过程状态特征化方法及其在配网能耗计算与优化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于面向时间过程思想研究配电网分析与控制问题无论在基础理论研究还是实际工程应用方面都具有十分重要的意义。在动态系统的观测过程中,采集往往是以数据时间切片的形式,所以长期以来网络能量损耗的计算均采用时间切片的积分形式计算,并无电能量损耗直接的评估方法,能量损耗计算所需的数据信息和计算量都较大,计算效率不高。而且,在工程实际中电力系统是广域快速动态系统,常规的基于时间断面信息的反馈控制方法无法解决控制变量受经济性、安全性指标的制约不可能对每个时间断面做出反应的问题,控制中心决策过程缓慢与电网需要动态快速响应的矛盾也难以协调。因此,本文提出了时间过程特征状态的概念,应用面向时间过程的思想进行理论分析并面向时间区间制定优化控制策略。考虑到单纯地分析时间断面数据会抛弃断面间的联系,无法准确描述系统的动态运行过程,而逐点计算的方法在断面数据较多的情况下会遭遇计算量过大的困境,时间过程特征状态的概念将面向时间过程的优化控制问题对应等价为面向特征断面的优化控制问题,化繁为简,动态问题采用静态方法求解,有助于依靠以点带面的思想制定适用于某个时间区间的静态控制策略,然后通过时序融合算法得到整个时间区间时间分段方案,从而生成整个时间区间有效的动态控制策略。
     首先,基于时间过程特征状态的概念,本文在配电网分析与优化问题中引入了时序融合思想,为面向时间区间制定优化方案问题提供了理想的过程分段规则。在此基础上,通过对负荷波动对网络能量损耗的灵敏度分析,建立了给定时段内配网有功能量损耗的评估模型,根据过程特征状态对给定时间区间内网络的有功能量损耗进行直接评估,使有功能量损耗计算问题的求解在考虑负荷变化的情况下,在快速性与准确性之间达到了平衡。此外,该评估模型将网络有功能量损耗分解成3个部分,包括1个基本项和两个修正项,各部分物理意义清晰,可根据系统实际的量测配置分别简单求取,极大地改善了算法适应性。
     其次,在保证安全性的前提下,以网络能量损耗作为经济性指标制定了面向时间过程的配电网电容器规划与控制策略。电容器规划与控制问题的数学模型相似,本文将这两种问题结合起来进行讨论。受到安全和经济等因素的影响,电容器的安装数量、位置、类型和容量都不能根据负荷变化无限制地更改,即应尽量避免控制变量过于频繁的调节。因此,离散控制设备动作次数约束造成动态无功优化问题的时空强耦合,使问题的复杂度大大增加,本文以包括配置电容器的节能降耗收益与控制变量调节代价的综合运行费用最小为目标,面向时间过程特征状态建立了求解电容器优化配置问题的数学模型,从而得到了一段时间区间内的电容器优化问题静态配置方案。然后,结合时序融合算法所提供的时间分段方案,可以得到整个时间区间的动态优化策略。在电容器动态投切问题中,为便于时间切片数据的融合,本文将多节点电容器动态投切问题分解为一系列单节点电容器动态投切子问题,然后通过迭代依次求解子问题的方式得到整个时间区间内各节点电容器的最优动作时间和投入容量。
     再次,基于时间过程特征状态的概念,本文提出了面向时间区间的配电网静态重构和动态重构算法。在考虑负荷变化的情况下,依靠有功能量损耗评估模型,提出一个以能量损耗最小为目标的静态重构策略,在寻优过程中将开关状态的变化问题转化为回路电流源的叠加问题,仅需要一次弱环网潮流计算,有效降低了求解面向时间过程的重构问题所需的计算量。针对动态重构问题,考虑到开关操作次数的约束,本文构造了开关动作成本函数并以罚函数的形式扩展到动态重构的模型当中,面向时间过程特征状态建立了一个最大收益原则的时序融合算法,将传统的数学规划算法与现代智能算法相结合,根据每次开关操作在整个时间区间内的降损收益,确定了一段时间内网络动态重构所需的开关操作时间序列,取得较为理想的优化结果。
     最后,基于时间过程特征状态的概念,提出了面向时间过程的配电网多目标综合优化方法,结合电容器投切与网络重构两种优化措施,将降低系统能量损耗与均衡负荷共同作为优化目标,通过对网络重构与电容器投切两个子问题的交替迭代求解,得到了比单一优化方式更加理想的优化方案。
Time-process oriented theory has great significance to promote technological development of distribution network analysis and control method and introduce a new breakthrough point for the related basic theoretical fields. Usually, the traditional energy loss computation in electrical networks demands for numerous metered data and great amount of computational time when the accurate energy loss evaluation is required. On the other hand, electrical network is a wide-area fast dynamic system in engineering practice, so conventional feedback control methods based on the time-point information are impossible to solve such a typical problem, that is control variables usually can not respond to all system operation states at each time point following the changed load, considering some potential economic or security constraints. Furthermore, the time-process oriented control approach can also be used to solve such contradiction: most human-involved decision-makings for system operating manners cannot be made quickly, but the system state is continually changing rapidly and demands instant responses from the control center. Therefore, solving the time-process oriented control problem is particularly significant because making a real-time control scheme is extremely unlikely in most cases even if all the information we need is probably available today. It is necessary to introduce the time-process oriented theory into the distribution network analysis and control fields so that the core objective of power system operation can be further achieved in a more secure, more reliable, higher quality and more economical way. This paper presents a concept of system process state characterization to deal with the huge dynamic information heaps. As we know, the common time-domain analysis method based on information at a certain point in time will neglect the relationship among contiguous time series, and corresponding computational efforts upon each point in time will become more unacceptable when more time series information is offered. So, the concept of system state characterization can help people avoid performing power flow calculations for every interval of the load curves and finish the endless tolerance of the iterative procedures, because its idea successfully converts the complex dynamic optimization problem into a relatively simple static optimization problem. The whole process of system behavior could be optimized simultaneously while the characteristic state is optimized by some approaches such as capacitor placement and network reconfiguration.
