用户名: 密码: 验证码:
大跨度钢—混凝土组合桥梁空间理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二次世界大战以后,欧洲急需恢复战争破坏的桥梁和建筑,由于钢材短缺,采用大量的钢-混凝土组合结构,节约了钢材。日本1923年关东大地震,发现组合结构抗震性能良好。由此,组合结构在桥梁及高层建筑得到迅速发展。
     以钢-混凝土组合桥梁工程为研究背景,从桥梁美学、空间理论、模型试验及工程应用等方面,对大跨度组合桥梁进行研究。本文主要内容:
     1、大跨度琴拱桥理论。琴拱桥,以拱桥这一种造型优美的古老桥型为出发点,从桥梁美学与力学统一的角度出发,提出一种新型拱桥结构—琴拱桥。主拱如琴,吊索如琴弦,曲线圆润,富有动感,将古典拱桥与现代拱桥完美地结合在一起,充分展示了桥梁建筑美与力学美的统一。
     琴拱桥理论对大跨度拱桥三个关键性技术难题,即横向稳定问题、水平推力问题、施工安装难题,提出了新的解决思路与技术方案。
     2、钢-混组合桥梁体系转换新技术。根据弯曲还原力学原理,研发应用组合结构体系转换系新技术。利用结构体系变化与截面形成的过程,合理调整截面有效控制应力,实现降低控制截面混凝土拉应力的目的。
     3、预应力传递效率与弯矩调幅方法。根据组合梁支点负弯矩影响线,精确地预加荷载,按加载程序浇筑混凝土结构层,按弯矩影响线要求卸载,使支点负弯矩区混凝土获得预压应力,通过影响线弯矩调幅提高预应力效率。
     4、研发应用组合桥梁结构新体系。深圳彩虹大桥,主要采用了三项新技术:1)钢-混凝土全组合桥梁结构体系,2)预应力钢-高托座空心板组合梁;3)钢结构内导管定位法新工艺。
     预应力钢-混组合桥梁新技术新工艺及其应用。随着波形钢腹板PC桥梁、钢桁腹PC组合桥梁、大悬臂波-桁组合PC桥梁的研究及应用,以其先进的新技术、新工艺及结构体系创新,新型组合结构体系将进入一个新的发展时期。
     钢-混凝土组合结构是一种高强、高性能的材料组合,也是一种高效、经济的施工技术。实现了组合桥梁“轻质、高强、大跨、经济、美观”的目标。取得了显著的社会效益和经济效益,具有广阔的应用前景。
After the world warⅡ, Europe needs to restore war-damaged bridges and buildings. A lot of steel-concrete composite structure were constructed for saving the steel. After the great Kanto earthquake in 1923, Japan found that the use of composite structure prossesses good seismic performance. In consequence, the composite structure has been developed rapidly in bridges and high-rise buildings.
     This thesis studied the steel-concrete composite bridges, including the bridge aesthetics, space theory, model test and engineering applications and so on. This thesis are concluded as:
     1, Long-span Qin-arch bridge theory. Qin-arch bridge started from an old bridge type, is a new arch structure from the aesthetic point of view. The main arch, looks like piano, strings, such as slings, round curves, dynamic, will shape the U.S. unity with the mechanics, the classical and the modern arch bridge arch bridge combines, classical arch bridge and modern arch bridge perfect combination together, fully demonstrated the united states of bridge architectural beauty and mechanics beauty.
     Large-span arch bridge of three key technical problems, namely stability, the level of thrust problems, construction problems, the solution proposed new ideas and technology programs.
     2, Prestressed steel-concrete composite bridge system transformation technology. Bending reduction according to mechanics principle, development and application of composite bridge system transformation technology. Using the structure system change and the section forming process, reasonable adjust the effective section control stress, reduce the control section concrete tensile stress of the objective.
     3, Prestressed transfer efficiency and the method of moment AM. According to the negative bending moment influence line of the composite beam, precisely preloading, according to loading procedure concrete structure layer, based on the bending moment influence line for unloading, the fulcrum in negative moment area of concrete with compressive stress, the influence line moment modulation to improve efficiency of prestressing. Through the method of influence line for bending moment amplitude modulation to improve efficiency of prestressing.
     4, Development and application of composite bridge structure new system. Shenzhen rainbow bridge, mainly uses three new techniques:1) the steel-concrete composite bridge structure system,2) prestressed steel-high haunched hollow plate beam; 3) new technology of steel duct positioning method by internal-pipe.
