长江中下游杂交粳稻亲本产量和品质性状优异配合力标记基因型筛选与配合力改良研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球一半以上的人口以稻米为主食。在耕地面积不断减少、水资源日益匮乏的大环境下,要满足不断增加的世界人口对稻米的需求,只有提高单产。过去30多年的实践已经证明,杂种水稻是提高单产的成功的技术。中国每年种植1700万公顷杂交水稻,占水稻种植总面积的50%左右。杂交籼稻种植面积已占籼稻种植总面积的70%左右。杂交粳稻种植面积仅占粳稻种植总面积840万公顷的3%左右。杂交粳稻还有很大的发展空间。限制杂交粳稻发展速度最主要的因子是竞争优势不够强。提高杂交粳稻竞争优势的关键在于改良恢复系的配合力。本研究在前期工作的基础上,开展了以下4个方面的研究工作:一是利用粳稻6个BT型雄性不育系和12个恢复系按NC Ⅱ遗传交配设计组配72个F1组合,调查8个产量相关性状表型值,分析18个亲本8个产量相关性状的一般配合力效应和特殊配合力效应方差,结合18个亲本115对SSR引物扩增的DNA分子标记数据,筛选18个亲本的单株日产量、单株有效穗数、每穗总粒数、每穗实粒数、千粒重、一次枝梗数、二次枝梗数和穗长等8个产量相关性状优异配合力的SSR标记基因型。二是调查上述72个F1组合的谷粒长、谷粒宽、糙米率、精米率、整精米率、垩白米粒率、垩白度、糊化温度、胶稠度和直链淀粉含量等10个米质性状表型值,分析18个亲本10个米质性状的一般配合力效应和特殊配合力效应方差,结合亲本SSR分子标记数据,筛选18个亲本10个米质性状优异配合力的标记基因型。三是通过调整不育系和恢复系材料类型和数量,扩大亲本群体至不育系7个,恢复系13个,利用同一套SSR引物,扩增这20个亲本SSR分子标记基因型,结合91个组合F1产量性状表型数据,再次鉴定亲本产量性状优异配合力的标记基因型;并与上述第1项研究结果比较,分析亲本群体扩大后各性状优异配合力标记基因型的变化情况;以及2年同一套亲本同一套标记产量相关性状配合力的标记基因型的异同。四是利用上述第1项和第2项研究筛选出的产量和品质相关性状优异配合力标记基因型,通过杂交、回交和SSR分子标记辅助多代选择技术,对江苏省审定组合86优8号的父本恢复系宁恢8号的单株有效穗数和胶稠度性状的配合力、以及优质恢复系157TR-68的单株日均产量配合力进行实际改良和效果评价。获得的主要结果如下。
     一、在6个不育系与12个恢复系所配的72个F1组合中,共筛选出31个SSR标记基因型与亲本8个产量相关性状配合力显著相关。其中2个标记基因型同时与亲本6个性状配合力相关;有2个标记基因型同时与亲本5个性状配合力相关;有4个标记基因型同时与亲本4个性状配合力相关;有5个标记基因型同时与亲本3个性状配合力相关;有3个标记基因型同时与亲本2个性状配合力相关;有15个标记基因型与亲本单个性状配合力相关。与亲本4个性状配合力相关的4个标记基因型中,有1个标记基因型RM23~150/160对4个性状的配合力效应都是正的,可使F1的每穗总粒数、单株日产量、穗长和二次枝梗数4个性状值分别增加11.6%、11.2%、10.1%、15.0%。与亲本3个性状配合力相关的5个标记基因型中,有3个标记基因型对亲本的配合力效应是正值。
     二、在6个不育系与12个恢复系配制的72个F1组合中,共鉴定出30个SSR标记基因型与亲本10个米质性状配合力显著相关。其中25个与亲本米质性状不良配合力相关,5个与优异配合力相关。标记基因型RM263-175/180和RM444-230/240可以使F1整精米率分别提高3.2%和2.5%。RM3-120/150可以使F1谷粒长缩短2.4%,RM444-180/240可以使F1谷粒宽增加2.1%。RM428-273/294可以使F1植株上的杂交稻米直链淀粉含量减少7.0%。有8个标记基因型同时也影响产量性状配合力。RM3-120/150同时可以使F1的每穗总粒数和每穗实粒数分别增加15.9%和10.9%。RM1211-150/160可使F1的糙米率和精米率分别减少0.9%和1.1%,同时使F1的每穗总粒数和每穗实粒数分别增加21.8.%和20.3%。RM23-150/160可使F1的垩白米粒率和垩白度分别增加44.1%和45.7%,同时使F1的单株日产量和每穗总粒数分别增加11.2%和11.6%。这些结果可用于指导亲本米质性状和产量性状配合力的分子标记辅助改良以及未来杂交粳稻组合配置中的亲本选配。
     三、在7个不育系与13个恢复系配制的91个F1组合中,共发现66个SSR标记基因型与亲本产量相关性状配合力显著相关。其中22个与亲本单个性状配合力相关;19个同时与亲本2个性状配合力相关;8个同时与亲本3个性状配合力相关;10个同时与亲本4个性状配合力相关;3个同时与亲本5个性状配合力相关;4个同时与亲本6个性状配合力相关。比较2年同一套亲本同一套标记产量相关性状配合力的标记基因型,发现2年都与同一性状配合力显著相关的标记基因型26个。其中4个与单株有效穗数、8个与每穗总粒数、11个与穗长、3个与每穗实粒数的配合力显著相关。
     四、运用优异配合力标记基因型RM208-175/180和RM5556-96/96信息,以武育粳3号R为RM208-180bp和RM5556-96bp条带的供体亲本,改良粳稻恢复系宁恢8号单株有效穗数和精米胶稠度配合力;利用优异配合力标记基因型RM152-165/170信息,以宁恢8号为RM152-170bp条带的供体亲本,改良优质粳稻恢复系宁恢157单株日产量配合力。通过杂交、回交、自交和测交,获得了RM208位点为180bp纯合条带的宁恢8号遗传背景的新恢复系12个。其中8010-4-24、8010-6-5和8010-6-23与对应不育系武3A配组,F1单株有效穗数比对照宁恢8号与武3A所配组合F1平均提高了45%;8010-4-10、8010-4-14和8012-2-9与不育系863A配组,F1单株有效穗数比对照宁恢8号与863A所配组合F1分别增加了65.5%、56.9%和86.2%。获得了RM5556位点为96bp纯合条带的宁恢8号遗传背景的新恢复系6个。其中8009-14-3、8009-14-18、8009-14-29、8013-22-10和8013-22-24与9522A配组,F1植株上所收稻谷的精米胶稠度均显著低于宁恢8号与9522A配组。获得了RM152位点为170bp纯合条带的宁恢157遗传背景的新恢复系8个,其中8014-26-1、8014-26-12、8014-26-21、8014-26-24、8015-7-4和8015-7-17与六千辛A配组,F1单株日产量显著高于对照宁恢157与六千辛A配组,6个F1的单株日产量分别比对照六优157(六千辛-宁恢157F1)增加86.81%、43.06%、78.47%、55.56%、90、97%和82.64%。
     综合上述亲本配合力标记基因型筛选结果,发现与产量相关性状配合力相关的SSR标记基因型数目较多,三分之一标记基因型与2个及以上性状的配合力同时相关。那些与改良目标一致的多性状配合力相关位点可能有利于亲本多个性状配合力同时进行改良。年份间重复检测到的与同一性状配合力显著相关的标记基因型,对F1性状值的效应是同向的,增量率是相近的。这些年份间表现稳定的优异配合力标记基因型用于粳稻恢复系配合力改良预计可以收到期望的效果。与亲本米质性状配合力相关的SSR标记基因型中,80%的位点处于杂合状态时,对F1植株上所收稻谷的精米品质有不利的影响,这可能与F1植株上所收籽粒基因型发生分离有关。因此在影响米质性状的位点上,双亲应当具有相同的等位基因。利用优异配合力标记基因型信息,通过染色体等位片段置换,改良亲本产量相关性状配合力的效果大于改良亲本米质性状配合力的效果。武3A/8010-4-24和863A/8012-2-9是单株有效穗数、单株日产量和单株产量增加最多且株高生育期与对照差异不显著的两个组合,有望在生产上应用。