     Firstly, this paper introduces a novel concept about time-series fusion, and develops the sensitivity relationship model between the network energy loss and load curve based on the conception of system process state characterization, and establishes a new energy loss formula for electrical networks. In this formula, electric components’energy losses in a given duration are divided into three parts. The primary energy losses can be quantified by the power flow calculation with average loads at nodes, and its linear and quadratic correction value can be produced by using an approximate algorithm whose accuracy is determined by the current system’s actual measurement configuration. The categorization of load nodes according to the type of installed measurements further improves the adaptability of this algorithm and makes it suitable for networks with incomplete measurements as well as those advanced networks with modern measurements.
     Secondly, this paper takes the network energy loss as a major economic indicator to construct a dynamic capacitor placement and switching control principle on the premise of security restriction. Considering the mathematical model for dynamic capacitor placement and switching control is similar in nature, these two issues are combined for discussion in this paper. In most cases, the control scheme of capacitor placement will be made out of the following considerations: Subject to some security and economic factors, the installation number, location and type of capacitors can not be changed without restraint, and that means control variables should not be adjusted too often. However, since loads change on an hourly basis or even shorter, the optimal number, location and size of capacitors or even the network configuration may change accordingly in order to achieve the greatest energy conservation. Consequently, the action number of discrete control system makes the original reactive power optimal problem strong-coupling in time and space, which significantly increases complexity for direct solution. So the proposed method in this paper take the maximum energy saving as major objective in which the regulating costs of control variables are also converted into the forms of energy loss, and a optimal static control scheme of capacitor placement can be made in a given period. On this basis, time series fusion algorithm will provide the suitable sub-time dividing scheme so that the whole time interval of dynamic optimal control solution series will be obtained. Specifically, multi-node capacitor dynamic switching problem is decomposed into a series of single-node capacitor dynamic switching subproblem in this paper so as to simplify the process of time series fusion, and then the problem will be solved in an iteration manner.
     Thirdly, this paper presents static and dynamic distribution network reconfiguration algorithms based on time interval according to the conception of system process state characterization. In the optimization process, based on sensitivity analysis, loop-analysis and superimpose theorem, opening a tie switch is equivalent to superimposing an electric current source on the loop. Consequently, the computational effort required in solving such large-scale dynamic optimization problems is decreased greatly by converting the original problems into some simpler static optimization problems with appropriate linearization and stepwise correction idea. For dynamic reconfiguration, in considering the load changes in engineering practice, the mathematic model takes the minimum energy loss as the objective in which the regulating costs of control variables is also converted into the forms of energy loss. Therefore, depondeing on the traditional mathematical programming method combined with the modern intelligent algorithm, time series fusion algorithm can determine the optimal network struction in the each subsection and finally obtain the optimal switches control operation series required for dynamic network reconfiguration plan.
     Finally, this paper proposes a distribution network comprehensive optimization to solve capacitor switching and network reconfiguration problem at same time based on system process state characterization. In the method, minimum energy loss combined with predefined index for load balance is taken as objective, and an alternating iteration algorithm is proposed in the paper to improve the effect of comprehensive optimization. The experiment has worked out satisfactorily.
引文
1方兴.面向过程配电网优化研究.哈尔滨工业大学博士论文.2007.
    2郝文波.电气规则制约的配电网络优化方法研究.哈尔滨工业大学博士论文.2007.
    3许立雄,吕林,刘俊勇.基于PSO的配网重构与电容器投切综合优化算法.继电器.2006,34(17):25~28
    4何一浩,王树民.TSC动态无功补偿技术述评.中国电力.2004,37(10):22~26.
