激光衍射法细圆柱体直径测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细轴、引线等细圆柱体广泛应用于航空、航天、军工及民用领域,对其直径精密而高效的测量能够提高这类零件的精度,进而提高使用这类零件的仪器或武器的性能、降低次品率和生产成本、增加生产效率、减小资源消耗,因此对细圆柱体直径测量技术进行研究有重要意义。
     本文以提高激光衍射法细圆柱体直径测量精度为主要目的,在查阅大量国内外文献,详细分析国内外的研究现状的基础上,主要完成了以下几方面的研究内容:
     首先,提出了一种衍射法测量细圆柱直径的矢量模型。该模型以半无限大金属屏的矢量衍射场和基于电磁场理论的巴俾涅原理为理论基础,充分考虑入射光束的偏振特性,包括E偏振下的衍射模型和H偏振下的衍射模型。实验结果表明使用矢量模型测量细圆柱体直径可以获得更高的测量精度。
     其次,研制了一套基于激光衍射的细圆柱体直径测量系统。测量系统选用半导体激光器(LD)作为光源,通过偏振片产生线偏振光,面阵CCD作为衍射花样接收器。系统的测量范围是0.05~0.5mm。
     系统研究了细圆柱体实测衍射花样的形成。针对细圆柱体理想衍射花样和实测衍射花样的差异,从白噪声、光源的高斯特性、细圆柱体空间位置及外界扰动和焦点光斑等四个方面研究了实测衍射花样。详细分析了各个因素对实测衍射花样的影响,并对各个影响因素进行了相应的计算机仿真。仿真实验与细圆柱体的实测衍射花样进行了比对,表明理论分析结果的正确性。
     设计了一种细圆柱体有效衍射信息的零相位滤波算法。根据细圆柱体衍射花样处理的特殊性,在分析常用滤波算法的基础上,确定并设计了用于零相位滤波算法的切比雪夫Ⅱ型滤波器。对零相位滤波器、中值滤波器和平均值滤波器进行了实测比对和仿真实验比对。比对结果证明该算法可以获得更理想的滤波效果。
     然后,对线阵CCD和面阵CCD在细圆柱体直径测量中的应用进行了分析,研究了从面阵CCD接收的细圆柱体衍射花样中提取有效衍射信息问题。为实现准确提取衍射特征信息的位置,对零相位滤波后有效衍射信息使用三次样条插值进行了亚像素细分。
     提出了一种加权的提取算法。该算法使用全花样衍射信息,克服了使用部分衍射信息提取衍射特征信息的弊端。
     最后,实测了衍射测量模型的两个重要参数,并对不同直径的细圆柱体进行了测量,分析了衍射角对测量结果的影响、不同模型的原理误差和测量系统的相对测量误差。测量结果表明本文研究的测量系统的相对测量误差是0.4%。
Thin cylinders, such as micro-shaft and leg wird, are widely used in the fields of aviation, astronavigation, military industry and civil industry. The accuracy of manufacture of these parts can be increased by precison and high efficiency measurement of their diameters. So do the performance and producing efficiency of instrument or weapon, in which these parts are used. At the same time the defective rate, production costs and resource consumption can be also decreased. So the research on diameter measurement technique of thin cylinder is very important.
     In this dissertation, to impove the measurement accuracy of thin cylinder diameter is the primary object. A large quantity of references is consulted and the current situation of domestic and exernal research are studied. The main content and innovative achievements of this dissertation are as follows:
     At firs, the vector model of thin cylinder diffraction has been proposed. This model which considered the polarization character of incident light is on the basis of two theories: the vector diffraction field of half-infinite metal screen and Babinet’s principle. And it consists of the diffraction model of E polarized incident field and H polarized incident field. Experiment result shows that the measurement of thin cylinder diameter can achieve higher measurement accuracy by vector model.
