可调偏置电流磁悬浮系统的数字控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般的主动磁悬浮轴承线圈中的电流由偏置电流和控制电流两部分组成。为了降低磁悬浮轴承的损耗,本文分别设计制作了轴向零偏置电流径向有偏置电流控制器和五自由度零偏置电流控制器,研究了含两种控制器磁悬浮轴承转子系统的动态性能。研究结果表明,与一般磁悬浮轴承转子系统相比,轴向零偏置电流控制方式对系统动态性能没有影响,而径向零偏置电流控制方式显著降低了系统的动态性能。
     在此基础上,本文设计制作了基于TMS320F2812DSP的变偏置电流控制器的硬件电路,采用C语言编制了变偏置电流PID控制软件,完成了转子的稳定悬浮和高速旋转试验。试验结果表明,当系统越过各阶临界转速时,应采用径向有偏置电流控制方式,而当系统转速远离各阶临界转速时,可采用径向低偏置电流控制方式。这一策略不仅能使系统在整个转速范围内保持良好的动态性能,同时磁悬浮轴承的涡流和磁滞损耗小。
Coil current of ordinary Active Magnetic Bearing (AMB) is composed of bias current and control current. To reduce power loss of AMB, two kinds of analog controller are developed in the thesis. One is used in the system with zero bias current in axial degree of freedom and bias current mode in radial degrees of freedom, the other is used in the system with zero bias current modes in five degrees of freedom. Dynamic performances of the system with the two controllers are investigated separately. The results show that, compared with ordinary AMB system, zero bias current mode in axial degree of freedom has less effect on the dynamic performance of the system, while zero bias current mode in radial degrees of freedom degrade the dynamic performance of the system obviously.
     On the foundation of above research, the digital control hardware based on TMS320F2812 DSP is designed and manufactured for the system, variable bias current PID control program is developed by C and assembly language, and the experiments of suspension and high-speed rotating of the setup are also finished. The results show that bias current mode in radial degrees of freedom should be adopted when the system is operated near the critical speeds so that the system has super performance, while low bias current mode in radial degrees of freedom should be adopted when the system is far from the critical speeds so that the power loss of AMB could be reduced.
引文
[1] Z. Y. Wu, C. M. Bingham, D. Howe, etal. QFT for the design of active magnetic bearing control systems. Proc. of the 7th Int. Symp. On Magnetic Bearings. Zurich, Switzerland, August, 2000
    [2] G.施韦策,H.布鲁勒,A.特拉克斯勒.主动磁轴承基础、性能及应用(虞烈,袁崇军译.北京:新时代出版社,1997:8~14
    [3] L. A. Zadeh. Outline of a New Approach to the Analysis Complex Systems and Decision Processes. IEEE Trans. Syst. Man Cyverm.1973, SMC3:28~44
    [4] Marty Humphrey, Edgar Hilton, Paul Allaire. Experimences Using RT-Linux to Implement a Controller for a High Speed Magnetic Bearing System. IEEE, 1999, 121~130
    [5]胡业发,周明德,江征风.磁力轴承的基础理论与应用.北京:机械工业出版社,2006, 3:1~8
    [6]邢晓君.有源磁轴承高频电主轴的研究与实现,[博士学位论文] .北京:清华大学,1994
    [7]刘强,杨福兴,赵雷.新型纠偏方式—电磁纠偏的分析与设计.无线电工程,2007,37(10):42~43
    [8]袁崇军,曹洁,杨涌.电磁轴承的优化设计.机械科学与技术,1995,6:29~36
    [9]谢振宇.电磁轴承系统及其工业应用,[博士学位论文].西安:西安交通大学,2000
    [10]丁国平,胡业发,周祖德.磁悬浮硬盘驱动器研发中的磁场测量.湖北工业大学学报,2008,23(3):60~63
    [11]王晓光,胡业发,江征风,等.基于力控制的磁悬浮硬盘驱动器研究.武汉理工大学学报,2002,24(6):66~68
    [12]唐文斌.高可靠磁悬浮轴承数字控制器研制,[硕士学位论文].南京:南京航空航天大学,2008
    [13]谢振宇,王彤,张景亭,等.磁悬浮轴承金属橡胶环组合支承转子系统的动态性能.航空动力学报,2009,24(2):378~384
    [14]祝长生.主动电磁轴承失效后柔性转子坠落在备用保护轴承上的瞬态响应实验研究.航空学报,2009,30(8):1357~1543
    [15]吴刚.混合磁轴承飞轮系统设计与控制方法研究,[博士学位论文].长沙:国防科学技术大学,2006
    [16]张健生,张钢,吴国庆,等.磁轴承大动载能力与开关功放参数的设计.机械,2004,31(4):11~13
    [17]曹广忠,虞烈,谢有柏.实心转子—电磁轴承系统的损耗分析.航空动力学报,2003,18(1):124~129
    [18]高素美,单自由度和两自由度永磁偏置磁悬浮轴承的研究,[硕士学位论文],南京航空航天大学,2006
    [19] M. E. F. Kasarda and P. E. Allaire, Comparison of predicted and measured rotor losses in planar radial magnetic bearings, ASME J. Tribol.vol. 40, no. 2, pp. 219–226, 1997
    [20] P. E. Allaire, M. E. F. Kasarda, and L. K. Fujita, Rotor power losses in planar radial magnetic bearings—effects of number of stator poles, air gap thickness, and magnetic flux density, ASME J. Eng. Gas Turbines Power, vol. 121, pp. 691–696, 1999