    5 Taleski R,Rajicic D. Distribution network reconfiguration for energy loss reduction. IEEE Trans on Power Systems.1997,12(1):398~406
    6蔡中勤,郭志忠,陈学允.配电网重构的均衡视在精确矩法.继电器.2000, 28(12):8~11
    7郭志忠.电网自愈控制.电力系统自动化.2005,29(10):85~91
    8陈得治.基于过程的配电网分析与控制的研究.哈尔滨工业大学博士论文.2006.
    9任江波.电力系统过程状态估计研究.哈尔滨工业大学博士论文.2007.
    10陈西颖.基于时间过程的电网输电能力的研究.哈尔滨工业大学博士论文.2007.
    11张勇军,任震.电力系统动态无功优化调度的调节代价.电力系统自动化.2005,29(2):34~38
    12屠强,郭志忠.辐射型配电网重构的二次电流矩法.中国电机工程学报.2006, 26(16):57~61
    13 Flavio V.G., Jose L.R., Paulo A.N., A new distribution system reconfiguration approach using optimum power flow and sensitivity analysis for loss reduction. IEEE Trans on Power Systems. 2006, 21(4), 1616~1623
    14吴本悦,赵登福,刘云,夏道止.一种新的配电网络重构最优流模式算法.西安交通大学学报.1999,33(4):21~24
    15吴文传,张伯明.拟全局最优的配电网实时网络重构法.中国电机工程学报. 2003,23(11):70~73
    16 J.C. Wang, H.D. Chiang, G.R. Darling. An Efficient Algorithm for Real-Time Network Reconfiguration in Large Scale Unbalanced Distribution Systems. IEEE Trans. on Power Systems. 1996, 11(1): 511~517
    17 A. Abur. A Modified Linear Programming Method for Distribution System Reconfiguration. Electrical Power and Energy Systems. 1996,18(2):469~474
    18 J.Y. Fan, L. Zhang, J.D. McDonald. Distribution Network Reconfiguration: Single Loop Optimization. IEEE Trans. on Power Systems. 1996, 11(3): 1643~1647
    19张鹏,郭永基.一种新的大规模配电网络重构的图论算法——图的谱划分算法.电力系统自动化. 2002, 26(18): 25~29
    20 R.J. Sarfi, M.M.A. Salama, A.Y. Chikhani. Distribution System Reconfiguration for Loss Reduction: An Algorithm Based on Network Partioning Theory. IEEE Trans. on Power Systems. 1996, 11(1): 504~510
    21 D. Shirmohammadi, H.W. Hong. Reconfiguration of Electric Distribution Networks for Resistive Line Losses Reduction. IEEE Trans. on Power Delivery. 1989, 4(2): 1492~1498
    22 S.K. Goswami, S.K. Basu. A New Algorithm for the Reconfiguration of Distribution Feeders for Losss Minimization. IEEE Trans. on Power Delivery. 1992, 7(3): 1484~1491
    23邓佑满,张伯明,相年德.配电网络重构的改进最优流模式算法.1995,19(7): 47~50
    24邓佑满,张伯明,相年德.配电网络重构的递归虚拟流理论和算法.清华大学学报. 1997, 37(7):113~116
    25雷健生,邓佑满,张伯明.综合潮流模式及其在配电系统网络重构中的应用.中国电机工程学报. 2001, 21(1):57~62
    26卢战杰,魏紫銮.边界约束二次规划问题的分解方法.计算数学.1999,21(4):475~482.
