船舶螺旋桨空泡性能理论预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界船舶业的发展,人们对船舶的航速以及主机的性能要求不断提高,但是由于船舶螺旋桨的尺寸受到各种限制而不能任意增加,故螺旋桨桨叶的负荷不断增大,在此情况下,螺旋桨往往无可避免的产生空泡现象。当螺旋桨出现空泡后,会对螺旋桨的性能产生不同程度的影响,或者使航速降低,或者使桨叶材料受到损害,或者使船体产生严重的振动和噪声等,因此在船舶设计阶段,对螺旋桨空泡进行理论预报是十分必要的。
     论文分析了国内外进行螺旋桨性能研究的技术特点,详细介绍了各国学者对螺旋桨空泡理论的研究进展,以及在螺旋桨空泡理论预报中存在的问题和解决策略。
     论文用理论的方法系统地分析了均匀流场和非均匀流场中的螺旋桨性能预报问题,包括螺旋桨定常水动力性能预报和螺旋桨非定常水动力性能预报。螺旋桨的非定常水动力性能采用时域方法求解,为了减少计算时间和降低计算机的存储量,论文采用了主桨叶方法,其它桨叶上的未知量均可由主叶片按一定相位角推算,在计算的每一时间步长的计算方法基本与定常时相同。
     论文采用基于速度势的低阶面元法预报了螺旋桨的空泡性能,包括空泡的长度和厚度等,并编制了相应的数值程序。本文以螺旋桨的每一个条带为研究对象。在预报空泡长度问题上,结合非定常性能计算压力分布,运用空泡产生条件解出空泡长度;在空泡厚度预报问题上,首先由格林公式推导出该问题的积分方程,然后在桨叶的每一个条带上离散方程,运用运动学边界条件、动力学边界条件、无穷远条件、压力库塔条件、空泡尾缘厚度为零条件等作为方程的定解条件,求解空泡区域的源汇度和湿表面区域的偶极度,根据空泡表面运动学条件,由求解出的空泡区域的源汇度就能预报出空泡厚度。
     论文最后采用本方法和程序对PHS01桨进行了校核计算,并与试验结果进行对比,结果比较令人满意,表明了本方法在理论上的可行性。
With the worldwide development of ship, the high speed and power of the ship are demanded for higher level. But the propeller's dimensions limited by various conditions can't increase randomly, the load on the blade is increasing continually, in this situation, the cavitatuon phenomenon will appear inevitably. The cavitation will lead to some bad effects on propeller performance, such as lowering the speed, the blade erosion, the unexpected structure vibration and radiated noise and so on, so it is necessary to predict the propeller's cavitation performance in the ship design.
     This paper has analyzed the technology features in the domestic and foreign research of propeller performance and introduced the current technology of propeller cavitation. Some difficulties and tentative approaches in the research of cavitation performance have been referred.
     This paper has investigated the hydrodynamic performance of the propeller in the uniform and non-uniform flow field with theoretical method, which includes steady hydrodynamic performance and unsteady hydrodynamic performance. Unsteady hydrodynamic performance prediction is solved by time domain method. The key blade method has been used in order to reduce the computing time and storage, the unknown parameters of other blades are derived from the key blade by the corresponding phase angle. At each time step, the method is the same as the steady condition.
     This paper has adopted the low-order surface panel method based on velocity potential to predict the performance of partially cavity, which includes cavitation extent and thickness, and has compiled the corresponding numerical program. The solution method is carried out for each chordwise string. It is used of the cavitation happen condition to solve the cavitation extent combined with the pressure distribution in the unsteady hydrodynamic performance calculation. To predict the cavitation thickness, the integral equation is derived from Green formula, the solution condition including kinematic condition, dynamic condition, rigid object border condition, the far distance condition, the pressure Kutta condition and the zero thickness of cavitation trailing edge condition. Based on the kinematic condition on the cavitation panel, the cavitation thickness can be predicted by the solved source strength.
     Through the verification calculation on PHS01 propeller and compared with the test report, the computer program presented on this paper can give a satisfied result of cavitation performance, so this method is reasonable in theory.