     Prestressed steel-concrete composite bridge new technology and its application. With corrugated steel web PC bridge, steel truss web PC composite bridge, large cantilever PC bridge with corrugated steel webs-truss research and application, with its advanced new technology, new technology and system innovation, a new type of composite structure system will enter a new development period.
     Steel concrete composite structure is a high strength, high performance materials, but also a high efficient, economic construction technology. Realize the combination of bridge"light, high strength, large span, economic, beautiful"target. Achieved remarkable economic and social benefits, has broad application prospects.
引文
[1]蔡绍怀,我国钢管混凝土结构结构技术的最新进展.土木工程学报,1999,32(4):16-26
    [2]方秦汉.芜湖长江大桥.华中科技大学学报(城市科学版),2000,19:1-4
    [3]秦顺全.芜湖长江大桥板桁组合结构斜拉桥建造技术.土木工程学报,2005,38(9):94-98
    [4]朱宏平,唐家祥.斜拉桥动力分析三维有限单元模型.振动工程学报,1998,12(1)85-89
    [5]Zhu shi-feng. Study of Geometric Shape Control and Closure Techniques of Multi-Span Continuous Rigid-Frame Bridge Structure(Master Dissertation). Chongqing:chongqing Jiaotong University,2008.
    [6]刘玉擎,组合结构桥梁.(第一版).北京:人民交通出版社,2005.94-98
    [7]蔡绍怀,钢管混凝土结构设计与施工规程.(第一版).北京:中国计划出版社,1992.32-38
    [8]金成棣.预应力混凝土梁拱组合桥梁—设计研究与实践.(第一版).北京:人民交通出版社,2001.77-79
    [9]Liu Chang-guo,Yin Canbin. Analysis and Experimental Study on Jacking Force for High Temperature Closure of Con-rinuous Rigid-Frame Bridge. Highway Engineering,2009,(10):83~86
    [10]Yin Can-bin, Wang Jie-jun, Tang Can. Algorithms for the Jacking Force of High-Temperature Closure of a Continuous Rigid-Frame Bridge. Journal of Central South University of Forestry & Technology,2009,(1):111~116
    [11]陈宜言.波形钢腹板预应力混凝土桥设计与施工.(第一版).北京:人民交通出版社,2009.56-62
    [12]周起敬等.钢-混凝土组合结构设计施工手册.(第一版).北京:建筑工业出版 社,1991.24-31
    [13]聂建国,钢-混凝土组合结构原理与实例.(第一版).北京:科学出版社,2009,423-427
    [14]陈宝春,钢管混凝土拱桥设计与施工,(第一版).北京:人民交通出版社,2002.102-105
    [15]尹书军.沪杭客运专线跨沪杭高速公路特大桥(88+160+88)m自锚上承式拱桥设计.铁道标准设计,2010,(5):57-60
    [16]徐君兰.大跨度桥梁施工控制.(第一版).北京:人民交通出版社,2000.22-25
    [17]张联燕,李泽生,程懋方等.钢管混凝土空间桁架组合梁式结构.(第一版).北京:人民交通出版社,2001.11-16
    [18]惠卓,刘钊,黄晓东等.三跨上承式预应力混凝土拱桥优化设计.东南大学报,2007,(2):296-300
    [19]徐勇,马庭林,陈克坚.水柏铁路北盘江大桥钢管混凝土拱设计.(第一版).北京:中国铁道科学,2003.13-26
    [20]林同炎,NEDH.BURNS著.预应力混凝土结构设计.(第一版).北京:中国铁道出版社,1983.55-58
    [21]陈肇元,赵国藩.混凝土结构耐久性设计与施工指南.(第一版).北京:中国建筑工业出版社,2004.33-34
    [22]周念先,桥梁方案比选.(第二版).上海:同济大学出版社,1997.41-46
    [23]和丕壮,桥梁美学.(第一版).北京:人民交通出版社,1999.165-168
    [24]陈宝春,孙潮,陈友杰.桥梁转体施工方法在我国的应用与发展.公路交通科技,2001,(2):24-28
    [25]张联燕,程懋方,谭邦明等.桥梁转体施工.(第一版).北京:人民交通出版设社,2002.121-126
    [26]黄卿维,陈宝春.日本前谷桥的设计与施工.福建建筑,2005(1):58-62
    [27]Zou Yi-song, Shan Rong-siang. The Determination of Jacking Force for Closure of Continuous Rigid Frame Bridge. Journal of Chongqing Jiaotong Instiue, 2006,(2):12-15
    [28]赵玲,庄勇.无锡市金匮桥总体设计与结构特色.桥梁建设,2010,(5):64-66
    [29]Li Ya-lin,Zhou Wei. Calculation Methods and Meshanical Behavior Analysis of Jacking Force for Closure of Continuous Rigid-Frame Bridge. Technology & Economy in Areas of Communications,2007,(5):6-8
    [30]Zhang Cheng-zhi, Shi Wen-sheng. Treatment Measures and Experience in Making High Temperature Closure of Rigid Framed Continuous Girders. Journal of Railway Engineering Sosiety,2006,(7):46-48