    27 Y.Y. Hsu, J.H. Yi, S.S. Liu, Y.W. Chen. Transformer and Feeder Load Balancing Using a Heuristic Search Approach. IEEE Trans. on Power Systems. 1993, 8(1): 184~190
    28 V. Borozan,N. Rajakovic. Application Assessments of Distribution Network Minimum Loss Reconfiguration. IEEE Trans. on Power Delivery. 1997, 12(4): 1786~1792
    29 M.E. Baran, F.F. Wu. Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing. IEEE Trans. on Power Delivery. 1989, 4(2): 1401~1407
    30蔡中勤,郭志忠,陈学允.配电网重构的均衡是在精确矩法.继电器. 2000, 28(12):8~12
    31毕鹏翔,刘健,张文元.配电网络重构的改进支路交换法.中国电机工程学报. 2001, 21(8):98~103
    32 Liu C.C, Jac L.S. An Expert System Operational Aid for Resoration and Loss Reduction of Distribution Systems. IEEE Trans.On Power System.1998,3(2): 619~626
    33 Taylor T, Lubkeman D .Implementation of Heuristic Search Strategies for Distribution Feeder Reconfiguration. IEEE Trans. On Power Systems.1990, 5(1):239~246
    34 Chang G, Zrida J, Bindwell J.D. Knowledge-based Distribution System Analysis and Reconfiguration. IEEE Trans. On Power System. 1988, 3(2): 619~626
    35 Kim Hoyong,Ko Yunseok,Jung Kyung Hee. Artificial Neural Network Based Feeder Reconfiguration for Loss Reduction in Distribution System. IEEE Trans. On Power Delivery. 1993,8(3):1356~1366
    36 Hayashi Y, Iwamoto S,Furuya S,et al. Efficient Determination of Optimal Radial Power System Structure Using Hopfield Neural Network with Constrained Noise. IEEE Trans. On Power Delivery. 1996,11(3):1529~1535
    37 Gauche E,Coelho J,Teive R.G.G. Online Distribution Feeder Optimal Reconfiguration Algorithm for Resistive Loss Reduction Using a Multi-layer Perceptron. IEEE International Conference on Neural Networks. Piscataway, NJ, USA:IEEE,1997:179~182
    38 Kashem M.A,Jasmon G.B,Mohamed A,et al. Artificial Neural Network Approach to Network Reconfiguration for Loss Minimization in Distribution Networks. International Journal of Electrical Power & Energy Systems,1998,20(4):247~258
    39 Nara Koichi,Shiose Atsushi, Kitagawa Minoru, et al. Implementation of Genetic Algorithm for Distribution Systems Loss Minmum Reconfiguration. IEEE Trans. On Power System. 1992,7(3):1044~1051
    40 Choi Dai Seub,Jun Hasegawa. An Application of Genetic Algorithms to The Distribution System Loss Minimization Reconfiguration Problem. Proceedings of the International Power Engineering conference.Singapore:Nanyang Technol.Univ,1995:436~441
    41刘莉,陈学允.基于模糊遗传算法的配电网络重构.中国电机工程学报. 2000,20(2):66~69
    42毕鹏翔,刘健,张文元.配电网络重构的研究.电力系统自动化. 2001, 25(14):54~60
    43王凌.智能优化算法及其应用.北京:清华大学出版社,2002.
    44 Chiang Hsiao Dong,Rene Jean Jumeau. Optimal Network Reconfigurations in Distribution Systems. IEEE Trans. on Power Delivery. 1997, 12(4): 1902~1909
    45胡敏优,陈元.配电系统最优网络重构的模拟退火法.电力系统自动化.1994, 18(2): 24~28
    46 H.C. Chang, C.C. Kuo. Network Reconfiguration in Distribution System Using Simulated Annealing. Electric Power Systems Research. 1994, 29(3):227~238
    47许雄,吕林,刘俊勇,等.配电网络重构中的智能优化算法.四川电力技术.2005(6):25~28
    48 A葛少支,刘自发,余贻鑫.基于改进禁忌搜索的配电网重构.电网技术.2004,28(23):22~26
    49 Guimaraes M.A.N., Lorenzeti J.F.C., Castro C.A. Reconfiguration of Distribution Systems for Voltage Stability Margin enhancement Using Tabu Search. International Conference on Power System Technology. Piscataway, NJ, USA:IEEE,2004.1556~1561
    50 R.F. Chang, C.N. Lu. Feeder Reconfiguration for Load Factor Improvement. IEEE Power Engineering Society Winter Meeting, 2002,2:27~31
    51 X. Jin, J. Zhao, Y. Sun, K. Li, B. Zhang. Distribution Network Reconfiguration for Load Balancing Using Binary Particle Swarm Optimization. IEEE International Conference on Power System Technology, Singapore, 2004,1: 507~510
    52刘蔚,韩祯样.基于支持向量机的配电网重构.电力系统自动化.2005, 29(7):48~52
    53余贻鑫,段刚.基于最短路算法和遗传算法的配电网络重构.中国电机工程学报. 2000, 22(9): 44~49
    54 W.H. Lin, F.S. Cheng, M.T. Tsay. Distribution Feeder Reconfiguration withRefined Genetic Algorithm. IEE Proc.-Generation, Transmission and Distribution.2000, 147(6): 349~354
    55孙健,江道灼.一种多目标配电网络重构新算法.电力系统自动化. 2003, 27(20):57~61
    56于霆,李林川,闫伟等.多电压级配电网络重构的实用算法.电力自动化设备.2001,21(11):58~60
    57余贻鑫,段刚.基于最短路算法和遗传算法的配电网络重构.中国电机工程学报. 2000,20(9):44~49
    58刘栋,陈允平,沈广等.负荷随机性对网损计算和配电网重构的影响.电力系统自动化.2006,30(9):25~28
    59葛少云,刘自发,余贻鑫.基于改进禁忌搜索的配电网重构.电网技术.2004, 28(23):22~26
    60余健明,蔡利敏.基于改进遗传算法的配电网络重构.电网技术.2004, 28(9):71~74
    61工毅.基于改进自适应遗传算法的配电网络重构.电力自动化设备.2005, 25(12):45~48
    62李晓明,黄彦浩,尹项根.基于改良策略的配电网重构遗传算法.中国电机工程学报. 2004,24(2):49~54
    63麻秀范,张粒子,孔令宇.基于家族优生学的配网重构.中国电机工程学报. 2004,24(10):97~102
    64张鹏,王守相.提高系统可靠性的配电网络多目标重构区间方法.电力系统自动化.2006,28(21):22~26
    65刘莉.基于模糊遗传算法的配电网络优化方法的研究.哈尔滨工业大学博士论文.2000.