Rice (Oryza sativa L.) is a staple food for more than half of the world population. The increasing demand for rice in the world caused by population increase can only be met by enhancing yield per unit area under the environment that both arable land acrage and water resources are decreasing. Hybrid rice is a proven and successful technology for rice production over the past three decades. Seventeen million hectares of hybrid rice are grown in China, occupying about50%of total rice area planted annually. Hybrid indica rice accounts for70%of total indica rice area. The total area of japonica rice grown annually in China is8.4million hectares, and only3%is occupied by japonica hybrid rice. Japonica hybrids still have great potential to development. The major reason for this situation was that competitive heterosis of hybrid cultivar was not conspicuous in yield and quality, compared with conventional cultivar in japonica rice. The key of enhancing competitive heterosis of hybrid cultivar in japonica rice was to improve combining ability (CA) of yield related traits and quality traits of restorer lines. On the basis of previous studies, four aspects of research are carried out in this study. Firstly,72F1combinations were made from6cytoplasmic male sterile (CMS) lines and12restorer lines according to North Carolina Genetic Mating Design Ⅱ(NCⅡ). Eight yield related traits of the72F1combinations were investigated, and general combining ability (GCA) effects and variance of special combining ability (VSCA) of the8traits of the18parents was analyzed. SSR marker genotypes for elite CA of the eight traits, i. e., daily yield per plant (DYP), panicles per plant (PP), total spikelets per panicle (TSP), filled spikelets per panicle (FSP) and1000-grain weight (TGW), primary branch number per panicle(PBN), second branch number per panicle(SBN) and panicle length(PL), were screened by combining the SSR genotyping data with CA data of the18parents. Secondly,10quality traits, namely, brown rice rate, milled rice rate, head rice rate, unhulled grain length, grain width, percentage of chalky grain, chalkiness degree, gelatinization temperature, gel consistency, and amylose contents, of the72F1S made from the same6CMS lines and12restorer lines as above were measured. And the CA of the10quality traits of the18parents was analyzed. SSR marker genotypes for elite CA of the10quality traits were screened by the same method as mentioned above. Thirdly, SSR marker genotypes for elite CA of the grain yield related traits were re-identified by using phenotype values of91F1combinations made from7CMS lines and13restorer lines and genotype values of the20parents. The115SSR primers used for genotyping the20parents are the same as above. Among the7CMS lines and13restorer lines used in this part,6CMS lines and10restorer lines were identical to those used in previous report and in part1and2of this study. SSR marker genotypes for elite CA of the traits were compared with that in enlarged parent population. And consistency of SSR marker genotypes for elite CA of the grain yield related traits across years was analyzed using the same set of parents and the same set of SSR primers. Forthly, improvement of CA for productive panicles per plant and gel consistency in a restorer line Ninghui8and for daily average grain yield in another restorer line157TR-68were carried out by using hybridization, backcrossing and assisted selection of SSR markers identified in this study. The main results obtained were the follows:
     1. Thirty-one SSR marker genotypes were significantly associated with CA of the eight traits, using the dataset of72F1s made from the six CMS lines and twelve restorer lines. Out of the thirty-one, fifteen were associated with one trait, three for two traits, five for three traits, four for four traits, two for five traits, and two for six traits. Among the four marker genotypes associated with four traits simultaneously, RM23-150/160showed positive effects of CA in all the four traits, increasing11.6%of total spikelets per panicle,11.2%of daily yield per plant,10.1%of panicle length and15.0%of second branch number per panicle in F1, respectively. Among the five marker genotypes associated with three traits simultaneously, three showed positive effects of CA for all the three traits.