    [31]Zhang Xie-dong, Zhan Hao, SHU Hong-bo, et al. Research of Closure Construction Techniques for Long-Span Prestressed Concrete Continuous Girder Bridge. Bridge Construction,2005,(2):63-66
    [32]Wen Wu-song. Construction Control of Continuous Rigid Frame Structure of Auxiliary Bridge of Sutong-Bridge. Construction,2008,(4):65-69
    [33]肖海珠,刘承虞,易伦雄.南京大胜关长江大桥铁路钢桥面设计与研究.桥梁建设,2009,(4):9-12
    [34]Chen Hong-bin, Chen Qun, Wang Fei, et al. Pushing Effect Analysis and Scheme Design of Closure of Long Span Continuous Rigid-Frame Bridges. Highway,2009,(7):209~211
    [35]Chen Wei-zhen, Wang Zhi-ping, Xu Jun. Awim Method Used for Steel Truss Bridge. Bridge Construction,2009,(4):72-75
    [36]Wang Chun-sheng, Chen Ai-rong, Chen Wei-zhen.Assessment Methods of Remaining Fatigue Life and Service Safety of Riveted Steel Bridges. Journal of Tongji Unoversity (Natural Science),2006,34(4):461~466
    [37]Chen Wei-zhen, Wang Chun-sheng, Xu Lei.Re-maining Fatigue Life and Safety of Waibaidu Bridge in Shanghai. Bridge Construction,2002.(2):6-10
    [38]C Su, D J Han,Q S Yan,et al. Wind-Induced Vibra-tion Analysis of the Hong Kong Ting Kau Bridge. Proceedings of the Institution of Civil Engineers. Structures and Buildings,2003,156(3):263-272
    [39]潘东发,李军堂.南京大胜关长江大桥钢梁安装方案研究.桥梁建设,2007,(3):5-8
    [40]门智杰,广州市内环路钢梁吊装施工技术.桥隧机械&施工技术,2010,(5):64-66.
    [41]R Kiviluoma.Coupled-Mode Buffeting and Flutter A-nalysis of Bridge. Computers & Structures,1998,(70):219-229
    [42]Q Ding, P K K Lee. Computer Simulation of Buffeting Actions of Suspension Bridge Under Turbulent Wind. Computers & Structures,2000,(76):787-797
    [43]Chen Jin, Xiao Ru-cheng, XIANG Hai-fan, Full Range Nonlinear Aerostatics Analysis for Long-Span Cable-Stayed Bridge. China Journal of Highway and Transport,2000,13(3):25~28
    [44]Huang Ping-ming, Wang Da, Zhou Ke-fu. Re-search on Aerostatic Stability of Asymmetry Pedestrian Suspension Bridge Without Tower, journal of Highway and Transportation Research and Develop-ment,2008,25(4):99~102
    [45]宋杰,杨梦纯.郑州黄河公铁两用主桥第一联钢梁架设技术研究.钢结构,2010,(12):72-75
    [46]Saiidi M, E Hutchens, D Gardella. Bridge Pestress Losses in Dry Climate. Journal of Bridge Engineer-ing,1998,3(3):111-116
    [47]Harry A Cole. Direct Solution for Elastic Prestress Loss in Pretensioned Concrete Girders [J]. Practice Periodical on Structurl Design and Construction,2000, 5(1):27~31
    [48]Pessiki S, Kaczinski M, Wescott H H. Evaluation of Effective Prestress Force in 28-Year Old prestressed Concrete Beams. PCI Journal,1996,41(6):78~89
    [49]Chen Kai-li, Yu Tian-qing, Xi Gang. Development and prospective of Hybrid Girder Cable-Stayed Bridge[J]. Bridge Construction,2005,(2):1-4
    [50]Qin Shun-quan. Unstressed State Control Method for Bridges Constructed in Stages[J]. Bridge Constructed in Stages. Bridge Constuction,2008,(1):8-14
    [51]Liang Peng,Xiao Ru-cheng, Xu Yue. Assembled Geometry and Unstressed Geometry of Super Long Span Cable-Stayed Bridges. Journal of Chang'an University(Natural Science Edition),2006,(4):49-53