     Secondly, the measurement system of thin cylinder diameter by laser diffraction is developed. Semiconductor laser (LD), polarizing film and area CCD is used in the measurement system. LD is taken as incident source and polarizing film is as producer of linearly polarized light and area CCD is as receiver of diffraction pattern. The measurement range is from 0.05mm to 0.5mm.
     Thirdly, the formation of actual diffraction pattern of thin cylinder is studied systematicly. The difference between ideal diffraction pattern and that of actual measurement is considered and the actual diffraction pattern is studied on four aspects, such as white noise, characteristic of Gauss beam of LD, , spatial position and disturbance of thin cylinder and focal spot. The influence to actual diffraction pattern of all the influencing factors is studied in detail and the corresponding simulation of every influencing factor is also done. Then the simulation is compared with the actual diffraction pattern and they prove that the study is right.
     Forthly, the zero-phase filtering algorithm has been proposed to process the effective diffraction information. Considering the particularity of processing diffraction pattern of thin cylinder, the ChebyshevⅡfilter is taken as the filter of zero-phase filtering algorithm based on analysis of usual filtering algorithm. At last, comparison among zero-phase filter, median filter and mean filter is done by simulation and actual measurement. Experiment result shows that it can achieve better filtering effect.
     Application of linear CCD and area CCD is analyzed in measurement of thin cylinder diameter and the problem that how to pick up effective diffraction information from diffraction pattern received by area CCD is studied. To pick up characteristic diffraction information accurately, the effective diffraction information filtered by zero-phase filter is subdivided by interpolating cubic spline function.
     Fifthly, a new weighted algorithm has been proposed. This algorithm is more rational by total effective diffraction information, which overcomes the shortage of picking up characteristic diffraction information by part effective diffraction information
     Finaly, two important parameters of diffraction model and several thin cylinders of different diameters are measured. Then the influence of diffraction angle to measurement result is analyzed, so did theoretical error between different diffraction models and relative measurement error. Measurement result shows that the relative error of this measurement system is 0.4%.
引文
1 Bar Shay A. Measuring Cylindrical Concave Surfaces with Large Central Angle by means of a Portable Device. Precision Engineering. 1990, (12): 172~178
    2 Bahr T, Blener P, Kratten macher G. Device for the Measurement of the Diameter of Cylinders. US patent 5197200. 1993
    3 张云, 李智祥, 翁显耀. 测量回转窑轮带和托盘外径的新型仪器. 武汉工业大学学报. 2000, (4): 49~51
