Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June, 1996: p.288-293.
    23. Esashi, M., et al., High-Rate Directional Deep Dry-Etching for Bulk Silicon Micromachining. Journal of Micromechanics and Microengineering, 1995. 5(1): p. 5-10.
    
    24. Kwon, K. and S. Park, A bulk-micromachined thee-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sensors and Actuators,1998. Vol.66(1-3): p. 250-255.
    
    25. Plaza, J.A., et al., New bulk accelerometer for triaxial detection. Sensors and Actuators, 1998. A 66 (1-3) : p. 105-108.
    
    26. Huikai Xie, G.K.F., A CMOS-MEMS Lateral-axis gyroscope. Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference, 2001: p. 162-165.
    
    27. Huikai Xie, G.K.F., ADRIE CMOS-MEMS gyroscope. Sensors, 2002.Proceedings of IEEE, 2002: p. 1413 - 1418
    
    28. Huikai Xie, G.K.F., Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. Sensors Journal, IEEE, 2003. Vol3(5): p. 622-631.
    
    29. Qu, H., D. Fang, and H. Xie, A monolithic CMOS-MEMS 3-Axis Accelerometer with a Low-Noise, Low-Power Dual-Chopper Amplifier. IEEE Sensor Journal,2008. 8(9): p. 1511-1518.
    
    30. W.A.Clark, R.T.Howe, and R.Horowitz, Surface micromachinedz-axis vibratory rate gyroscope. Proc. Tech. Dig. Solid-State Sens. Actuator Workshop, Hilton Head Island, SC, June, 1996: p. 283-287.
    
    31. L.DeVoe, D. and A. P.Pisano, A fully surface-micromachined piezoelectric accelerometer. In Tech. Dig. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers' 97), Chicago, IL, 1997: p. 1205-1208.
    
    32. Xuesong Jiang, J.I.S., Michael Kraft, Bernhard E. Boser, A monolithic surface micromachined z-axis gyroscope with digital output. Symposium on VLSI circuits,June, 2000: p. 16-19.
    
    33. Palaniapan, M., R. T.Howe, and J. Yasaitis, Integrated surface-micromachined z-axis frame microgyroscope. Electron Devices Meeting, 2002. IEDM '02. Digest.International, 2002: p. 203-206.
    
    34. 钟震桂 LIGA and LIGA-like Technology.
    
    35. Qu, W., et al., W-LIGA: A Promising and Low-Cost Variant for Microsystem Technology. IEEE, 1999.
    
    36. Gao, Y.L., et al., The Optimized Design of Accelerometer for the UV-LIGA Process. Journal of Physics: Conference Series, 2006. 48: p. 1465-1470.
    
    37. Schumacher, K., et al., Micromechanical LIGA-gyroscope. Tech. Dig. 10 th. Int.Conf. Solid-State Sensors and Actuators. (TRANSDUCERS'99), Sendai, Japan,June, 1999.
    
    38. McNamara, S. and Y.B. Gianchandani, LIGA fabricated 19-element theshold accelerometer array. Sensor and actuators A, 2004. 112.
    
    39. Yazdi, N. and K. Najafi, An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000. 9(4): p. 544-550.
    
    40. Monajemi, P. and F. Ayazi, Design optimization and implementation of a microgravity capacitive HARPSS accelerometer. IEEE Sensor Journal, 2006.Vol.6(1): p. 39-46.
    
    41. Ayazi, F. and K. Najafi, A HARPSS polysilicon vibrating ring gyroscope. J.MEMS, 2001. 10(2): p. 169-179.
    
    42. Roylance, L.M. and J.A. Angell, A batch-fabricated silicon accelerometer. IEEE Trans. Electron Devices, 1979. Vol.ED-26: p. 1911-1917.
    
    43. Tianhong Cui and J. Wang, Polymer-Based Wide-Bandwidth and High-Sensitivity Micromachined Electron Tunneling Accelerometers Using Hot Embossing.JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005. Vol.14(5):p. 895-902.
    
    44. C.H.Liu, et al., Characterization of a high-sensitivity micromachined tunneling accelerometer. In Tech. Dig. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers' 97), Chicago, IL, 1997: p. 471-472.
    
    45. X.P.Su, S., H. S.Yang, and A. M.Agogino, A Resonant Accelerometer With Two-Stage Microleverage Mechanisms Fabricated by SOI-MEMS Technology.IEEE SENSORS JOURNAL, 2005. VOL. 5, NO. 6: p. 1214-1223.
    