     2. A total of30SSR marker genotypes were significantly associated with CA of the10quality traits, namely, brown rice rate, milled rice rate, head rice rate, grain length, grain width, percentage of chalky grain, chalkiness degree, gelatinization temperature, gel consistency, and amylose contents, using the dataset of72F1s made from the same6CMS lines and12restorer lines as above. Twenty-five of them were marker genotypes for unfavorable CA of quality traits. The remaining five marker genotypes were associated with elite CA for quality traits of parents. RM263-175/180and RM444-230/240were marker genotypes of elite CA for head rice rate, which increased3.2%and2.5%of head rice rate in F1, respectively. RM3-120/150shortened grain length value in F1by2.4%. RM444-180/240increased grain width trait value of F1by2.1%. RM428-273/294decreased amylose content trait value of hybrid rice harvested from F1plants by7.0%. Among the SSR marker genotypes associated with CA of the10quality traits, eight marker genotypes also affected CA of yield components simultaneously. RM3-120/150increased simultaneously total spikelets per plant and filled spikelets per plant in F1by15.9%and10.9%, respectively. RM1211-150/160decreased trait values of brown rice rate and milled rice rate in F1by0.9%and1.1%, respectively, and simultaneously increased trait values of total spikelets per plant and filled spikelets per plant in F1by21.8%and20.4%. RM23-150/160increased trait values of percentage of chalky grain and chalkiness degree in F1by44.1%and45.7%, and simultaneously increased daily yield per plant and total spikelets per plant in F1by11.2%and11.6%, respectively.
     3. Sixty-six SSR marker genotypes were significantly associated with CA of9yield related traits, namely, DYP, PP, TSP, FSP, TGW, days to heanding (DTH), plant height (PH), PL and grains per cm panicle (GPCP), using the dataset of91F1s derived from7BT-type japonica male sterile lines and13restorer lines in rice made with NCII design. Among the66SSR marker genotypes detected, Twenty-two were significantly associated for only one trait, nineteen for two traits, eight for three traits, ten for four traits, three for five traits and four for six traits. Comparing the marker genotypes identified from the identical16parents and115SSR markers used in2009and in2010,26marker genotypes were found associated significantly with the same trait in both years. Among them, four for PP, eight for TSP, eleven for PL, three for FSP.
     4. By hybridizing, bachcrossing, selfing and testcrossing.12new restorers with180bp homozygous at marker locus RM208in background of Ninghui8were obtained. Among them, combining ability for productive panicle per plant in8010-4-24,8010-6-5and8010-6-23increased by45%averagely, compared with that of check restorer Ninghui8, when crossed with CMS line Wu3A. And CA for productive panicle per plant in8010-4-10,8010-4-14and8012-2-9enhanced by65.5%,56.9%and86.2%, respectively, compared with that of Ninghui8, when crossed with CMS line863A. Six new restorers with96bp homozygous at marker locus RM5556in background of Ninghui8were obtained. CA for gel consistency of milled rice in8009-14-3,8009-14-18,8009-14-29,8013-22-10and8013-22-24was significantly lower than that of check restorer Ninghui8, when crossed with CMS line9522A. Eight new restorers with170bp homozygous at marker locus RM152in background of Ninghui157were bred. CA for daily grain yield per plant in8014-26-1,8014-26-12,8014-26-21,8014-26-24,8015-7-4and8015-7-17was significantly higher than that of check restorer Ninghui157, when crossed with CMS line Liuqianxin A. Daily grain yield per plant of the6F1increased by86.8%,43.1%,78.5%,55.6%,91.0%and82.6%, compared with check Liuyou157.