    4 Miner R M. Methods and Apparatus for Testing Roundness and Straightness of Pipes and Tubings. United States Patent 4354379, 1982
    5 John G.N. Baines, Andrew G.Hallam. Fiber Diameter Measurements and Their Calibration. Journal of Lightwave, 1990, (9): 1259~1260
    6 Cordell J L. In-line Inspection: what Technology is Best. Pipe Line Industry. 1991, (7): 47~58
    7 Inari T, Takashima K, Watanabe M. Optical Inspection System for the Inner Surface of a Pipe using Detection of Circular Image Projected by a Laster Sourse. Measurement. 1994, (13):99~106
    8 高爱华, 田爱玲, 赵贵波. 基于线阵 CCD 的尺寸测量装置. 西安工业学院学报. 2003, (3): 189~190
    9 赵斌. 光学成像法测量细丝直径的误差及照明方式分析. 计量技术. 2003, (6): 13~14
    10 赵斌, 颜伟斌. 双光源投影法细丝直径测量. 光学 精密工程. 2003, 11(2): 171~175
    11 Ibrahim Serroukh. Evaluation of the Wire Diameter Obtained by Conventional Laser Diffraction Technique using on Interfero-metric Method. Wire Journal International .2000, (3): 116~120
    12 汝继新. 线材轧制过程中的尺寸检测. 金属制品. 2001, (4): 9~15
    13 姜涛,于正林,曹国华. 激光能量波动对扫描法尺寸测量精度的影响. 长春理工大学学报. 2003, (4): 81~83
    14 马国欣. 激光扫描测量直径. 光电工程. 2004, 31(2): 44~47
    15 马国欣, 范多旺. 用于直径测量的激光差动扫描方法. 中国测试技术.2005, 31(4): 17~19
    16 马国欣. 无扫描物镜的激光扫描直径测量系统. 激光杂志. 2006, 27(1): 26, 28
    17 李为民, 俞巧云, 裘凌红. 投影法 CCD 测径系统. 仪表技术与传感器, 2001, (1): 35~39
    18 李为民, 任立忠, 邢晓正等. 投影法测径系统的信号处理方法. 数据采集与处理. 2001, 16(1): 98~100
    19 王少清, 娄本浊, 胡士会. 夫琅和费衍射法测量细丝直径的研究. 济南大学学报(自然科学版). 2005, 19(2): 178~180
    20 赵育良, 许兆林. 基于 CCD 的微缝宽激光测量系统的改进. 红外与激光工程. 2006, 35(1): 75~77
    21 赵育良, 杨波, 赵宏强. 一种微缝宽度高准确度自动测量系统. 2003, 22(11): 60~62
    22 赵育良. 微丝直径激光测量系统的改进及提高精度的研究. 光学技术. 2005, 31(1): 125~126
    23 郑苹, 王耀青. 基于 Hough 变换的细丝直径图像测量系统. 仪器仪表与分析监测. 2005, 3: 3~5
    24 花世群, 骆英, 赵国旗. 基于单缝衍射原理的圆度误差测量方法. 光电工程. 2007, 24(3): 140~144
    25 高俊钗, 雷志勇. 基于机器视觉的密封件直径测量技术研究. 计算机测量与控制. 2005, 13 (12): 1320~1321
    26 夏晓玲, 杨坤涛. 激光衍射测量光导纤维直径方法的改进. 国外电子测量技术. 2006, 25(4): 11~13
    27 石文孝, 李莉, 韩力. 激光衍射法测量细丝直径的研究. 长春邮电学院学报. 1999, 17(4): 27~31
    28 刘普生, 吕百达. 非傍轴矢量高斯光束的圆屏衍射. 物理学报. 2004, 53(11): 3724~3728
    29 付文羽, 刘正岐. 高斯光束照射下的单丝衍射. 激光杂志. 2005, 26(3): 61~62
    30 付文羽, 刘正岐. 高斯光束照射下与矩孔相关的孔径衍射. 大学物理. 2005, 24(8): 34~37
    31 刘义族. 提高非接触式细丝直径测量精度的技术和方法探讨. 天津师范大学学报(自然科学版). 2002, 22(2): 60~62
    32 徐造林. 衍射条纹 CCD 拟合定位法测细丝直径. 计量技术. 2001, 8: 23~26
    33 马附洲. CCD 衍射成象在线精密测量细丝直径技术. 西安科技学院学报. 2001, 21(1): 70~73
    34 孙定源, 周桂贤, 郑德锋. 衍射法测量细丝直径的研究. 辽宁大学学报(自然科学版). 2003, 30(1): 24~27
    35 孙定源, 周桂贤, 刘丹. 衍射法测量细丝直径. 仪器与仪表. 2005, 5: 21~23
    36 梁福平. 单缝衍射场分布对测量精度的影响. 北京机械工业学院学报. 2000, 15(1): 10~14
    37 厉江帆, 单树民等. 夫朗和费近似与夫朗和费衍射测量的准确度. 光学技术. 2001, 27(5): 472~476
    38 Tang W, Zhou Y, Zhang J. Improvement on Theoretical Model for Thin-Wire and Slot Measurement by Optical Diffraction. Meas Sci Technol. 1999, 10: 119~123
    39 Glass M. Diffraction of a Gaussian Beam Around a Strip mask. Applied Optics. 1998, 37: 2550~62
    40 Soraya A. Khodier. Measurement of Wire Diameter by Optical Diffraction. Optics & Laser Technology. 2004, 36(2): 63~67