    [21] M.E.F. Kasarda, P. E. Allaire, E. H. Maslen, H. G. R. Brown, and G. T. Gillies, High-speed rotor loss in a radial eight-pole magneticbearing:Part1—Analytical、empirical models and calculations, ASME J. Eng. Gas Turbines Power, vol. 120, pp. 105–109, 1998
    [22] M. E. F. Kasarda, P. E. Allaire, E. H. Maslen, H. G. R. Brown, and G. T. Gillies, High-speed rotor losses in a radial eight-pole magnetic bearing: Part 2—Analytical/empirical models and calculations, ASME J. Eng. Gas Turbines Power, vol. 120, pp. 110–114, 1998
    [23] Perry Tsao, Seth R. Sanders, Gabriel Risk A. Self-sensing Homopolar Magnetic Bearing Analysis and Experimental Results, University of California, Berkeley, 2007
    [24] Ha-Yong Kim and Chong-Won Lee. Analysis of Eddy-Current Loss for Design of Small Active Magnetic Bearings with Solid Core and Rotor, IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 5, SEPTEMBER 2004
    [25] Guang-Ren Duan, Senior Member, IEEE, Zhan-Yuan Wu, Chris Bingham, Member, IEEE, and David Howe. Robust Magnetic Bearing Control Using Stabilizing, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 36, NO. 6, DECEMBER 2000
    [26] Lembke. Torbjorn A. Core Loss Prediction and Measurement in Magnetic, IEEE, 978-1-4244-4252-2/09/$25.00 ?2009
    [27] Pichot. Mark Allen. Design and Analysis of Passive Homopolar, IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 3, MARCH 2005
    [28] Yajun Zhang, Nobuyuki Kobayashi, Control for Passing through Critical Speeds of an Energy Storage Flywheel System by Bias Current Control
    [29] Dexter Johnson and Gerald V. Brown, Adaptive Variable Bias Magnetic bearing Control, Proceedings of the American Control conference, Philadelphia, Pennsylvania, June 1998
    [30] M. Necip Sahinkaya, Ahu E. Hartavi, Variable Bias Current in the Magnetic Bearings for Energy Optimization, IEEE Transactions on Magnetics, Vol.43, No.3, March 2007
    [31] C. Konspe and C. Yang, Gain-scheduled control of a magnetic bearing with low bias flux, in Proc.36th Conf. Decision and Contr., San Diego, CA, 1997, pp.418-423
    [32] P. Tsiotras, Brian C. Wilson, Zero-and Low-Bias Control Designs for Active Magnetic Bearings, IEEE Transactions on control systems Technology, Vol.11, No.6, November 2003
    [33] P. Tsiotras, Brian C. Wilson, Control of Zero-Bias Magnetic Bearing Using Control Lyapunov Functions, Proceedings of the 39th IEEE, Conference on control, Sydney, Australia, December, 2000
    [34] Selim Sivrioglu, Muneharu Saigo and Kenzo Nonami, Adaptive Backstepping Control Design for a Flywheel Zero-bias AMB System, 2003
    [35] Selim Sivrioglu, Kenzo Nonami, Adaptive Output Backstepping Control of a Flywheel Zero-Bias AMB System with Parameter Uncertainity, Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December 2003
    [36] Selim Sivrioglu, Kenzo Nonami, Flywheel Zero-bias AMB System with Force Base Switching Servo Backstepping Control, Ninth International Symposium on Magnetic Bearings, August 3-6, 2004, Lexington, Kentucky, USA
    [37] Toshiyuki Nakamura, Mitsuo Hirata, and Kenzo Nonami, Zero Bias H∞Control of Active Magnetic Bearings for Energy Storage Flywheel Systems, Ninth International Symposium on Magnetic Bearings, August 3-6, 2004, Lexington, Kentucky, USA
    [38] A. Charara, J. De Miras, and B. Caron, Nonlinear control of a magnetic levitation system without premagetization, IEEE Trans. Contr. Syst. Technol,vol.4, pp.513-523, 1996
    [39]陈立群.电磁轴承精度控制及其应用研究,[博士学位论文].西安:西安交通大学,1999
    [40]杨春香,周易,张虎.金属橡胶动态隔振性能的实验研究.航空学报,2006,27(3):536~539
    [41]闫辉,姜洪源,刘文剑,等.某飞行器用金属橡胶材料抗冲击实验研究.功能材料,2009,40(7):1127~1129
    [42]钟一谔,何衍宗,王正等.转子动力学.北京:清华大学出版社,1987:248~250
    [43]胡业发,周祖德,江征风.磁力轴承的基础理论与应用.北京:机械工业出版社,2006:21~23,84~85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700