     Summaring the screening results, we found many SSR loci associated with CA of yield related traits in parents, and about33%of the loci were associated with two or more than two traits. Those loci associated with CA of multi-traits consistent with breeding objectives might facilitate CA improvement for multi-traits simultaneously. Marker genotypes that were repeatly detected across years and were associated significantly with CA of the same trait showed the same effect to F1trait value in direction, and the percentage of increment was almost the same in different years. Expect results may be obtained by using the stable marker genotypes across years for improving CA of restorer lines in japonica rice. Among the SSR marker genotype loci associated with CA of quality traits,80%of the heterozygous loci were unfavorable to quality of milled rice obtained from the F1plants. This phenomenon may be related to the genotype segregation of grains harvested from from F1plants. Thus two parents with identical alleles at loci affecting quality traits are desirable. The efficiency of improving CA of yield related traits was better than that of quality traits by allele substitution according to information of elite CA marker genetyps. Wu3A/8010-4-24and863A/8012-2-9had more productive panicles per plant and higher daily average grain yield than their corresponding check cultivars, and there was no significant difference between the combinations and their checks in plant height and growth duration. These two combinations, therefore, are hopeful to be used in production.
引文
[1]Bhat GM. Multivariate analysis approach to selection of parents for hybridization aiming at yield improvement in self-pollinated crops [J]. Aust J Agric Res,1970,21:1-7
    [2]Brinkman MA, Frey KJ. Yield component analysis of oat isolines that produce different grain yields[J]. Crop Sci,1977,17:165-168
    [3]Brondani C, Rangel P, Brondani R, et al. QTL mapping and introgression of yield related traits from oryza glumaepatula to cultivated rice(Oryza sativa L.) using micro satellite markers[J]. Theor Appl Genet,2002,104:1192-1203
    [4]Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice(Oryza sativa L.)[J]. Theor Appl Genet,1997,95:553-567
    [5]Chen H, Wang S, Zhang Q. A new gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line[J]. Phytopathology,2002, 92(7):750-754
    [6]Cox TS, Murphy JP. The effect of parental divergence on heterosis in Winter wheat crosses[J]. Theor Appl Genet,1990,79:241-250
    [7]Diers BW, Mcvetty PB, Osborn TC. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape(brassica napes L.)[J]. Crop Science,1996,36:79-83
    [8]Du JH, Fan YY, Wu JR, Zhuang J-J. Dissection of QTLs for yield traits on the short arm of rice chromosome 6[J]. Sci Agric Sin,2008,7(5):513-520
    [9]Dudley JW, Saghai MA, Rufener GK. Molecular marker and grouping of parents in maize breeding programs [J]. Crop Science,1991,31:718-723
    [10]Godshalk EB, Lee M, Lamkey KR. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize [J]. Theor Appl Genet,1990,80:273-280
    [11]Griffing B. Concept of general and specific combining ability in relation to dialled crossing system [J]. Aust J Boil Sci,1956,9:463-493
    [12]Hanson WD. Early generation analysis of lengths of heterozygous chromosome segments around a locus held heterozygous with backcrossing or selfing. Genetics,1959,44:833-837
    [13]Hospital F, Chevalet C, Mulsant P. Using markers in gene introgression breeding programs[J]. Genetics,1992,132:1199-1210