    41 Eusebio Bernabeu, Ibrahim Serroukh, Luis Miguel Sanchez-Brea. Geometrical Model for wire Optical Diffraction Selected by Experimental Statistical Analysis. Optical Engineering. 1999, 38(8): 1319~1325
    42 Chugui YV, Pavlov AA. Peculiarities of Cylinder Diameter Determination by Diffraction Dethod. Proceedings of XVI IMEKO World Congress, Vienna, Austria, September, 2000: 169~174
    43 Haiming Wang, Valdivia-Hernandez R. Laser Scanner and Diffraction Pattern Detection: a Novel Concept for Dynamic Gauging of Fine Wires. Meas Sci Technol. 1995, 6: 452~457
    44 Glass M. Fresnel Diffraction from Curved Fiber Snippets with Application to Fiber Diameter Measurement. Appl Opt. 1996, 35: 1605~1616
    45 Lebrun D, Belaid S, Ozkul C, Kuan Fang R, Grehan G. Enhancement of Wire Diameter Measurements: Comparison between Fraunhofer Diffraction and Lorenz–Mie Theory. Opt Eng. 1996, 35(4): 946~50
    46 Baxtar BP, Brims MA, Teasdale DC. The optical Fiber Diameter Analyser (OFDA) New Technology for the Wool Industry. Wool Conference, University of New South Wales, Australia, October 1992: 131~134
    47 Zimmermann E, Dandliker R, Souli N. Scattering of an Off-axis Gaussian Beam by a Dielectric Cylinder Compared With a Rigorous Electromagnetic Approach. J Opt Soc Am A. 1995, 12(2): 398~403
    48 Butler DJ, Forbes GW. Fiber-Diameter Measurement by Occlusion of a Gaussian Beam. Applied Optics. 1998, 37: 2598~2606
    49 Krattiger B, Bruno AE, Widmer HM, Geiser M, Dandliker R. Laser-Based Refractive-index Detection for Capillary Electrophoresis: Ray-tracing Interference Theory. Applied Optics. 1993, 32: 956~965
    50 Dobosz M. Measurement of Fiber Diameter Using an Edge Diode Beam of Light. Opt Commun. 1986, 58(3): 172~176
    51 J.W.Goodman. Introduction to Fourier Optics. McGraw-Hill, 1968: 50~80
    52 J.I. García-Sucerquia, R. Casta?eda, F.F. Medina, et al. Distinguishing between Fraunhofer and Fresnel Diffraction by the Young’s Experiment. Optics communications. 2001, 200: 15~22
    53 A. Belafhal, L. Dalil-Essakali, M. Fahad. Fraunhofer Diffraction by Conical Tracks. Optics Communications. 2000, 175: 51~55
    54 J.C. Martinez-Anton, I. Serroukh, E. Bernabeu. On Babinet’s Principle and a Diffraction-interferometric Technique to Determine the Diameter of Cylindrical Wires. Metrologia. 2001, 38: 125~134
    55 Neugebauer M, Ludicke F, Bastam D, Bosse H, Reimann H, Topperwien C. A New Comparator for Measurement of Diameter and Form of Cylinders, Spheres and Cubes under Clean-room Conditions. Meas Sci Technol. 1997, 8(8):849~856
    56 Neugebauer M. The Uncertainty of Diameter Calibrations with the Comparator for Diameter and Form. Meas Sci Technol. 1998, 9: 1053~1058
    57 Born M, Wolf E. Principles of optics. New York: Pergamon. 1980: 256~381
    58 Birch KP, Downs MJ. An Updated Edlen Equation for the Refractive Index of Air. Metrologia. 1993, 30 :155~165
    59 Birch KP, Downs MJ. Correction to the Update Edlen Equation for the Refractive Index of Air. Metrologia. 1994, 31: 315~316