    [52]Li Qiao, Bu Yi-zhi, Zhang Qing-hua. Whoble-Procedure Adaptive Construction Control System Based on Geometry Control Method. China Civil Engineering Journal,2009,(7):69~77
    [53]Li Zhong-ping. Installation Technology for Steel Box-Girder of Nanjing No.3 Yangtze River Bridge. Construction Technology,2008,(5):111~114
    [54]马涛.天兴洲长江大桥墩顶4节间钢桁梁安装方案.山西建筑,2010,(1):317-318
    [55]邓新安,重庆朝天门长江大桥建造中的技术创新.中国港湾建设,2008,(5):1-4
    [56]Chen Ming, Luo Cheng-bin, Wu Qi-he. Assistant Pullback Technique for Main Span Closure of Sutong Bridge. Engineering Sciences,2009,(11):75~80
    [57]Liu Ming-hu, Xu Guo-ping, Liu Feng. Study and Design of Steel-Concrete Joint Part of Hybrid Girder of Edong Bridge. Journal of Highway and Transportation Research and Development,2010,(12):78-85
    [58]Liu Gao,Tang Liang,Tan Hao, et al.Determination of Rational Steel-Concrete Connection Position for Hybrid Girder Cable-Stayed Bridge. Journal of Highway and Transportation Research and Development,2010,(6):52-57
    [59]Huang Bing-shi, Tang Shou-feng, Zhao Can-hui. Structure Behavior and Construction Monitoring Key Technology in Construction of Edong Changjiang River Bridge. Journal of Chongqing Jiaotong University(Natural Science),2010, (5):688~692.
    [60]罗喜恒,肖汝成,项海帆.悬索桥理想恒载状态的计算方法研究.桥梁建设,2008,(4):31-35
    [61]Zhu Bin, SI Ai-guo, Xhang Yuan-rong. Design of Temporary Anchorage Between Pylon and Girder for Sutong Bridge.2009,(7):184~186
    [62]Mario De Miranda, Alessandro De Palma, Alberto Zanchettin. "Ponte Del Mare":Conceptual Design and Realization of a Long Span Cable-stayed Footbridge in Pescara, Italy. Structural Engineering International, 2010,20(1):21-25
    [63]王戒燥,钟继卫.大跨度需索桥主缆线形主要参数的影响性分析.桥梁建设,2005,(6):28-31
    [64]Johnson R, DesRohes R, Saiidi M, et al. Large Scale Testing of Nitinol Shape Memory Alloy Devices for Retrofitting of Bridges. Smart Materials and Structures,2008,(17):1-10
    [65]Gundolf Denzer, Ulrich Weyer, Christof Dieckmann. Die Talbrucke St. Kilian-Entwurf und Ausfuhrung.Stahlbau,2006,(75):106~116.
    [66]S C Haldimann Sturm, A Nussbaumer. Fatigue Design of Cast Steel Nodes in Tubular Bridge Structures. International Journal of Fatigue,2008, (30):528~537
    [67]Mertz D. Trends in Design and Construction of Steel Highway Bridges in the United States.Progress in Structural Engineering and Materials,2001,(1):5-12
    [68]Seible F, Latham C T. Horizontal load transfer in structural in structural concrete bridge deck overlays. Journal of Structural Engineering,116(10):2691-2710
    [69]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发:[博士学位论文].成都:西南交通大学图书馆,2003
    [70]Wright H D, Oduyemi T O S,Evans H R. The design of double skin composite elements.Journal of Constructional steel Research,1991,19(2):111-132
    [71]Eterson C. Tips on Producing Exposed Aggregate Flat-work Finishes. Abetdeen' s Concrete Constrution,1990,35(8):689-694.
    [72]Wright H D, Oduyemi T O S,Partial interaction analysis of double skin composite beams.Journal of Constructi xconal steel Research,1991,19(4):253-283
    [73]Y S Petryna, D Pfanner, F Stangenberg, et al. Reliability of Reinforced Concrete Structures under Fatigue. Reliability Engineering and System Safety,2002,77(3):253~261.