    [14]Huang XH, Wei XH, Sang T, et al.Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics,2010,42:961-967
    [15]Kato H, Tanaka K, Nakazumi H, et al. Heterosis of biomass among rice ecospecies and isozyme polymorphism and RFLP [J]. Breeding Science,1994,44:271-277
    [16]Jain M, Tyagi SB, Thakur JK, et al. Molecular characterization of a light-responsive gene, breast basic conserver protein 1 (OsiBBC1), encoding nuclear-localized protein homologous to ribosomal protein L13 from Oryza sativa indica[J]. Biochim Biophys Acta,2004,1676: 182-192.
    [17]Jain Tyagi AK, Khurana JP. Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in Arabidopsis plants[J]. Plant Cell Rep,2008,27:767-778
    [18]Lee M, Godshalk K, Lamkey KR, et al. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses [J]. Crop Science,1989,29:1067-1071
    [19]Liu XC, Wu JL. SSR heterogenic patterns of parents for marking and predicting heterosis in rice breeding [J]. Mol Breed,1998,4:263-268
    [20]Liu XC, Ishiki L, Wang WX. Identification.of AFLP markers favorable to heterosis in hybrid rice[J]. Breeding Science,2002,52:201-206
    [21]Liu XC, Chen SG, Chen JS, et al. Improvement of combining ability for restorer lines with the identified SSR markers in hybrid rice breeding [J]. Breeding Science,2004,54:341-346
    [22]Martin JM, Talbert LE, Lanning SP, Blake NK. Hybrid performance in wheat as related to parental diversity [J]. Crop Science,1995,35:104-108
    [23]McCouch SR, Chen X, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding [J]. Plant Mol. Biol.1997, 35:89-99
    [24]McCouch SR, Teytelman L, Xu YB, et al. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.)[J]. DNA Research,2002,9:199-207
    [25]Melchinger AE. Genetic diversity for restriction fragment length polymorphism:relation to estimated genetic effects in maize inbreds [J]. Crop Science,1990,30:1033-1040
    [26]Moll RH, Salhuana WS, Robinson HF. Heterosis and genetic diversity in variety crosses of maize [J]. Crop Science,1962,2:197-198
    [27]Mu P, Huang C, Li J X, et al. Yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency [J]. Acta Agron Sin,2008,3(7):1137-1142
    [28]Naveira H, Barbadilla A. The theoretical distribution of lengths of intact chromosome segments around a locus held heterozygous with backcrossing in a diploid species[J]. Genetics,1992, 130:205-209
    [29]Ogawa T, Yamamoto T, Khush G S, et al. Breeding of near-isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. oryzae) [J], Japan J Breeding,1991,41(33):523-529
    [30]Rao AV, Krishna ST, Prasad ASR. Combining ability analysis in rice [J]. Indian J Agric Sci, 1980,50:193-197
    [31]Rao AM, Ramesh S, Kulkarni RS. Heterosis and combining ability in rice[J]. Crop Improv, 1996,23(1):53-56
    [32]Remington DL, Thorasberry JM, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proc Natl Acad Sci USA,2001,98: 11479-11484
    [33]Saghai MA, Yang GP, Zhang Q, et al. Correlation between molecular marker distance and hybrid performance in US southern long grain rice [J]. Crop Science,1997,37:145-150
    [34]Schwartz D, Langhner WJ. A molecular basis for heterosis [J]. Science,1969,166:626-627
    [35]Singh DP, Nanda JS. Combining ability and heterosis in rice [J]. Indian J Genet,1976,36(1): 10-15
    [36]Singh NB, Singh HG. Heterosis and combining ability for kernel size in rice[J]. Indian J Genet Plant Breed,1985,45(2):181-185
    [37]Skroch P, Nienhuis J. Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance[J]. Theor Appl Genet,1995,91:1086-1091
    [38]Smith OS, Smith JSC, Bowen SL, et al. Similarities among a group of elite inbreds as measured by pedigree, F1 grain yield heterosis and RFLPs [J]. Theor Appl Genet,1990,80:833-840