    60 厉江帆等. 衍射花样及其近似处理. 应用激光. 2000, 20(1):16~20
    61 曹国荣. 平面波倾斜入射时的夫琅和费衍射花样. 安徽师范大学学报(自然科学版). 2000, 23(1): 22~26
    62 Xie Jianping etc. Measurement of the Imaginary Part of Metal Optical Index by Laser Diffraction. Journal of China University of Science and Technology. 1994, 24(4): 487~490
    63 薛灏, 张全, 李鹏. 半导体激光器远场光强特性分析. 激光技术. 2004, 28(6): 661~663
    64 M. Babiker, V.E. Lembessis, W.K. Lai, L. Allen. Doppler Dooling of Ion Cyclotron Motion in Counter-propagating Laguerre-Gaussian beams. Opt. Commun. 1996, 123: 523~529
    65 W.L. Power, L. Allen, M. Babiker, V.E. Lembessis. Atomic Motion in Light Beams Possessing Orbital Angular Momentum. Phys. Rev. A 1995, 52: 479~488
    66 K.T. Gahagan, G.A. Swartzlander Jr. Simultaneous Trapping of Low-index and High-index Microparticles Observed with an Optical-vortex trap. J. Opt. Soc. Am. B 1998, 15: 533–537
    67 M. Totzeck, H.J. Tiziani. Phase Singularities in 2D Diffraction Fields and Interference Microscopy. Opt. Commun. 1997, 138: 365~382
    68 I. Freund, N. Shvartsman. Wave-field Phase Singularities: the Sign Principle. Phys. Rev. A 1994, 50: 5164~5172
    69 I.V. Basistiy, M.S. Soskin, M.V. Vasnetsov. Optical Wave Front Dislocation and Their Properties. Opt. Commun. 1995, 119: 604~612
    70 L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman. Orbital Angular Momentum of Light and the Transformationof Laguerre-Gaussian Laser Modes. Phys. Rev. A 1992, 45: 8185~8189
    71 M.J. Padgett, L. Allen. The Angular Momentum of Light: Optical Spaners and the Rotational Frequency Shift. Opt. Quantum Electron. 1999, 31: 1~12
    72 I. Freund. Optical Vortices in Gaussian Random Wave Fields: Statistical Probability Densities. J. Opt. Soc. Am. A 1994, 11:1644~1652
    73 J.E. Pearson, T.C. McGill, S. Kurtin, A. Yariv. Diffraction of Gaussian Laser Beams by Semi-infinite Plane. J. Opt. Soc. Am. 1969, 59: 1440~1445
    74 S.J. Hewlett, S.M. Barnett, T. Wilson. Image Intensity at the Edge of aStraight Edge Object. J. Mod. Opt. 1990, 37: 2017~2024
    75 A. Stacey. Exact Diffraction for a Half Plane Using a Partially Coherent Source. J. Mod. Opt. 1993, 40: 349~355
    76 T. Takenaka, O. Fukumitsu. Asymptotic Representation of the Boundary- diffraction Wave for a Three-dimensional Gaussian Beam Incident upon a Kirchhof half-screen. J. Opt. Soc. Am. 1982, 72: 331~336
    77 A.C. Green, H.L. Bertoni, L.B. Felsen. Properties of the Shadow Cast by a Half-screen when Illuminated by a Gaussian beam. J. Opt. Soc. Am. 1979, 69: 1503~1508
    78 H. Kogelnik, T. Li. Laser Beams and Resonators. Appl. Opt. 1966, 10: 1550~ 1567
    79 M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov. Topological Charge and Angular Momentum of Light Beams Carrying Optical Vortex. Phys. Rev. A 1997, 56: 4064~4075
    80 G. Indebetouw. Optical Vortices and Their Propagation. J Mod. Opt. 1993, 40: 73~87