    46. U.A.Dauderstadt, P.M.Sarro, and S.Middelhoek, Temperature dependence and drift of a thermal accelerometer. In Tech. Dig. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers'97),Chicago, IL, 1997: p. 1209-1212.
    
    47. A.M.Leung, J.J., E.Czyzewska, J.Chen, B.Woods, Micromachined accelerometer based on convection heat transfer. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS'98), Heidelberg, Germany, 1998: p. 627-630.
    
    48. R.L.Waters, M.E.Aklufi, and T.E.Jones, Electro-optical ultra sensitive accelerometer. Position Location and Navigation Symposium, 2002 IEEE, 2002: p.36-43.
    
    49. Llobera, A., et al., Integrated Polymer Optical Accelerometer. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005. VOL. 17, NO. 6: p. 1262-1264.
    
    50. F.Rudolf, et al., Precision accelerometer with μ g resolution. Sensors and Actuators, 1990. A21 (1-3) : p. 297-302.
    
    51. Jiang, X., et al., An Integrated Surface Micromachined Capacitive Lateral Accelerometer with 2 μ g/ V Hz Resolution. Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, South Carolina, 2002: p. 202-205.
    
    52. Chae, J., H. Kulah, and K. Najafi, An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry. Journal of Microelectromechanical Systems, 2004. 13(4): p. 628-635.
    
    53. Chae, J., H. Kulah, and K. Najafi, A Monolithic Thee-Axis Micro-g Micromachined silicon Capacitive Accelerometer. Microelectromechanical Systems, 2005. Vol14(2): p. 235-242.
    
    54. Xiong, B., et al., Study of a novel silicon micromachined gyroscope. The Sixth International Conference on Solid-state and Integrated-Circuit Technology,ICSICT-2001, Shanghai, China,Oct, 2001: p. 746-748.
    
    55. Alper, S.E., K. Azgin, and T. Akin, A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sensors and Actuators A 135,2007: p. 34-42.
    
    56. Kulygin, A., et al., Study on the Lower Resolution Limit and the Temperature-dependent Performance of a Surface Micromachined Gyroscope.MEMS 2008, Tucson, AZ, USA, January 13-17, 2008, 2008: p. 868-871.
    
    57. Sharma, A., et al., A 0.1°/H Bias Drift electronically matched tuning fork microgyroscope. MEMS 2008, Tucson, AZ, USA, January 13-17, 2008: p. 6-9.
    
    58. Chen, Y., et al., Micromachined bar-structure gyroscope with high Q-factors for both driving and sensing mode at atmospheric pressure. Sensors, 2003. Proceedings of IEEE, 22-24 Oct, 2003. 1: p. 461-465.
    
    59. Zhang, H., et al., Frequency-Mismatch-Tolerant Silicon Vibratory Gyroscope without Vacuum Package for Automotive Applications. World Automation Congress (WAC) 2006, July 24-26, Budapest, Hungary, 2006.
    
    60. Gunthner, S., et al., Compensation of Parasitic Effects for a Silicon Tuning Fork Gyroscope. IEEE SENSORS JOURNAL, 2006. 6(3): p. 596-604.
    
    61. Kotru, S., et al., Design and Fabrication of a Meso-Scale Gyroscope. Microelectronics and Electron Devices,, 2008: p. 5-8.
    
    62. Annovazzi-Lodi, V, et al., Optical Detection of the Coriolis Force on a Silicon Micromachined Gyroscope. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003. Vol.12(5): p. 540-549.
    
    63. Kubena, R.L., et al., A new tunneling-based sensor for inertial rotation rate measurements. Sensors and Actuators 2000. 83 p. 109-117.
    
    64. Seshia, A.A., Integrated Micromechanical Resonant Sensors for Inertial Measurement Systems. Doctoral dissertation, University of California, Berkeley,2002.
    
    65. Liu, C.H., et al., Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998. 7(2): p. 235-244.
    
    66. BhadBhade, V, N. Jalil, and S.N. Mahmoodi, A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. Journal of Sound and Vibration 311,2008: p. 1305-1324.
    
    67. Maenaka, K., et al., Design, fabrication and operation of MEMS gimbal gyroscope. Sensors and Actuators A, 2001. Vol.121: p. 6-15.
    