    66赵登福,刘云,周文华等.以能量损耗最小为目标函数的网络重构.西安交通大学学报.1999,33(8):16~19
    67王守相,王成山.配电网络重构的优化可信度度量的区间方法.电力系统自动化. 2001, 25(23): 27~31
    68 Zhou Qin, Shirmohammadi D. Distribution feeder reconfiguration for operation cost reduction[J].IEEE Trans.on Power Systems,1997,12(2):730~735.
    69余贻鑫,邱炜,刘若沁.基于启发式算法与遗传算法的配电网重构.电网技术. 2001, 25(11): 19~22
    70刘蔚,韩祯样.基于最优流法和遗传算法的配电网重构.电网技术.2004, 28(19):29~33
    71 R.E. Lee, C.L. Brooks. A Method and Its Application to Evaluate Automated Distribution Control. IEEE Trans. on Power Delivery. 1988, 3(3): 1232~1240
    72尹丽燕,于继来.多时间段落的配电网络动态重构.中国电机工程学报. 2002,22(7):44~48
    73方兴,郭志忠,蔡中勤.基于时间周期的配电网络动态重构.电力自动化设备.2004,24(5):31~34
    74刘蔚,韩祯祥.基于时间区间的配电网重构.电力系统自动化.2006,30 (10):33~38
    75 R.P. Broadwater, A.H. Khan, H.E. Shaalan, R.E. Lee. Time Varying Load Analysis to Reduce Distribution Losses through Reconfiguration. IEEE Trans. on Power Delivery.1993, 8(1): 294~300
    76 R.P. Broadwater, A.H. Khan, H.E. Shaalan, R.E. Lee. Time Varying Load Analysis to Reduce Distribution Losses through Reconfiguration. IEEE Trans. on Power Delivery.1993, 8(1): 294~300
    77邓佑满,张伯明,田田.虚拟负荷法及其在配电网络动态优化中的应用.中国电机工程学报. 1996, 16(7): 241~244
    78吴建中,余贻鑫.最小化运行费用的时变重构全局优化算法.中国电机工程学报. 2003, 23(11): 13~17
    79 C.S. Chen, M.Y. Cho. Energy Loss Reduction by Critical Switches. IEEE Trans. on Power Delivery. 1993, 8(3): 1246~1253
    80 J.J. Grainger, S.H. Lee, A.A.EI-Kib. Design of a Real-Time Switching Control Scheme for Capacitive Compensation of Distribution Feeders. IEEE Trans. on Power Apparatus and Systems. 1982, 101(8): 2420~2428
    81 J.J. Grainger, S. Civanlar, S.H.Lee. Optimal Design and control scheme for Continuous Capacitive Compensation of Distribution Feeders. IEEE Trans. on Power Apparatus and Systems. 1983, 102(10): 3271~3278
    82 J.J. Grainger, S. Civanlar, K.N.Clinard et al. Discrete-Tap Control Scheme for Capacitive Compensation of Distribution Feeders. IEEE Trans. on Power Apparatus and Systems. 1984, 103(8): 2098~2107
    83 J.J. Grainger, S. Civanlar, K.N.Clinard et al. Optimal Voltage Dependent Continuous Time Control of Reactive Power on Primary Distribution Feeders.IEEE Trans. on Power Apparatus and Systems. 1984, 103(9): 2714~2723
    84 S. Civanlar, J.J. Grainger. Volt/Var Control on Distribution Systems with Lateral Branches Using Shunt Capacitors and Voltage Regulators PartⅠ: the Overall Problem; PartⅡ: the Solution Problem. IEEE Trans on Power Apparatus and Systems; PartⅢ: the Numerical Problem. IEEE Trans. on Power Apparatus and Systems. 1985, 104(11): 3278~3297
    85 M. E Baran, F. F. Wu. Optimal capacitor placement on radial distribution system. IEEE Trans on Power Delivery. 1989,4(1):725~734
    86 M. E. Baran, F. F. Wu. Optimal Sizing of Capacitors Placed on a radial distribution system. IEEE Trans on Power Delivery. 1989,4(1):735~743
    87 J.C. Wang, H.D. Chiang, K.N.Miu et al. Capacitor Placement and Real Time Control in Large Scale Unbalanced Distribution Systems: Loss Reduction Formula, Problem Formulation, Solution Methodology and Mathematics Justification; Numerical Studies. IEEE Trans. on Power Delivery. 1997, 12(2): 953~964
    88邓佑满,张伯明,相年德.配电网络电容器实时优化投切的逐次线性整数规划法.中国电机工程学报. 1995,15(6):375~383