    [39]Sprague GF, Tatum LA. General vs. specific combining ability in single crosses of corn [J]. Amer Soc Agron,1942,34:923-932
    [40]Stuber CW, Lincoln SE, Wolff DW, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers [J]. Genetics, 1992,132:823-839
    [41]Virmani SS, Aquino RC, Khush GS. Heterosis breeding in rice(Oryza sativa L.)[J]. Theor Appl Genet,1982,63:373-380
    [42]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23(21):4407-4414
    [43]Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science,1998,280:1077-1082
    [44]Wu KS, Tanksley SD. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet,1993,241:225-235
    [45]Wu DX, Shu QY, Xia YW. In vitro mutagenesis induced novel thermo/photo period-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker. Euphytica,2002, 123:195-202
    [46]Xiang Y, Cao Y, Xu C, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet,2006,113 (7):1347-1355
    [47]Xie F.M. Priorities of IRRI hybrid rice breeding//Xie F, Hardy B. Accelerating hybrid rice development. Los Banos (Philippines):International Rice Research Institute,2010:49-61
    [48]Yoon D, Kang K, Kim H, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. Sativa Japonica Cultivar Hwaseongbyeo[J]. Theor Appl Genet,2006,112:1052-1062
    [49]Zhang QF, Gao YJ, Yang SH, et al. A diallel analysis of heterosis in elite hybrid rice based in RFLPs and microsatellites [J], Theor Appl Genet,1994,89:185-192
    [50]Zhang QF. Molecular divergence and hybrid performance in rice [J]. Molecular Breeding,1995, 1:133-142
    [51]Zhao X-Q, Xu J L, Zhao M, et al. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.) [J]. Plant Sci, 2008,174:618-625
    [52]Zhou HF, Xie ZW, Ge S. Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.)in China [J]. Theor Appl Genet,2003,107: 332-339
    [53]蔡健,兰伟.利用AFLP分子标记预测水稻杂种优势.作物学报,2005,31(4):526-528
    [54]畅舒,沈建华.科技创新篇,常熟稻花香第四届中国杂交粳稻科技创新论坛在常熟举行.江苏农村经济,2007(10):9-10
    [55]陈付琴,雷冬梅,刘金波,等.杂交粳稻育种研究进展[J].农艺学.2009,14:56-58
    [56]陈建民,罗家密,欧育磊,等.几个转基因抗虫水稻种质产量性状的配合力研究[J].江西农业大学学报,2006,28(4):488-492
    [57]陈忠明.三系杂交粳稻选育进展问题及对策[J].上海农业科技,2000,(3):4-6
    [58]褚庆全,齐成喜,杨飞,等.我国杂交粳稻发展现状、问题及其对策[J].作物杂志,2005,(1):9-12
    [59]邓华凤,何强,毛友纯,等.长江流域杂交早稻品质性状的表现及配合力研究[J].作物学报,2006,32(5):633-639
    [60]邓华凤,何强,舒服,等.中国杂交粳稻研究现状与对策[J].杂交水稻,2006,21:1-6
    [61]邓华凤.中国杂交粳稻[M].北京:中国农业出版社,2008:13-23
    [62]杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展.中国医学科学院学报,2000,22(4):392-394
    [63]范志忠.作物杂种优势预测原理与方法述评[J].作物研究,1995,9(2):1-2
    [64]龚光明,周国锋,尹楚球,等.籼型两用核不育系主要农艺性状的配合力分析.中国水稻科学,1993,7(3):137-142
    [65]郭慧,李树杏,徐建第,等.24份水稻细胞质雄性不育系的SSR多态性分析.杂交水稻,2007,22(3):56-61
    [66]郭龙彪,罗利军,邢永忠,等.水稻重要农艺性状的两年QTL剖析.中国水稻科学,2003,17(3):211-218
    [67]郭平仲,张金栋,甘为牛,等.距离分析方法与杂种优势[J].遗传学报,1989,16(2):97-104
    [68]韩龙植,魏兴华,等.水稻种质资源描述规范和数据标准[M].北京:中国农业出版社,2006:59-93
    [69]贺浩华,元生朝.两系杂交水稻的研究与应用.南昌:江西科学技术出版社,1993
    [70]洪德林,汤玉庚.粳稻雄性不育恢复基因研究-Ⅰ.粳稻雄性不育恢复基因的地理分布[J].江苏农业学报,1985,1(4):1-5
    [71]洪德林,潘恩飞,陈长青.杂交粳稻与纯系粳稻收获指数比较研究[J].南京农业大学学报,1998a,21(4):12-18
    [72]洪德林.粳稻BT型同质恢和非同质恢育性恢复力及后代经济性状研究[J].江苏农业科学,1998b,(5):2-7
    [73]洪德林,杨开晴,潘恩飞.粳稻不同生态类型间F1的杂种优势及其亲本的配合力分析[J].中国水稻科学,2002,16(3):216-220
    [74]洪德林.作物育种学实验技术[M].北京:科学出版社,2010:12-25
    [75]湖南杂交水稻研究中心超高产育种课题组.杂交水稻超高产育种的设想.杂交水稻,1986(2):34
    [76]华蕾,袁筱萍,余汉勇,等.我国水稻主栽品种SSR多样性的比较分析.中国水稻科学,2007,21(2):150-154
    [77]华泽田,张忠旭,王岩,等.北方超级杂交粳稻育种进展.中国稻米,2002,(2):30-31
    [78]黄凤林,杨冬奇,彭国兴,等.籼型三系杂交水稻品质性状配合力与遗传力研究[J].作物研究,2009,23(2):67-70
    [79]黄河清,邹学英.稻米垩白的双列杂交分析[J].作物研究,1991,5(2)1-3