引文
[1]苏玉民,黄胜.船舶螺旋桨理论.哈尔滨工程大学:哈尔滨工程大学出版社,2003
    [2]Hess J T,Smith A M.Calulation of nonlifting potential flow about arbitrary three dimension bodies.Journal of Ship Research,1964,8(2):22-44P
    [3]Hess J L.Calculation of potential flow about arbitrary three dimensional lifting bodies.Final Technical Report MDC J5679-01,McDonnell Douglas,Long Beach,California,1972
    [4]Morino L.Subsonic potential aerodynamics for complex configurations:a general theory.AIAA Journal,1974,12(2):191-197P
    [5]Maskew B.Prediction of subsonic aerodynamic characteristics:a case for low-order panel methods.Journal of Aircraft,1982,19(2):157-163P
    [6]Lee J T.A potential based panel method for the analysis of marine propellers in steady flow,[dissertation].Boston:MIT,1987
    [7]Newman J L.Distributions of sources and normal dipoles over a quadrilateral panel.Journal of Engineering Mathematics,1986,20:113-126P
    [8]Ling Z,Sasaki Y and Takahashi M.Analysis of three-dimension flow around marine propeller by direct formulation of boundary element method(2nd Report:in Steady Ship's Wake).Journal of the Society of Naval Architects of Japan,1986,159:45-59P
    [9]Hsin C Y,Kerwin J E and Kinnas S A.A panel method for the analysis of the flow around highly skewed propellers.Propellers and Shafting '91Symposium,Society of Naval Architects and Marine Engineers,Virginia Beach,VA,1991
    [10]Kerwin J,Kinnas S and et al.A surface panel mrthod for the hydrodynamic analysis of ducted propellers.Trans.SNAME,1987,95:93-122P
    [11]Kinnas S A.A general theory for the coupling between thickness and loading for wings and propellers.Journal of Ship Research,1992,36:59-68P
    [12]Hoshino T.Hydrodynamic analysis of propellers in unsteady flow using a surface panel method.Journal of the Society of Naval Architects of Japan,1993,174:71-87P
    [13]Mishkevich V.Flow around marine propeller:nonlinear theory based on vector potential.Propellers/Shafting'97,Virginia Beach,1997
    [14]Maita S,Ando J and Nakatake K.A simple surface panel method to predict unsteady marine propeller performance.Journal of the Society of Naval Architects of Japan,1997,182:71-80P
    [15]Georgiev D J,Ikehata M and Kai H.Application of dirchlet's principle in a new panel method for surface and tip flows of lifting bodies.Journal of the Society of Naval Architects of Japan,1997,182:81-95P
    [16]Mishima S and Kinnas S A.Application of a numerical optimization technique to the design of cavitating propellers in non-uniform flow.Journal of Ship Research,1997,41(2):93-107P
    [17]Hess J L.Calculation of potential flow about arbitrary three dimension lifting bodies.Final Technical Report MDC J5679-01.Long Beach,California,1972
    [18]Morino L.A general theory of unsteady compressible potential aerodynamics.NASA CR-2464,1974
    [19]Ling Z,Sasaki Y and Takahashi M.Analysis of three-dimension flow around marine propeller by direct formulation of boundary element method(1st Report:in uniform flow).Journal of the Society of Naval Architects of Japan,1986,159:85-97P
    [20]Liu P F,Bose N and Colbourne B.A broyden numerical:Kutta condition for an unsteady panel method.International Shipbuilding Progress,2002,49(4):263-273P
    [21]谭廷寿.面元法预报螺旋桨水动力性能.武汉交通科技大学学报.1997,21(5):534-541页
    [22]苏玉民,黄胜.用面元法预报船舶螺旋桨的水动力性能.哈尔滨工程大学学报.2001,22(2):1-5页
    [23]谭廷寿,王德询.大侧斜螺旋桨水动力性能预报.武汉交通科技大学学报.2000,24(2):96-99页
    [24]谭廷寿,何海峰.高阶面元法预报螺旋桨水动力性能.武汉理工大学学报(交通科学与工程版).2005,29(1):20-22页
    [25]董世汤,唐登海,周伟新.CSSRC的螺旋桨定常面元法.船舶力学.2005,9(5):46-60页
    [26]陈家栋,董世汤.非定常螺旋桨表面压力面元法计算.中国造船.1998,140(1):9-15页