    89侯志俭,吴际舜,梁勇.配电网络重构与电容器的配置.全国高等学校电力系统及其自动化专业第十一届学术年会论文集,1995:31~37
    90 Y.M. Deng, X.J. Ren. Optimal Capacitor Switching with Fuzzy Load Model for Radial Distribution Systems. IEE Proc.-Generation, Transmission and Distribution.2003,150(2): 190~194
    91任晓娟,邓佑满,赵长城等.高中压配电网动态无功优化算法的研究.中国电机工程学报.2003,23(1):31~36
    92 Y.Y. Hsu, H.C. Kuo. Dispatch of Capacitors on Distribution System Using Dynamic Programming. IEE Proc.-Generation, Transmission and Distribution.1993, 140(6): 433~438
    93陈星莺,钱锋,杨素琴.模糊动态规划法在配电网络无功优化控制中的应用.电网技术. 2003,27(2):68~71
    94吴文传,张伯明.电容器实时优化投切的最优匹配注入流法.中国电机工程学报.2004,24(1):35~39
    95吴文传,张伯明.能量损耗最小的无功补偿动态优化算法研究.中国电机工程学报.2004,24(4):68~73
    96 N.I. Santoso, O.T. Tan. Neural-Net Real Time Control of Capacitors Installed on Distribution Systems. IEEE Trans. on Power Delivery. 1990,5(1): 266~272
    97王成山,王守相.负荷变化不确定性的配电网络重构区间评价方法.中国电机工程学报.2002,22(5):49~53
    98 B. Das, P.K. Verma. Artificial Neural Network-based Optimal Capacitor Switching in a Distribution System. Electric Power Systems Research. 2001, 60(1): 55~62
    99 Gu Z, Rizy D T. Neural Networks For Combined Control of Capacitor Banks and Voltage Regulators in Distribution Systems.IEEE Trans. on Power Delivery, 1996,11(4): 1921~1928
    100 Hsu Y Y, Yang C C. A Hybrid Artifical Neural Network Dynamic Programming Approach for Feeder Capacitor Scheduling. IEEE Trans. on Powes Systems, 1994, 9(2):1069~1075
    101 H.D. Chiang, J.C. Wang, Orville Cockings, et al. Optimal Capacitor Placement in Distribution Systems: Part 1: A New Formulation and the Overall Problem; Part 2: Solution Algorithms and Numerical Results. IEEE Trans. on Power Delivery. 1990, 5(2): 634~649
    102 H.D. Chiang, J.C. Wang, Gary Darling. Optimal Capacitor Placement, Replacement and Control in Large-Scale Unbalanced Distribution Systems: System Modeling and A New Formulation; System Solution Algorithms and Numerical Studies. IEEE Trans. on Power Systems. 1995,10(1): 356~369
    103王守相,王成山,王剑.配电电容器三相分相优化投切.电网技术. 2002,26(8):16~20
    104 Sundharajan S, Pahwa A.Optimal Selection of Capacitor for Radial Distribution Systems Using a Genetic Algorithm.IEEE Trans. on Power Systems. 1994, 9(3): 1499~1507
    105 C.C. Kuo, H.C. Chang. Solving the Bi-objective Scheduling of Switched Capacitors Using an Interactive Best-compromise Approach. Electric Power Systems Research. 1998,46(3):133~140
    106刘莉,陈学允,孙小平.基于遗传算法的配电网电容器优化投切.东北电力学院学报. 1999,19(4):33~36
    107张学松,柳焯,于尔铿.基于Tabu方法的配电电容器投切策略.电网技术. 1998,22(2):33~36
    108邓集祥,张弘鹏.用改进的Tabu搜索方法优化补偿电容器分档投切的研究.电网技术. 2000,24(2):46~49
    109卢鸿宇,胡林献,刘莉,等,基于遗传算法和TS算法的配电网络电容器实时优化投切策略.2000,24(11):56~59
    110张芙蓉,孟昭勇,李剑.基于TS和GA的配电电容器优化投切.继电器. 2004, 32(14):29~31
    111邓佑满,张伯明,王洪璞.配电网络重构和电容器投切的综合优化算法.电力系统自动化. 1996, 20(5):5~9
    112刘莉,宛力,陈学允.模糊遗传算法在配电网络综合优化中的应用.电力自动化设备. 2001, 21(1): 14~16
    113侯志俭,吴际舜,梁勇,张卫红.配电网重构与电容器的配置.上海交通大学学报. 1996, 30(11):88~93
    114 C.T Su, C.S. Lee. Feeder Reconfiguration and Capacitor Setting for Loss Reduction of Distribution Systems. Electric Power Research. 2001, 58(1): 97~102
    115 J. Dan, B. Ross. Optimal Electric Distribution System Switch Reconfiguration and Capacitor Control. IEEE Trans. on Power Systems. 1996, 11(2): 890~897