    [80]黄利兴,游年顺,雷捷成,等.杂交水稻配合力分析及高产地优势组合选配的探讨[J].福建稻麦科技,1994,12(4):11-17
    [81]黄阳清,高之仁,荣延昭.玉米自交系间遗传距离与产量杂种优势的关系[J].遗传学报,1991,18(3):271-276
    [82]黄英金,刘宜柏.几个名优水稻品种特异品质性状的配合力分析[J].江西农业大学学报,1995,17(2):361-367
    [83]金伟栋,洪德林.苏南地区晚熟粳稻杂种优势及其亲本配合力分析[J].作物学报,2005,31(11):1478-1484
    [84]金伟栋,洪德林.太湖流域粳稻地方品种核心种质的构建[J].江苏农业学报,2007,23(6):516-525
    [85]雷东阳,谢放鸣,徐建龙,等.稻米粒形和垩白度的QTL定位和上位性分析[J].中国水稻科学,2008,22(3):255-260
    [86]冷燕,洪德林.不同生态类型间杂交粳稻品质性状及其遗传分析[J].中国水稻科学,2004,18(1):29-33
    [87]李成荃,王守海,王德正,等.安徽省杂交粳稻回顾与展望[J].安徽农业科学,2005,33(1):1-4
    [88]李春丽.应用分子标记差异预测作物杂种优势的研究进展[J].遗传,1997,19(1):46-48
    [89]李丁民.杂交水稻组合选配的理论和实践[J].杂交水稻,1994,3(4):38-41
    [90]李国鹏,郭建夫,汤能.籼型三系杂交稻主要品质性状配合力研究[J].江西农业学报,2007,19(12):1-5
    [91]李建红,洪德林.新选粳稻BT型不育系主要农艺及品质性状的配合力分析[J].南京农业大学学报,2004,27(4):11-166
    [92]李建红,洪德林.新选粳稻BT型同质恢复系农艺和品质性状的配合力研究[J].作物学报,2005,31(7):851-857
    [93]李建红.新选粳稻BT型不育系和同质恢复系农艺及品质性状配合力研究.南京农业大学硕士学位论文.2004
    [94]李绍波,杨国华,章志宏,等.水稻产量要素相关性状QTL定位[J].武汉大学学报·理学版,2008,54(6):713-718
    [95]李欣,莫惠栋,王安民,等.粳型杂种稻米品质性状的遗传表达[J].中国水稻科学,1999,13(4):197-204
    [96]梁康迁,王乃元,杨仁崔.水稻穗伸出度的遗传与育种利用[J].福建农学院学报,1992,21(4):380-385
    [97]廖伏明,袁隆平.水稻光温敏核不育系起点温度遗传纯化的策略探讨[J].杂交水稻,1996,(6):1-4
    [98]廖伏明,周坤炉.籼型杂交水稻米质性状配合力及遗传力研究[J].湖南农业大学,2000,26(5):323-328
    [99]林建荣,吴明国,宋蔚.三系粳稻不育系开花习性与异交结实率的关系[J].杂交水稻,2006,21(5):69-72
    [100]梁奎,黄殿成,赵凯铭,等.杂交粳稻亲本产量性状优异配合力的标记基因型筛选[J].作物学报,2010,36(8):1270-1279
    [101]刘来福,毛盛闲,黄远樟.作物数量遗传[M].北京:农业出版社,1984,170-184
    [102]刘永柱,林轩东,张建国,等.水稻空间诱变恢复系主要农艺经济性状配合力分析[J],华南农业大学学报,2009,30(1):14-18
    [103]陆作楣,陶瑾,马崇云,等.杂交稻新三系配合力研究和新组合筛选.种子,1986,(4):24-28
    [104]陆作楣.论杂交稻育种的配合力选择[J].中国水稻科学,1999,13(1):1-5
    [105]罗玉坤,朱智伟,陈能,等.中国主要稻米的粒型及其品质特性[J].中国水稻科学,2004,18(2):135-139
    [106]马大鹏,罗利军,汪朝阳,等.利用重组自交系群体对水稻产量相关性状的QTL分析[J].分子植物育种,2004,2(4):507-512
    [107]毛友纯,徐庆国,胡志明.杂交早稻农艺性状的配合力研究.湖南农业大学学报(自然科学版),2005,31(2):115-119
    [108]莫惠栋.pxq交配系统配合力分析[J].江苏农学院学报,1982a,3(3):51-57
    [109]莫惠栋.pxq交配系统配合力分析(续)[J].江苏农学院学报,1982b,3(4):53-57
    [110]穆平,张洪亮, 姜德峰,等.利用水、早稻DH系定位产量性状的QTL及其环境互作分析[J].中国农业科学,2005,38(9):1725-1733
    [111]潘学彪,陈宗祥,左示敏,等.以分子标记辅助选择育成抗条纹叶枯病水稻新品种“武陵粳1号”.作物学报,2009,35(10):1851-1857
    [112]彭俊华.杂交水稻数量性状配合力、遗传力及地点变异性分析[J].西南农业学报,1993,6(2):7-11
    [113]齐绍武,盛孝邦.籼型两系杂交水稻主要农艺性状配合力及遗传力分析[J].杂交水稻.2000,15(3):170-184
    [114]齐永文,张冬玲,张洪亮,等.中国水稻选育品种遗传多样性及其近50年变化趋势.科学通报,2006,51(6):693-699
    [115]邱福林,庄杰云,华泽田,等.北方杂交粳稻骨干亲本遗传差异的SSR标记检测[J].中国水稻科学,2005,19(2):101-104
    [116]申宗坦.作物育种学实验[M].北京:中国农业出版社,1995:50-51
    [117]石明松.对光照长度敏感的隐性雄性不育不稻的发现及初步研究[J].中国农业科学,1985,2:44-48
    [118]石明松.晚粳自然两用系选育及应用研究J].湖北农业科学,1981,2(7):1-3
    [119]四川省水稻育种攻关组,杂交水稻数量性状配合力、遗传力及其地点变异性分析[J].西南农业学报,1993,6(2):12-20
    [120]粟学俊,韦鹏霄,吕志仁.杂交水稻产量性状配合力研究[J].广西植物,2004,24(1):91-96
    [121]孙国荣,朱鹏,刘文芳,等.谷氨酰胺合成酶活性与水稻杂种优势预测.武汉植物学研究,1994,12(2):149-153
    [122]孙国荣,朱鹏,刘文芳,等.谷氨酰胺合成酶活性与水稻杂种优势预测[J].武汉植物学研究,1994,12(2):149-153
    [123]汤述翥,孙叶,张宏根等.同核异质粳稻不育系特性比较[J].中国水稻科学,2005,19(6):521-526
    [124]汤玉庚,王才林,张兆兰等.再论长江流域杂交粳稻育种攻关中的几个问题[J].杂交水稻,1990,6:3-6
    [125]汤玉庚.杂交粳稻的优势分析[J].杂交水稻,1991,3(2):9-12
    [126]田大成,秦春林等.母本柱头外露率与环境条件及结实率关系的初步研究[J].杂交水稻.1990,3:17-20
    [127]万建民.中国作物科学“十一五”的发展方向.作物杂志,2006,1:1-4
    [128]万建民.作物分子设计育种.作物学报,2006,32(3):455-462
    [129]汪新国.安徽省两系杂交粳稻发展的十年回顾[J].中国稻米,1997,(4):26-27.
    [130]王才林,汤玉庚.我国杂交粳稻育种的现状与展望[J].中国农业科学,1989,22(5):8-13
    [131]王才林.江苏省杂交粳稻育种的现状、问题与对策[J].西南农业学报,2009,22(4):1165-1169
    [132]王才林.江苏省杂交水稻育种的现状与展望[J].江苏农业科学,2006, (1):1-7
    [133]王建林,徐正进,周淑清,等.中国北方杂交粳稻发展现状与前景[J].沈阳农业大学学报,2002,33(2):146-150
    [134]王绍林,桑海旭.两系法选育杂交粳稻的实践和思考[J].垦植与稻作,2001,(4):7-9
    [135]王守海,罗彦长,王德正,等.两系杂交籼稻亲本配合力研究[J].安徽农业大学学报,1995,22(增刊):11-17
    [136]王守海,杜士云,王德正,等.核质互作不育和光敏核不育聚合的粳稻不育系选育.中国农业科学,2005,38(7):1289-1294.