    [27]谭廷寿,熊鹰,王德询.面元法预报螺旋桨表面非定常压力分布.中国造船.2000,41(2):15-20页
    [28]谭廷寿.螺旋桨非定常性能的面元法预报.船舶工程.2005,27(5):13-17页
    [29]苏玉民,池烟光尚,甲斐寿.船舶螺旋桨尾流场的数值分析.海洋工程.2002,20(3):44-48页
    [30]胡健,苏玉民,黄胜.螺旋桨诱导的船尾脉动压力的数值模拟.哈尔滨工程大学学报.2005,26(3):292-296页
    [31]杨晨俊,王国,杨建民.导管螺旋桨定常性能理论计算.上海交通大学学报.1997,31(11):36-39页
    [32]王国,张建华.导管螺旋桨的非定常性能预估.船舶力学.2002,6(5):1-8页
    [33]熊鹰,谭廷寿,钱晓南等.螺旋桨导边充气对其水动力性能和辐射噪声的影响研究.武汉交通科技大学学报.2000,24(4):379-383页
    [34]谭廷寿,熊鹰.基于B样条的螺旋桨升力面设计.海军工程大学学报.2005,17(6):37-42页
    [35]Tulin M P.Steady two dimensional cavity flows about slender bodies.Technical report834,David Taylor Model Basin,Bethesda Md.1953
    [36]Tulin M P and Hsu C C.New application of cavity flow theory.13th symposium on naval hydrodynamics.Tokyo,Japan,1980
    [37]Uhlman J S.The surface singularity method applied to partially cavitating hydrofoil.Journal of Ship Research.1987,31(2):107-124P
    [38]Lee C S.Prediction of steady and unsteady performance of marine propellers with or without cvaitation by numerical lifting-Surface Theory. Ph.D.Thesis,MIT,Department of Ocean Engineering,1977
    [39]Kinnas S A.Leading-edge corrections to the linear theory of partially cavitating hydrofoil.Journal of Ship Research.1991,35(1):15-27P
    [40]Kinnas S A and Fine N E.Analysis of the flow around supercavitating hydrofoil with midchord and face cavity detachment.Journal of Ship Research.1991,31(3):198-209P
    [41]Kinnas S A and Fine N E.A numerical nonlinear analysis of the flow around two- and three-dimensional partially cavitating hydrofoils.Journal of Fluid Mech.1993,254:151-181P
    [42]Kinnas S A and Fine N E.A boundary element method for the analysis of the flow around 3-D cavitating hydrofoils.Journal of Ship Research.1993,37(3):213-224P
    [43]Lee C S,Kim Y G and Lee J T.A potential based method for the analysis of a two dimensional super- or partially- cavitating hydrofoil.Journal of Ship Research.1992,36(2):168-181P
    [44]熊鹰.非均匀流场中螺旋桨空泡及脉动压力的数值和试验研究.武汉理工大学博士论文.2002
    [45]Kinnas S A and Fine N E.A nonlinear boundary method for the analysis of the unsteady propeller sheet cavitation.19th Symposium on Naval Hydrodynamics.Seoul,Korean.1992:102-112P
    [46]Kim Y G.,Lee C S.Prediction of unsteady performance of marine propellers with cavitation using surface-panel method.21th Symposium on Naval Hydrodynamics,Trondheim,Norway,1996:913-929P
    [47]Lemonnier H and Rowe A.Another approach in modeling cavitation flows.Journal of Fluid Mech.1988,195:557-580P
    [48]Kinnas S A and Fine N E.Theoretical prediction of midchord and face unsteady propeller sheet cavitation.5th Conference on Numerical Ship Hydrodynamics.Hiroshima,Japan.1989:488-502P
    [49]Oossanen P.Theoretical prediction of cavitation on propellers.Marine Technology.1977,14(4):391-409P
    [50]Rowe A and Blottiaux O.Aspects of modeling partially cavitating flows.Journal of Ship Research.1993,37:34-48P
    [51]Amromin E L,Vasiliev A V and Syrkin E N.Propeller blade cavitation inception prediction and problems of blade geometry optimization;Recent research at the Krylov Shipbuilding Research Institute.Journal of Ship Research.1995,49(3):202-212P
    [52]Kinnas S,Lee H and Mueller A.Prediction of propeller blade sheet and developed tip vortex cavitation.22nd Symposium on Naval Hydrodynamics.Washington,D.C.,1998:182-192P
    [53]Stinzing H D.Cavity Thickness on Rotating Propeller Blades measurements by two Laser beams.18th Symposium on Naval Hydrodynamics,Ann Arbor,Aug.1990:319-329P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700