    116 I. Roytelman, S.M. Shahidehpour. Practical Aspects of Distribution Automation in Normal and Emergency Conditions. IEEE Trans. on Power Delivery. 1993, 8(4): 2002~2008
    117 K.N. Miu, H.D. Chiang, R.J. Mcnulty. Multi-Tier Service Restoration Through Netwok Reconfiguration and Capacitor Control for Large-Scale Radial Distribution Networks. IEEE Trans. on Power Systems. 2000, 15(3): 1001~1007
    118周任军,段献忠,周晖.计及调控成本和次数的配电网无功优化策略.中国电机工程学报.2005,25(9):23~28
    119刘明波,朱春明,钱康龄等.计及控制设备动作次数约束的动态无功优化算法.中国电机工程学报.2004,24(3):34~40
    120胡泽春,王锡凡.配电网无功优化的分时段控制策略.电力系统自动化. 2002,:45~49
    121王漪,于继来,王永刚,柳焯.基于运行模式的无功电压优化调度的研究.电力系统自动化.1999,23(16):20~22
    122 Li Xiaoming, Chen Xiaohui, Yin Xianggen, Xiang Tieyuan, Liu Huagang.The Algorithm of Probabilistic Load Flow Retaining Nonlinearity. Proceedings of PowerCon 2002. Kunming,China, 2002(4): 2111~2115
    123徐澄人.电力网线损计算的等值功率法.上海工程技术大学学报.1995,22 (7):24~28
    124孙宏斌,张伯明,相年德.配电匹配潮流技术及其在配电状态估计中的应用.电力系统自动化, 1998.7, 22(7):18~22
    125 Taleski R,Rajicic D. Energy summation method for energy loss computation in radial distribution networks. IEEE Trans on Power Systems.1996,11(2): 1104~1111
    126徐建亭,王秀英,李兴源.电力系统电压无功的序列二次规划算法.电力系统及其自动化.2001,21(4):475~482
    127任震,孙丽敏,张勇军等.配电网络无功补偿的优化模型与算法.华南理工大学学报.2000,28(7):69~73
    128钱康龄,纪红,李芳红等.分布式电压无功全局优化控制系统的研制与应用.电力系统自动化.2004,28(18):96~99
    129任艳杰,赵玉林.低压电网具有无功补偿等功能的综合自动化装置的研究.东北农业大学学报.2007,38(2):229~231
    130蒋中一,王永宏.动态最优化基础.商务印书馆,1999,2:163~168
    131邹智勇.配电网络电容器动态投切方法研究.哈尔滨工业大学硕士论文.2002.
    132李宏仲,王承民,程浩忠.基于参数控制变量最优潮流算法在电力系统配网无功优化中的应用.上海交通大学学报.2005,39:71~74
    133刘勇,康立山,陈毓屏.非数值并行算法~遗传算法.科学出版社,1995, 126~136
    134袁亚湘,孙文瑜.最优化理论与方法.科学出版社,1997,2:422~451
    135聂普焱.一种内点法解二次规划.应用数学.2003,16(2):1~6
    136张艺.框式约束凸二次规划问题的内点算法.高等学校计算数学学报.2002, (2): 163~168
    137李乃湖,丁恰,王晓东.基于原-对偶内点法的电压无功实时优化控制算法.电力系统自动化.2000,20~23
    138刘健,徐精求,董海鹏.考虑负荷变化的配电网动态优化.继电器.2004,32(13):15~19
    139徐俊明.图论及其应用.合肥:中国科技大学出版社,1998:98~104
    140土智宇,涂光瑜,罗毅等.基于时间分段的配电网络重构.继电器.2006,34(8): 35~39
    141刘柏私,谢开贵,周家启.配电网重构的动态规划算法.中国电机工程学报. 2005,25(9):29~34
    142赵登福,刘昱,夏道止,考虑开关动作次数约束的配电网无功电压控制方法的研究.西安交通大学学报.2003,37(8):783~786
    143 A.L.Shekman. Energy loss computation by using statistical techniques. IEEE Trans on Power Delivery.1990,5(1):254~258
    144 Z. Hu, X. Wang, H. Chen, et al, Volt/VAr control in distribution systems using a time-interval based approach. IEE Proc of Generation Transmission and Distribution. 2003,(150):548~554
    145马勇飞,周任军,王献敏等.基于全局序列二次规划算法的无功优化,长沙电力学院学报.2006,21(3):12~15
    146刘伟良,黄纯,向为.基于线性内点法的高中压配电网电压无功优化.电力系统及其自动化学报. 2004,16(6):82~88
    147余娟,颜伟,徐国禹等.基于预测-校正原对偶内点法的无功优化新模型,中国电机工程学报. 2005,25(11):146~151
    148周斌,高立.求解大规模带边界约束二次规划问题的单调投影梯度法.中国科学.2006,36(5):556~570
    149胡茂林,蔺勇.全部生成树的组合生成法.陕西科技大学学报.2004, 22 (1):124~126
    150丁青青,王赞基.时间最优控制算法及其在SVC控制中的应用.清华大学学报. 2004,44(4):442~445
    151王函韵,胡骅,朱卫东等.信息不确定性对电网无功优化的影响.中国电机工程学报.2005,25(13):24~28
    152许诺,黄民翔.原对偶内点法与定界法在无功优化中的应用.电力系统及其自动化学报.2000,12(3):26~30
    153 J.W. Fourie, J.E. Calmeyer. A statistical method to minimize electrical energy losses in a local electricity distribution network. AFRICON.2004:667~673