    68. Wu, J., G.K. Fedder, and L.R. Carley, A low-noise low-offset capacitive sensing amplifier for a 50- μ g/ V Hz monolithic CMOS MEMS accelerometer. IEEE Journal of Solid-State Circuits, 2004. 30(5): p. 722-730.
    69. Navid Yazdi, K.N., An All-Silicon Single-Wafer Fabrication Technology for Precision Microaccelerometers. 1997 International Conference on Solid-State Sensors and Actuators Chicago, 1997: p. 1181-1184.
    
    70. Weigold, J.W., K. Najafi, and S.W. Pang, Design and Fabrication of Submicrometer, Single Crystal Si Accelerometer. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2001. 10(4): p. 518-524.
    
    71.Greiff, P., et al., Silicon monolithic micromechanical gyroscope. Tech. Dig. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers' 91), San Francisco, CA,June 1991, 1991: p. 966-968.
    
    72. T.K.Tang, et al., A packaged silicon MEMS vibratory gyroscope for microspacecraft. Proc. IEEE Micro Electro Mechanical Systems Workshop(MEMS'97), Japan, 1997: p. 500-505.
    
    73. W.Geiger, et al., New designs of micromachined vibrating rate gyroscopes with decoupled oscillation modes, sensors and Actuators A, 1998. Vol.66: p. 118-124.
    
    74. W.Geiger, et al., A new silicon rate gyroscope. Sensors and Actuators, 1999.Vol.73: p. 45-51.
    
    75. W.Geiger, et al., Decoupled microgyros and the design principle DAVED. sensors and Actuators A, 2002. Vol.95: p. 239-249.
    
    76. Putty, M.W. and K. Najafi, A Micromachined Vibrating Ring Gyroscope. Solid-State Sensors and Actuators Workshop, Hilton Head, SC, 1994: p. 213-220.
    
    77. J.Bernstein, et al., A micromachined comb-drive tuning fork rate gyroscope. Proc. IEEE Micro Electro Mechanical Systems Workshop(MEMS'93), Fort Lauderdale,FL,Feb, 1993: p. 143-148.
    
    78. M.Weinberg, et al., A micromachined comb-drive tuning fork gyroscope for commercial applications. Proc. Sensor Expo, Cleveland, OH, 1994: p. 187-193.
    
    79. T.Juneau, A.P.Pisano, and J.H.Smith, Dual axis operation of a micromachined rate gyroscope. Transducers, Chicago, IL, June, 1997: p. 883-886.
    
    80. K.Y.Park, et al., Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs. Proc. IEEE Micro Electro Mechanical Systems Workshop(MEMS'97), Japan, 1997: p. 494-499.
    81. K.Y.Park, et al., Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs. Sensors and Actuators A, 1998. vol.64: p. 69-76.
    82. Ajit Sharma, F.M.Z., Babak V. Amini and Farrokh Ayazi, A High-Q in-plane SOI tuning fork gyroscope. Sensors, 2004. Proceedings of IEEE, 2004. 1: p. 467- 470
    83. M.F.Zaman, A.Sharma, and F.Ayazi, High performance matched-mode tuning fork gyroscope. MEMS 2006, Istanbul, Turkey, January, 2006: p. 66-69.
    84. W.Geiger and e. J.Bartholomeyczik, MEMS IMU for AHS Applications. Position, Location and Navigation Symposium, 2008 IEEE/ION, 2008: p. 225-231.
    85. Choa, S.H., Reliability of vacuum packaged MEMS gyroscopes. Microelectronics and Reliability, 2005. 45(2): p. 361-369.
    86.陈永,基于滑膜阻尼效应的音叉式微机械陀螺研究.中国科学院上海微系统与信息技术研究所博士论文,2004.
    87.熊斌,栅结构微机械振动式陀螺.中国科学院上海微系统与信息技术研究所博士论文,2001.
    88. Xiong, B., L. Che, and Y. Wang, A novel bulk micromachined gyroscope with slots structure working at atmosphere. Sensors and Actuators A: Physical, 2003. 107(2): p. 137-145.
    89. Alper, S.E., K. Azgin, and T. Akin, A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sensors and Actuators A: Physical, 2007. 135(1): p. 34-42.
    90. Trusov, A.A., A.R. Schofield, and A.M. Shkel, Performance characterization of a new temperature-robust gain-bandwidth improved MEMS gyroscope operated in air. Sensor and actuators A, 2008.
    91. Liu, X.S., et al., A doubly decoupled lateral axis micromachined gyroscope. Sensor and actuators A, 2008.
    92. L.K.Baxter, Capacitive Sensors Design and Applications. IEEE Press, New York 1997.
    93. Ayazi, F. and K. Najafi, High Aspect-Ratio Combined Poly and Single-Crystal Silicon(HARPSS) MEMS Technology. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000. 9(3): p. 288-294.
    