    81 I. Freund, N. Shvartsman, V. Freilikher. Optical Dislocation Networks in Highly Random Media. Opt. Commun. 1993, 101: 247~264
    82 H. He, N.R. Heckenberg, H. Rubinsztein-Dunlop. Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms. J. Mod. Opt. 1995, 42: 217~223
    83 胡波. 激光单丝衍射附加条纹的探讨. 物理与工程. 2003, 13(2): 22~24
    84 Fang Xiaoyong, Cao Maosheng, Zhou Yan, etc. Fine Structure in Fresnel Diffraction Patterns and its Application in Optical Measurement. Optics & Laser Technology. 1997, 29(7): 383~387
    85 Xiaoyin Xu; Miller, E.L.; Adaptive two-pass median filter to remove impulsive noise Image Processing. Proceedings of The First International Conference on Machine Learning and Cybernetics, Beijing, 2002: 808~811
    86 Enrique A. Barria and Jogikal M.Jagadeesh.Wavelet Function to Estimate Velocity in Spation-temporal Signals.IEEE Transaction Signal Processing. 1998, 46(4): 1105~1118
    87 章毓晋. 图像处理与机器视觉. 北京:清华大学出版社, 2000: 246~249
    88 Serra. J. Morphological filtering: An over view. Signal Processing, 1994,38(1): 3~11
    89 Maragos P, Schafer R W.Morphological Filters-Part I and Part II.IEEE Trans.On ASSP. 1987: 1153~1184
    90 纪跃波, 秦树人, 汤宝平. 零相位数字滤波器.重庆大学学报(自然科学版). 2000, 23(6): 1~7
    91 郭瑜, 秦树人,汤宝平. 基于分段重叠零相位滤波的阶比跟踪滤波法. 振动工程学报. 2003, 16(4):399-403
    92 Oppenheim A V, Schafer R W. Digital signal processing. NJ: Prentice Hall, 1989
    93 Miroslav D.Lutovac Dejan, V.Tosic Brian L.Evans. 信号处理滤波器设计--基于 MATLAB 和 Mathematica 的设计方法. 电子工业出版社, 2004.1: 215-242
    94 Chi-Tsong Chen. 数字信号处理频谱计算与滤波器设计. 电子工业出版社, 2002.9: 188-209
    95 M. Luxen. Variance Component Estimation in Performance Characteristics Applied to Feature Extraction Procedures. Bernd Michaelis, Gerald Krell. Proceedings of the Pattern Recognition: 25th DAGM Symposium, Magdeburg, Germany, 2003. Lecture Notes in Computer Science. 2003, 2781: 498~506
    96 Andrè Redert, Emile Hendriks, Jan Biemond. Accurate and Robust Marker Localization Algorithm for Camera Calibration. G. Cortelazzo, C. Guerra. IEEE Proceedings of the 1st International Symposium on 3D Data Proceeding Visualization and Transmission, Padova, Italy, 2002: 522~525
    97 贺忠海, 王宝光, 廖怡白等. 利用曲线拟合方法的亚像素提取算法. 仪器仪表学报. 2003, 24(2): 195~197
    98 Yu Zhijing, Chen Gang, Che Rensheng etal. Bilinear Interpolation Centroid Algorithm Using for Circular Optical Target Location. Wei Sui. Proceedings of Second International Conference on Image and Graphics (ICIG’2002), Hefei, 2002. Proceedings SPIE. 2002, 4875: 333~339
    99 王广军, 房建成. 一种星图识别的星体图像高精度内插算法. 北京航空航天大学学报. 2005, 31(5): 566~569
    100 谢伦治, 卞洪林, 王振华. 面阵探测器的像点亚像素定位研究. 光学与光电技术. 2003, 1(2): 51~56
    101 Clarke, T.A. & Wang, X. An analysis of subpixel target location accuracy using Fourier Transform based models. Proceedings SPIE. 1995, 2598: 77~88
    102 贺国权. 插值细分方法在激光衍射测量中的应用研究. 传感器技术. 2005, 24(3): 10~12
    103 贺国权. 激光衍射测量中应用插值细分的可行性分析. 南昌大学学报(理科版). 2005, 29(3): 266~268
    104 马强. 基于多视图几何的三维视觉重构技术研究. 哈尔滨工业大学博士论文. 2005: 21~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700