    [137]魏耀林,张忠旭,赵迎春.几个杂交粳稻亲本的配合力及配组优势分析[J].粳稻科技,1999,(3):12-14
    [138]吴为安,胡如英,郑建华,等.籼粳杂种优势及配合力的研究[J].福建稻麦科技,1990,(2):12-19
    [139]夏加发,施伏芝,陈多璞,等.两系杂交水稻垩白性状配合力研究[J].农学通报.2001,17(3):16-19
    [140]邢永忠,徐才国,华金平,等.水稻穗部性状的QTL与环境互作分析[J].遗传学报,2001,25(5):439-446
    [141]熊振民,蔡洪法.中国水稻[M].北京:中国农业科技出版社,1990:58-67
    [142]徐辰武.稻米品质性状的遗传研究[D].南京:南京农业大学,1998:27-37
    [143]徐建龙,薛庆中,罗利军, 等.水稻单株有效穗数和每穗粒数的QTL剖析[J].遗传学报,2001,28(8):752-759
    [144]许凌,张亚东,朱镇,等.不同年份水稻产量性状的QTL分析[J].中国水稻科学,2008,22(4):370-376
    [145]严长杰,徐辰武,顾铭洪.利用SSR标记定位水稻糊化温度的QTLs[J].遗传学报,2001,28(11):1006-1011
    [146]杨仁崔,梁康逞,陈青华.稻米垩白直感遗传和杂交稻垩白米遗传分析[J].福建农学院学报,1986,15(1):51-54
    [147]杨振玉,陈秋柏,陈荣芳,等.粳型杂交水稻“黎优57”的选育[J].中国农业科学,1982,1:38-42
    [148]杨振玉,陈秋柏,陈荣芳,等.水稻粳型恢复系C57的选育[J].作物学报,1981,7(8):153-156
    [149]杨振玉,高勇,赵迎春,等.水稻籼粳亚种间杂种优势利用研究进展[J].作物学报,1996,22(4):422-429.
    [150]杨振玉,张宗旭,魏耀林,等.粳型特异亲和恢复系C418的选育及其特性[J].杂交水稻,1998,13(3):31-32
    [151]杨振玉.北方杂交粳稻的思考与展望[J].作物学报,1998,24(6):840-846
    [152]杨振玉.北方杂交粳稻育种研究[M].北京:中国农业科技出版社.1999.
    [153]叶少平,张启军,李杰勤,等.用(培矮64s/Nipponbare)F2群体对水稻产量构成性状的QTL定位分析[J].作物学报,2005,31(12):1620-1627
    [154]易琼华.水稻三系及其杂种F1的酯酶同工酶比较及杂种优势预测[J].植物学报,1984,26(5):506-512
    [155]游晴如,黄庭旭,杨东,等.籼型三系杂交稻品质性状的配合力及遗传力分析[J].中国农学通报,2007,23(4):204-208
    [156]袁玲,祝莉莉,何光存.稻米品质性状基因的SSR标记定位[J].武汉大学学报(理学版),2002,48(4):507-510
    [157]袁龙江,邢祖颐.籼粳交主要性状的配合力及遗传力分析[J].作物学报,1989,15(2):181-188
    [158]袁隆平.水稻光、温敏不育系的提纯和原种生产[J].杂交水稻,1994(6):1-3
    [159]袁隆平.从育种角度展望我国水稻的增产潜力[J].杂交水稻,1996,4:1-2
    [160]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-6
    [161]袁隆平,陈洪新.杂交水稻育种栽培学[M].长沙:湖南科学技术出版社,1998:195-200
    [162]袁隆平,唐传道.杂交水稻选育的回顾、现状与展望[J].中国稻米,1999(4):3-6
    [163]袁隆平.超级杂交水稻的现状和展望[J].粮食科技与经济,2003,(1):2-3
    [164]袁隆平.袁隆平论文集.北京:科学出版社,2010
    [165]袁隆平.发展杂交水稻,保障粮食安全[C]//杂交水稻第25卷专辑,第一届中国杂交水稻大会论文集.湖南长沙:《杂交水稻》编辑部,2010:1-2
    [166]张利华,王林友,王建军.籼型杂交稻稻米碾磨品质与外观品质的配合力及遗传力研究[J].核农学报,2003,17(6):417-422
    [167]张战,赵一洲,路洪彪.粳稻穗重及其构成因素的配合力分析[J].垦植与稻作,2005,6:10-11
    [168]赵庆勇,朱镇,张亚东,等.12个粳稻新不育系的配合力及利用价值评价.中国水稻科学,2008,22(1):57-64
    [169]于飞,葛旭华,沈波,等.利用RFLP研究作物亲缘关系的计算机程序设计.作物品种资源,1991,(2): 41-42
    [170]中华人民共和国农业部部标准.NY147-88,米质测定方法.2003
    [171]周开达,黎汉云,李仁瑞,等.杂交稻主要性状配合力、遗传力的初步研究[J].作物学报,1982,8(3):145-152
    [172]周六斤,项德荣.杂交粳稻发展的现状、问题与对策[J].2007,24(12):50-51
    [173]朱德峰,庞乾林,何秀梅.我国历年水稻产量增长因素分析与今后的发展对策[J].中国稻米,1997,1:3-6
    [174]张宏根,李波,朱正斌,等.分子标记辅助选择改良武育粳3号的条纹叶枯病抗性[J].中国水稻科学,2009,23(3):263-270
    [175]朱鹏,孙国荣,肖翊华,等.MDH和GDH活性与水稻杂种优势预测[J].武汉大学学报,1991,(4):89-94
    [176]谢学文,徐美容,藏金萍,等.水稻抗纹枯病QTL表达的遗传背景及环境效应[J].作物学报,2008,34(11):1885-1893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700