    94. Seeger, J.I. and B. Boser, Dynamics and Control of Parallel-Plate Actuators Beyond the Electrostatic Instability. Transducers'99, Sendai, Japan, June7-10,1999: p. 474-477.
    
    95. Palaniapan, M., Integrated Surface Micromachined Frame Microgyroscopes. Doctoral Dissertation, University of California, Berkeley, 2002.
    
    96. Fedder, G.K., Simulation of Microelectromechanical Systems. Doctoral dissertation, University of California, Berkeley, 1994.
    
    97. Davis, W.O., Mechanical analysis and design of vibratory micromachined gyroscopes. Doctoral dissertation, University of California, Berkeley, 2001.
    
    98. 章梓雄,粘性流体力学.清华大学出版社, 1998.
    
    99. Cho, Y.-H., et al., Slide film damping in laterally driven microstructures. Sensors and Actuators, 1994. A40: p. 31-39.
    100.Cho, Y.-H., A. P.Pisano, and R. T.Howe, Visous Damping Model for Laterally Oscillating Microstructures. J.MEMS, 1994. 3(2): p. 81-86.
    101.Pan, F.X., et al., Squeeze film damping effect on the dynamic response of a MEMS torsion mirror. Technical Proceedings 1998 International Conference on Modeling and Simulation of Microsystems, Santa Clara, California, USA, 1998: p.474-479.
    
    102.L.D.Landau and E.M. Lifshitz, Fluid Mechanics. New York: Pegamon, 1989.
    103.W.A.Clark, Micromachined Vibratory Rate Gyroscope. Doctoral dissertation,University of California, Los Angeles, 1997.
    
    104.Beeby, S., et al., MEMS mechanical sensors. Artech House, Inc, 2004.
    105.J.X.Gao, et al., Antistick postpassivation of high-aspect ratio silicon molds fabricated by deep-reactive ion etching. Journal of Microelectromechanical Systems, February, 2006. 15(1): p. 84-93.
    106.Yeom, J., et al., Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect. Journal of Vacuum Science and Technology, 2005. B23 (6) : p. 2319-2329.
    107.R.S.Besser and W.C.Shin, Deep reactive ion etching characteristics of a macromachined chemical reactor. Journal of Vacuum Science and Technology, 2003.B21 (2) : p. 912-915.
    108.Laermer, F. and A. Urban, Milestones in deep reactive ion etching. The 13th International Canference on Solid-State Sensors and Actuators and Microsystems, 2005: p. 1118-1121.
    109.J.Li, et al., MEMS deep-RIE fabrication process and device characterization. Proceedings of SPIE- The International Society for Optical Engineering, 2003. 5154: p. 80-86.
    110.周晓奇,电容式微机械加速度计处理电路研究.浙江大学硕士学位论文,2008.
    111. EI-Sheimy, N., H. Hou, and X. Niu, Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Transactions on Instrumentation and Measurement, 2008. 57(1).
    112.Kim, H., J.G. Lee, and C.G Park, Performance Improvement of GPS/INS Integrated System Using Allan Variance Analysis. The 2004 International Symposium on GNSS/GPS, 2004.
    113. Jiang, X., Capacitive Position-Sensing Interface for Micromachined Inertial Sensors. Doctoral dissertation, University of California, Berkeley, 2003.
    114.邱奕文,MEMS陀螺外围信号数字处理系统研究.浙江大学硕士学位论文,2008.
    115.Xie, H., Gyroscope and Micromirror Design Using Vertical-Axis CMOS-MEMS Actuation and Sensing. Doctoral dissertation, Carnegie Mellon University, 2002.
    116.Alper, S.E., K. Azgin, and T. Akin, A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sensor and actuators A, 2007. 135: p. 32-42.
    117. Azgin, K., Y. Temiz, and T. Akin, A novel in operation high g-survivable MEMS gyroscope. IEEE SENSors 2007 Conference, 2007.
    118.Saukoski, M., et al., Interface and control electronics for a bulk micromachined capacitive gyroscope. Sensors and Actuators A: Physical, 2008. 147(1): p.183-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700