    [74]Alain C Nussbaumer, John W Fisher, Robert J Dexter, et al. Behavior of Long Fatigue Cracks in Cellular Box Beam. Journal of Structural Engineering, 1999,125(11):1232-1238
    [75]付春晓,雷俊卿.既有悬索桥主缆现状的检测与研究.世界桥梁,2002,(4):70-73
    [76]王永强,胡定成.悬索桥主缆的锈蚀机理及其防护措施.国外桥梁,2001,(3):41-45
    [77]陈策.我国悬索桥主缆除湿系统研究的最新进展.中国工程科学,2010,(4):95-99.
    [78]王永衍.我国桥梁建设的成就、现状和存在的问题.公路,2004,(12):155-157.
    [79]C e sar Crespo-Minguill 6 n, Juan R Casas. Fatigue Reliability Analysis of Prestressed Concrete Bridges. Journal of Structural Engineering,1998,124(12):1 458-1466
    [80]Consolazio G R, Gowan D R. Nonlinear Analysis of Barge Crush Behavior and Its Relationship to Impact Resistant Bridge Design. Computers and Structures,2003,81(8-11):547~557
    [81]Ching Chiaw Choo, Tong Zhao, Issam Harik. Flexural Retrofit of a Bridge Subjected to Overweight Trucks Using CFRP Laminates. Composites Part B: Engineering,2007,38(5-6):732~738
    [82]Je-Keun Oh, Giho Jang, Semin Oh, et al. Bridge Inspection Robot System with Machine Vision[J].Automation in Construction,2009,18(7):929~941
    [83]聂建国,陶慕轩.预应力钢-混凝土连续组合梁的变形分析.预应力技术,2009,(4):43-46
    [84]陈宣言,王用中.波形钢腹板预应力混泥土桥设计与施工.(第一版).北京:人民交通出版社,2009.8-9
    [85]郭风琪,余志武.预应力钢—混凝土连续组合梁抗裂度计算.钢结构,2003, (2):102-103
    [86]Huang Z F, Tan K H. Rankine approach for fire resistance of axially-and-flexurally restrained steel columns. Journal of Constuctional Steel Research,2003,59(12):1553~1571.
    [87]刘玉擎.波折腹板组合箱梁桥结构体系分析.桥梁建设,2005,(2):1-4
    [88]Tan K H, Yuan W F. Buckling of elastically restrained steel columns under longitudinal non-uniform temperature distribution. Journal of Constructional Steel Research,2008,64(1):51-61
    [89]李准华,刘针.大跨度预应力混凝土桥梁预应力损失及敏感性分析.世界桥梁,2009,(1):36-39
    [90]周燕勤,吕志涛.预应力长期损失计算建议.东南大学学报,1997,27(S1):76-80.
    [91]朱罙.预应力高性能混凝土桥的预应力损失比较,世界桥梁,2010,(1):23-27.
    [92]Mitsugi Y. Bridge over the Wilde Gera Valley---The Largest Arch Bridge in Germany. Japanese Journal of PC,2001,(43) 3:29~32
    [93]王林,项贻强,汪劲丰.各国规范关于混凝土箱桥梁温度应力计算的分析与比较.公路,2004,(6):76-79
    [94]杨佐,赵勇,苏小卒.国内外规范的混凝土桥梁截面竖向温度梯度模式比较.结构工程师,2010,(1):37-43
    [95]盖卫明,任伟新.大跨度钢桁拱桥的极限承载力分析.华中科技大学学报(城市科学版),2008,12(4):23-26
    [96]Cticm. Methode de prevision par le calcul du comportement au feu des structures en acier. Doucument Technique Unifi e, Construction M e tallique, 1982,3(1):12-35.
    [97]Huang Z F, Tan K H. Analytical fire resistance of axially restrained steel coumns. Journal of Structural Engineering,2003,129(11):1531-1537.
    [98]陈水福,腾锦光,陈绍礼.任意截面钢-混凝土组合柱的分析与设计.建筑钢结构 进展,2002,4(4):25-30
    [99]赵鸿铁,钢与混凝土组合结构.(第一版).北京:科学出版社,2001.58-60
    [100]Neves I G, Valente J G, Rodrigues J PC. Thermal restraint and fire resistance of columns. Fire Safety Journal,2002,37(8):753~771.
    [101]Tan K H, Yuan W F. Buckling of elastically restrained steel columns under longitudinal non-uniform temperature distribution. Journal of Constructional Steel Research,2008,64(1):51~61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700