    154 Eva Gonzalez, Romera Miguel, A. Jaramillo Moran. Monthly Electric Energy Demand Forecasting Based on Trend Extraction. IEEE Trans on PowerSystems. 2006,21(4):1946~1953
    155 Khodr H.M., Molea J., Garcia I., et al. Standard Levels of Energy Losses in Primary Distribution Circuits for SCADA Application, IEEE Trans on Power Systems. 2002,17(3):615~620
    156 Schellenberg A.,Rosehart W., Aguado J., Cumulant-Based Probabilistic Optimal Power Flow (P-OPF) with Gaussian and Gamma Distributions. IEEE Trans on Power Systems. 2005,20(2):773~781
    157 S. Abdelkader. Efficient Computation Algorithm for Calculating Load Contributions to Line Flows and Losses, IEE Proceedings of Generation, Transmission and Distribution. 2006,153(4):391~398
    158 Mao Anjia, Yu Jiaxi, Guo Zhizhong. PMU Placement and Data Processing in WAMS That Complements SCADA. IEEE/PES General Meeting, 2005:780~ 783
    159 Fourie J.W., Calmeyer J.E., A Statistical Method to Minimize Electrical Energy Losses in a Local Electricity Distribution Network. Proceedings of the 7th AFRICON Conference in Africa. 2004:667~673
    160 Kyeon Hur, Surya Santoso. Distance Estimation of Switched Capacitor Banks in Utility Distribution Feeders. IEEE Trans on Power Delivery. 2007,22(4): 2419~2427
    161 M.E.H. Golshan, S.A.Arefifar. Distributed Generation, Reactive Sources and Network-Configuration Planning for Power and Energy-Loss Reduction. IEE Proceedings of Generation, Transmission and Distribution. 2006,153(2):127~ 136
    162 S.Salamat Sharif, J.H.Taylor, E.F.HiII. Dynamic Online Energy Loss Minimization. IEE Proceedings of Generation, Transmission and Distribution. 2001, 148(2):172~176
    163 Ramon A.Gallego, Alcir Jose Monticelli, Ruben Romero. Optimal Capacitor Placement in Radial Distribution Networks. IEEE Trans on Power Systems. 2001,16(4):630~637
    164 M. P. Selvan, K. S. Swarup. Dynamic Topology Processing in a Radial Distribution System. IEE Proceedings of Generation, Transmission and Distribution. 2006, 153(2):155~163
    165 Y.L. Ke. Distribution Feeder Reconfiguration for Load Balancing and ServiceRestoration by Using G-Nets Inference Mechanism. IEEE Trans on Power Delivery.2004, 19(3): 1426~1433
    166 C.H. Lin. Distribution Network Reconfiguration for Load Balancing with a Coloured Petri Net Algorithm. IEE Proceedings of Generation, Transmission and Distribution.2003, 150(3): 317~324
    167 Y. J. Jeon, J. C. Kim. Application of Simulated Annealing and Tabu Search for Loss Minimization in Distribution Systems. Electrical Power and Energy Systems. 2004, 16(1):9~18
    168 D. J. Shin, J. O. Kim, T. K. Kim, et al. Optimal Service Restoration and Reconfiguration of Network Using Genetic-Tabu Algorithm. Electric Power Systems Research. 2004, 71:145~152
    169 A. Augugliaro, L. Dusonchet, S. Favuzza, et al. Voltage Regulation and Power Losses Minimization in Automated Distribution Networks by An Evolutionary Multiobjective Approach. IEEE Trans on Power Systems. 2004, 19(3): 1516~ 1527
    170 W. Zhang, Y. Liu. Reactive Power Optimization Based on Pso in a Practical Power System. IEEE Power Engineering Society General Meeting, 2004, 239 ~243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700